
HAL Id: hal-02429253
https://hal.science/hal-02429253

Submitted on 6 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tensor Representation of Non-linear Models Using
Cross Approximations

José Vicente Aguado, Domenico Borzacchiello, Kiran S. Kollepara, Francisco
Chinesta, Antonio Huerta

To cite this version:
José Vicente Aguado, Domenico Borzacchiello, Kiran S. Kollepara, Francisco Chinesta, Antonio
Huerta. Tensor Representation of Non-linear Models Using Cross Approximations. Journal of Scien-
tific Computing, 2019, 81, pp.22-47. �10.1007/s10915-019-00917-2�. �hal-02429253�

https://hal.science/hal-02429253
https://hal.archives-ouvertes.fr

Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/null

To cite this version :

José Vicente AGUADO, Domenico BORZACCHIELLO, Kiran S. KOLLEPARA, Francisco
CHINESTA, Antonio HUERTA - Tensor Representation of Non-linear Models Using Cross
Approximations - Journal of Scientific Computing - Vol. Volume 81, Issue 1, p.Pages 22-47 - 2019

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/null
mailto:archiveouverte@ensam.eu
https://artsetmetiers.fr/

Tensor Representation of Non-linear Models Using Cross
Approximations

José V. Aguado1 · Domenico Borzacchiello1 · Kiran S. Kollepara1 ·
Francisco Chinesta2 · Antonio Huerta3

Abstract
Tensor representations allowcompact storage and efficientmanipulationofmulti-dimensional
data. Based on these, tensor methods build low-rank subspaces for the solution of multi-
dimensional and multi-parametric models. However, tensor methods cannot always be
implemented efficiently, specially when dealing with non-linear models. In this paper, we
discuss the importance of achieving a tensor representation of the model itself for the effi-
ciency of tensor-based algorithms. We investigate the adequacy of interpolation rather than
projection-based approaches as ameans to enforce such tensor representation, andpropose the
use of cross approximations formodels inmoderate dimension. Finally, linearization of tensor
problems is analyzed and several strategies for the tensor subspace construction are proposed.

Keywords Non-linear modeling · Reduced order modeling · Low-rank tensor
approximation · Proper generalized decomposition · Cross approximations · Parametrized
PDE · Multi-dimensional problems

1 Introduction

Tensor methods can be regarded as a specific class of reduced-order methods (ROM),
designed for the solution of multi-dimensional and multi-parametric problems. ROM have

B José V. Aguado
jose.aguado-lopez@ec-nantes.fr

Domenico Borzacchiello
domenico.borzacchiello@ec-nantes.fr

Francisco Chinesta
francisco.chinesta@ensam.eu

Antonio Huerta
antonio.huerta@upc.edu

1 High Performance Computing Institute, Ecole Centrale de Nantes, 1 rue de la Noë,
44321 Nantes, France

2 ESI Group Chair at PIMM, ENSAM ParisTech, 151 boulevard de l’Hôpital, 75013 Paris, France

3 Laboratori de Càlcul Numèric (LaCaN), Universitat Politècnica de Catalunya, BarcelonaTech,
08034 Barcelona, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-019-00917-2&domain=pdf

proved in all its variants to be a key tool in simulation-based engineering sciences, provid-
ing a scientific and mathematical basis for fast simulation (sometimes even in real-time) of
engineered systems. They have opened the path towards a better integration of numerical
simulation in dynamic data-driven application systems [25], rapid numerical prototyping
[11] and dedicated simulation applications [1], among many other examples.

Reduced-order methods are designed to provide fast yet accurate approximations of the
solution of a numerical model. The concept of reducibility is therefore central. It states
that the solution of many models can be well approximated using few degrees of freedom,
provided that a suitable representation basis is chosen. The two principal families of ROM
differ essentially on how they build such appropriate representation basis. One one hand,
a-posteriori ROM extract a low-dimensional subspace from a training simulation dataset
[9,46–48,54]. On the other hand, tensor methods (also referred to as a-priori ROM) compute
low-rank tensor subspaces by setting up an optimization problem [3,26,40]. Both families
of methods require a special treatment of non-linear problems in order to preserve their
efficiency.

Literature on non-linear a-posteriori ROM is abundant. Most of the approaches propose
building a secondary low-dimensional subspace, other than the solution’s subspace, in order
to approximate the non-linear term. Then, the Empirical Interpolation Method (EIM) [7,35],
as well as its discrete counterpart (DEIM) [17], can be used to give interpolation properties to
the non-linear term’s subspace. As opposed to projection, interpolation allows approximating
the non-linear term by evaluating only few points, which can be done inexpensively during
the on-line stage. A number of variants have been proposed, such as the unassembled DEIM
[50], which is specifically tailored for finite element computations, and the localized DEIM
[45], that proposes to switch between local subspaces in order to capture different regimes
of the system, using clustering and supervised learning techniques. We shall give in Sect. 3.2
further details on the interpolation approach as a means to introduce cross approximations,
which can be seen as a sort of extension of EIM to a tensor framework.

Interpolation-based techniques were described in [16] as approximate-then-project
approaches. Alternatively, project-then-approximate (also, hyper reduction) approaches pro-
pose roughly to approximate the projection of the non-linear term directly [23,24,49]. This
ultimately leads to the definition of empirical quadrature rules [30], which seem to provide
a more consistent basis to address non-linear reduced order modeling.

As opposed to a-posteriori ROM, literature on tensor-based ROM for non-linear problems
is much scarcer and lacks, in general, of a systematic approach. For instance, only polynomial
non-linearities can be efficiently addressedwith the Asymptotical NumericalMethod (ANM)
[34,38,39]. The LATIN method has been successfully applied to compute space-time (or
pseudo-time) separated representations involving elasto-plasticity, contact and multi-scale
problems [15,33,37].

The objective of this paper is three-fold: in first place, we discuss the importance of
tensorization for the efficiency of tensor-based ROM. By tensorization we mean the ability
to enforce a tensor representation of the model itself,1 which reveals crucial for the efficiency
of tensor-based algorithms. Secondly, we investigate the adequacy of interpolation rather than
projection-based approaches as ameans to enforce tensorization, and propose the use of cross
approximations [21,52] formodels inmoderate dimension.Andfinally, linearization of tensor
problems is analyzed and several strategies for the tensor subspace construction are proposed.
Specifically, the canonical tensor format is used here as a reference, in spite of some well-
known limitations that shall be discussed in detail in Sect. 4.3. As a practical consequence

1 We shall use the term tensorization throughout the entire paper for the sake of conciseness.

of these, the use of canonical format should be restricted to second or third order tensors.
However, in this paper we shall put emphasis on concepts rather than on technical details, and
therefore the validity of the proposed approach should not be compromised by the choice
of tensor format. Other tensor formats are likely to perform better in higher dimensional
problems and might motivate future research.

The rest of the paper is organized as follows. In Sect. 2, we review the basic formulation
of tensor methods and the importance of tensorization for their efficient implementation. To
this end, tensor methods are formulated as an optimization problem. In Sect. 3, we consider
a generic non-linear problem and show how tensorization is in general lost. We also analyze
both projection and interpolation approaches as a means to recover tensorization. In Sect. 4,
we present cross approximations as a means to enforce tensorization of non-linear models.
Strategies for coupling a given linearization scheme with the incremental subspace construc-
tion are analyzed in Sect. 5. Finally, the performance of the proposed method is assessed in
Sects. 6 and 7 by means of several numerical examples.

2 Basic Formulation of Tensor Methods

Tensor methods build a low-rank tensor subspace for the solution of multi-dimensional and
multi-parametric problems. To this end, the weak form of the model at hand is regarded as an
optimization problemwhere the set of admissible solutions is constrained to a low-rank tensor
subspace. The efficiency of tensor methods relies on the tensorization of the model at hand,
as it allows splitting a multi-dimensional problem into a series of lower-dimensional ones.
When dealing with non-linear models, tensorization is in general lost, thus compromising
the overall efficiency of tensor methods.

In next lines, tensor-based reduced-ordermethods (ROM) are introduced from a-posteriori
ones by drawing a parallel between both approaches.

2.1 FromVector to Tensor Subspaces

To the purposes of this section, it is useful to consider a parametrized problem as a model
case. Let u(μ) ∈ R

N0 be its solution on a given representation basis of dimension N0,
for a given D-tuple of parameters μ ∈ M. A-posteriori ROM split the computational cost
into“offline-online” stages. In the offline stage, a subspace of lower dimension, M � N0,
is extracted from the statistical analysis of a training simulation dataset. Then, admissible
solutions are constrained to this low-dimensional subspace:

∀μ ∈ M : u(μ) ≈ uM (μ) := W0 α(μ), (1)

where α ∈ R
M are the representation coefficients of the solution on the subspace spanned

by the columns ofW0 ∈ R
N0×M .

For an efficient offline-online splitting of the computational cost, restricting the solution to
a subspace of dimension M should yield a reduced system equations whose complexity does
not depend on N0 anymore. However, this is not always the case, specially when dealing with
non-linear models. In such a case, it is well-known that the non-linear terms of the equation
need, in principle, to be fully evaluated and then projected at each iteration of the linearization
scheme [17,35]. A number of techniques, already reviewed in Sect. 1, have been proposed
in order to address this situation.

In contrast with a-posteriori ROM, tensor methods are designed to compute the solution
of parametrized problem as an explicit function of the parameters. Therefore, tensor methods
do not produce a reduced system of equations but the parametric solution itself. In this regard,
parameters are treated exactly the same as if they were coordinates, and consequently, the
computational domain becomes of higher dimension. In practice, this implies that the solution
is no longer represented by a one-dimensional array, as in Eq. (1), but by a multi-dimensional
array (or tensor) instead.

Remark 1 (Notation for tensors) Although sometimes it is convenient to usemulti-indices for
tensors, here we prefer linear indexing in order to take advantage of standard matrix algebra
operations, such as the Kronecker and Khatri-Rao products that will be used below.

Let u ∈ R
N , N := N0N1 · · · ND , be the full tensor representation of the parametric

solution after discretizing the parametric domain M with a N1 × · · · × ND grid. Clearly,
full representations are in general precluded even in moderate dimension. Therefore, tensor
subspaces must be introduced to represent parametric solutions efficiently. For the sake of
concretion, we shall only discuss here the canonical tensor subspace, which lies at the basis
of the Proper Generalized Decomposition (PGD) method [3,22,37]. It is defined as follows:

TM := span{wm
0 ⊗ wm

1 ⊗ · · · ⊗ wm
D}Mm=1, (2)

where wm
d ∈ R

Nd stands for the m-th factor, or mode, in direction d, with 0 ≤ d ≤ D. Note
that TM shall be understood throughout this paper as a non-linear structure, where wd can be
chosen freely, unless indicated otherwise. A low-rank approximation uM ∈ TM writes as:

u ≈ uM :=
M∑

m=1

αm wm
0 ⊗ wm

1 ⊗ · · · ⊗ wm
D,

commonly referred to as separated tensor representation. Using the Khatri-Rao product (i.e.
column-wise Kronecker product), it can also be written as:

uM ≡ (W0 	 W1 	 · · · 	 WD)α, (3)

where columns ofmatrixWd ∈ R
Nd×M span a subspace of dimensionM , and itsm-th column

is themodewm
d . In Eq. (3), “	” stands for theKhatri-Rao product. The arrayα ∈ R

M contains
the representation coefficients of the parametric solution on the canonical tensor subspace
of rank M . Notation based on the Khatri-Rao product will be preferred in this paper by its
compactness.

Remark 2 (Tensor reconstruction and decomposition) Given a low-rank representation,
Eq. (3), the reconstruction operation allows obtaining the full tensor representation,
noted as uM ← recons(α,W0, . . . ,WD). Conversely, decomposition is defined as
{α,W0, . . . ,WD} ← decomp(uM).While reconstruction is trivial, decomposition requires
careful study [31], as it might not even be well-posed in some cases.

2.2 Optimization Problem for Tensor Subspace Construction

Consider a multi-dimensional, linear, steady-state model. After discretization, it can be writ-
ten as follows:

Au + f = 0, (4)

where u ∈ R
N is a full tensor representation of some parametric solution, as it has been

previously defined in Sect. 2.1. On the other hand, A ∈ R
N×N represents a linear operator

and f ∈ R
N is the independent term. Tensor methods are designed to build a tensor subspace

by turning Eq. (4) into an optimization problem. No sampling of the parameter domain is in
principle required.

In particular, PGD uses a greedy strategy to build a tensor subspace progressively by
computing rank-one corrections, i.e. by building a series of nested subspaces:

T1 ⊂ T2 ⊂ · · · ⊂ TM where TM := TM−1 + T1. (5)

In practice, the actual rank is driven by some error estimate [2,32] able to determine when
the solution subspace is accurate enough. In general, the greedy rank-one correction strategy
will not yield a best rank-(M+1) approximation, even if uM is a best rank-M approximation.
Assuming that a rank-M tensor approximation of the solution is known, uM ∈ TM , we seek
a rank-one correction δu ∈ T1 such that:

uM+1 := uM + δu where

uM =
D⊙

d=0

Wd α with α ∈ R
M , Wd ∈ R

Nd×M and δu =
D⊗

d=0

wd .
(6)

Assuming that the operator A is symmetric positive definite (specific formulations of
PGD exist for non-symmetric problems, see [6,10,14,40]), Eq. (4) can be regarded as an
optimization problem where the set of admissible solutions is constrained to T1 [22]:

δu := arg min
v∈T1

1

2
〈Av, v〉 + 〈AuM , v〉 + 〈 f , v〉, (7)

where 〈•, •〉 stands for the scalar product in R
N . Equation (7) constitutes a non-linear opti-

mization problem due to the tensor multiplicative structure of the subspace, see Eq. (2). For
the efficient solution of Eq. (7), tensorization of A and f is essential.

2.3 Tensorization for the Efficient Optimization

Let us suppose that the following tensor representations are known:

A =
R∑

r=1

D⊗

d=0

Ar
d with Ar

d ∈ R
Nd×Nd and

f =
D⊙

d=0

Vd γ with γ ∈ R
S, Vd ∈ R

Nd×S .

(8)

By inserting Eq. (8) into Eq. (7), and after some tedious but conceptually simple manip-
ulations, we see that the scalar product in R

N can in fact be computed as the product of
lower-dimensional scalar products. For instance, the first term in Eq. (7) writes:

〈Av, v〉 ≡
R∑

r=1

D∏

d=0

〈Ar
dvd , vd〉d , (9)

where 〈•, •〉d stands for the scalar product inRNd . Equation (9) defines the separationproperty
of the scalar product. This property suggests applying an alternating directions algorithm in

order to optimize each direction wd [18]. This can be achieved by simply projecting the
functional in Eq. (7) onto each direction. Thus, let w∗ the current direction to be optimized,
implying that wd , ∀d �= ∗, are frozen at their most current update. The restriction of Eq. (7)
onto the current direction yields:

w∗ := arg min
v∗∈RN∗

R∑

r=1

{1
2
〈βr∗Ar∗v∗, v∗〉∗ + 〈Ar∗W∗α̃r∗, v∗〉∗

}
+ 〈V∗γ̃ ∗, v∗〉∗, (10)

where βr∗ ∈ R, α̃r∗ ∈ R
M and γ̃ ∗ ∈ R

S are coefficients carrying the result of the scalar
products in all directions except the current one. See Annex A for the definition of these
coefficients as well as for a detailed solution of Eq. (10).

In summary, the correction δu can be computed by an alternating optimization of each
separated factor, using Eq. (10), until stagnation [2,53]. In this way, the algorithm splits
a multi-dimensional problem into a series of low-dimensional ones. This has been possible
thanks to the tensorization of the problem, introduced in Eq. (8). In many cases, tensorization
of linear problems can be achieved quite easily. However, when dealing with non-linear
models, tensorization is in general lost, thus compromising the overall efficiency of tensor
methods.

3 Non-linear Problem Formulation

In this section we present a generic non-linear problem and discuss in detail the adequacy
of interpolation rather than projection approaches to enforce tensorization. To this end, we
simply transform the independent term in Eq. (4) into a non-linear function. This yields the
following multi-dimensional, non-linear, steady-state model:

Au + f (u) = 0, (11)

where f (u) is a non-linear function evaluated component-wise, that is f (u) := [f (u1) · · ·
f (uN)] ∈ R

N .

3.1 Tensorization is Lost in Non-linear Problems

Let us consider, without loss of generality, a fixed-point linearization. Assuming that a rank-
M tensor approximation of the solution at iteration � is known, u�

M ∈ TM , the next iterate
can be computed from:

Au�+1 + f (u�
M) = 0. (12)

We seek to compute u�+1
� ∈ T�, a good approximation of u�+1, where the rank will be driven

by some error estimate [2,32]. As explained in Sect. 2.2, T� can be built progressively by
computing rank-one corrections. Assuming that u�+1

M ′ ∈ TM ′ has already been computed, a
rank-one correction δu ∈ T1 can be computed from:

δu := arg min
v∈T1

1

2
〈Av, v〉 + 〈Au�+1

M ′ , v〉 + 〈 f (u�
M), v〉. (13)

Even though u�
M is a tensor form, no tensorized form of f (u�

M) is in general known. As a
consequence, the non-linear term cannot be evaluated efficiently. Recall that it is essential for
the efficiency of tensor-based algorithms to take advantage of the scalar product separation
property. If it holds, higher-dimensional scalar products in Eq. (13) could be computed

as a series of lower-dimensional ones. Hence we require methods to compute a rank-S
approximation of the non-linear term:

f (u�
M) ≈ f S ∈ TS ⇔ f S =

D⊙

d=0

Vd γ with γ ∈ R
S, Vd ∈ R

Nd×S, (14)

where neither Vd nor γ are a priori known, i.e. both have to be computed for a given u�
M .

The rank of the non-linear term approximation must not be confused with the rank of the
independent term in Eq. (8), although we use the same letter: “S”. These have nothing to
do with each other. Note that if Eq. (14) was available, the problem would be completely
equivalent to the one already studied in Sect. 2. Indeed, Eq. (14) could be inserted into
Eq. (13), yielding an appropriately tensorized problem, which can be solved applying an
alternating directions algorithm, as explained in Sect. 2.3. Therefore, the correction δu could
be computed by an alternating optimization of each separated factor, provided that we dispose
of Eq. (14). Unfortunately, it is by no means trivial to achieve a tensor representation such
as Eq. (14).

Tensorization could be, in principle, recovered bymeans of a three-step procedure, involv-
ing reconstruction-evaluation-decomposition (RED) operations:

1. Reconstruction of the current iterate, yielding a full representation, as defined in Remark
2: u�

M ← recons(α,W0, . . . ,WD).
2. Evaluation of the non-linear term: f (u�

M) ← nlfun(u�
M).

3. Decomposition of the non-linear term into a rank-S tensor representation: {γ ,V0, . . . ,

VD} ← decomp(f (u�
M)).

However, RED steps compromise the overall efficiency of tensor-based algorithms, as the
manipulation of full representations is required. The choice of the decomposition method is
crucial here. Some of the classical techniques that have been used within the PGD framework
are the Singular Value Decomposition (SVD) [4,18] and its variant for higher dimensions,
the high-order SVD [19]. PGD itself has also been used as a decomposition technique [36].
These approaches are expensive from both memory and computational standpoints, as they
require operating on the full tensor representation. In this paper we shall use interpolation-
based algorithms that are able to adaptively determine the entries of the tensor that have to
be read in order to compute a low-rank approximation. Therefore, the full representation of
the tensor is not required, but only its evaluation at specific points.

3.2 Projection Versus Interpolation Approaches

Coming back to Eq. (14), we seek an approximation f S ∈ TS of f (u�
M). Let us assume that

we have somehowmanaged to compute factor matricesVd , i.e. TS can be now understood as
a linear subspace, and we only need to compute the representation coefficients γ . Therefore,
we dispose of V := ⊙D

d=0 Vd ∈ R
N×S . Even in such a favorable scenario, computing γ

using projection techniques is expensive. The projection problem is defined as follows:

γ := arg min
ω∈RS

〈Vω,Vω〉 − 〈 f (u�
M),Vω〉, (15)

which yields the following normal equations:

D©
d=0

VT
d Vd γ = VT f (u�

M), (16)

where ©D
d=0 is performs the Hadamard (i.e. component-wise) product. While VTV can be

efficiently computed, thanks to the tensor structure of the basis, as indicated in the left-hand
side of Eq. (16), the right-hand side requires a full evaluation of the non-linear term. It is
worth to recall that if matrices Vd were orthonormal, the left-hand side computation could
be encompassed. Therefore, we see that in spite of the technicality of the tensor framework,
when it comes to the evaluation of the non-linear term, the same kind of issues are encountered
in both a-posteriori ROM and tensor-based framework.

Inspired by EIM, interpolation-based approaches could be envisaged. In its discrete form,
EIM returns a set of interpolation indices, � ∈ N

S , from the basis V. This would allow
defining the following interpolation problem:

PTVγ = PT f (u�
M) → f (u�

M) ≈ V(PTV)−1PT f (u�
M), (17)

where P ∈ R
N×S is an extractor matrix full of zeros, with the exception of entries P�i ,i = 1.

Indices � are such that PTV ∈ R
S×S is invertible. As opposed to projection, interpolation

allows approximating the non-linear term by evaluating only few points, which can be done
inexpensively.

However, a detailed examination of the algorithm yielding the interpolation indices reveals
practical issues for its implementation in a tensor framework. Without going into details, the
algorithm selects the interpolation indices at the absolute maximum value of some approx-
imation residual, see [7,17]. When working with tensors, the max function must be used
carefully, in order to avoid full tensor complexity.

Additionally, recall that a suitable tensor approximation basis has been assumed to be
available, which is often not the case. An alternative approach able to deliver both a tensor
interpolation basis and the interpolation indices is required. Full inspection of the non-linear
term is precluded.

4 Enforcing Tensorization with Cross Approximations

In this section, cross approximations are presented as a means to tensorize the non-linear
term. Cross approximations were developed first for matrix approximations [52] and then
extended to the tensor framework [21]. When working with canonical tensor subspaces, as it
is the case of this paper, cross approximations are subsidiary of the properties of this tensor
subset: linear complexity in the representation but ill-posedness of the best approximation
problem [29,31]. Limitations derived from this fact, as well as perspectives for future research
based on other tensor formats, are discussed in Sect. 4.3. Although cross approximationswere
developed independently from EIM, the exposition is made in such a way that resemblances
between both methods are highlighted.

Some relevant features of the cross approximations method are:

– It builds a canonical tensor subspace with interpolation properties. The interpolation
indices are provided too. Both are computed simultaneously using a fiber search algo-
rithm.

– The tensor subspace is constructed progressively by adding rank-one corrections.
– Like the EIM, the interpolation indices are placedwhere the residual of the approximation

is maximum. Furthermore, they are nested.
– The full tensor representation is not required, but only its evaluation at specific points.

4.1 Non-linear Term ApproximationVia Interpolation

Cross approximations build both a rank-� subspace, T�, and a set of interpolation indices
I� := {�s}�s=1, such that f � ∈ T� interpolates f (u�

M) at I�. Here, “�” is the rank of the
approximation, to be determined adaptively by the cross approximations algorithm. Note
that I� contains linear indices, i.e. 1 ≤ �s ≤ N . However, for notational convenience,
in this section we will also use multi-indices, i.e. H� := {ρs}�s=1, with ρs ∈ N

D+1 and
1 ≤ ρd

s ≤ Nd .
As stated in the beginning of this section, cross approximations build T� progressively by

adding rank-one corrections. Therefore, let us assume that TS has already been computed,
and by consequence, matrices Vd ∈ R

Nd×S and interpolation coefficients HS (also, IS)
are available. A rank-S approximation, f S := (

⊙D
d=0 Vd) γ , can be readily computed by

solving the following interpolation problem:

D©
d=0

PT
d Vd γ = PT f (u�

M), (18)

where Pd ∈ R
Nd×S are extractor matrices full of zeros, with the exception of entries (ρd

s , s),
which are populated with ones. On the other hand, P = ⊙D

d=0 Pd ∈ R
N×S .

Remark 3 (Non-linear term evaluation) From the non-linear term definition in Sect. 3, we
have that the right-hand side of Eq. (18) can be written as follows:

PT f (u�
M) ≡ f (PT u�

M) ≡ f

({
D⊙

d=0

PT
d Wd

}
α

)
.

It is therefore clear that u�
M has to be evaluated at only S indices.

4.2 Simultaneous Construction of both Interpolation Basis and Indices

From the knowledge of f S , we seek a rank-one correction δ f ∈ T1 as well as its correspond-
ing interpolation index, �, such that:

f S+1 := f S + δ f

IS+1 := IS ⊕ �,
(19)

where δ f = ⊗D
d=0 vd . Recall that � can be readily converted into a multi-index ρ such that

HS+1 := HS ⊕ ρ. Like EIM, cross approximations seek to place the interpolation index �

where the residual of the current rank-S approximation reaches its maximum value:

� := argmax |r| with r := f (u�
M) − f S . (20)

Since searching for the maximum of the approximation’s residual is computationally
expensive, a fiber search algorithm (presented hereafter) is preferred instead. Starting with a
random choice for the multi-index ρ, we loop over its components seeking for the maximum
of the residual restricted to the current component. The location where the maximum of the
residual is found allows updating the current multi-index component. Having completed this
iteration over all components, we obtain a newmulti-index ρ. Figure 1 illustrates this process
in a three-dimensional tensor. It shows the multi-index ρ optimized over a cross, see Fig. 1d,
and its associated fibers, depicted in Fig. 1a–c for each one of the three directions.

0

1

2

r0
r1

r2

ρ = (2, 3, 2)

ρ0 = (•, 3, 2) ρ1 = (2, •, 2)

ρ2 = (2, 3, •)
(a) (b)

(c) (d)

Fig. 1 Illustration of tensor fibers and crosses definition, for a given multi-index ρ. The residual restriction
onto its corresponding fibers, r∗, are also indicated

Let ρ∗ be the current direction, implying that ρd , ∀d �= ∗ are frozen at their most current
update. The restriction of Eq. (20) onto the current fiber yields:

ρ∗ := argmax |r∗| with r∗ := f (W∗ α̃∗) − V∗ γ̃ ∗. (21)

See Annex B for the definition of α̃∗ ∈ R
M and γ̃ ∗ ∈ R

S . By iterating along all directions,
Eq. (21) allows updating each component of the multi-index ρ, until stagnation. The number
of evaluations to be performed at each alternated fiber search is relatively small, as the size
of the residual’s restriction on a fiber is r∗ ∈ R

N∗ .
The just described cross approximation algorithm will not succeed, in general dimension,

to find the maximum of the residual. Therefore, ρ ≡ � �= argmax |r|. Further details are
given in Sect. 4.3.

The interpolation basis is defined from the fiber cross associated to the interpolation index:
we set vd := rd , with 0 ≤ d ≤ D. Usually, the modes are normalized such that the ρd -th
entry of vd is equal to one. However, no distinct notation for normalized modes is used for
the sake of simplicity. With the interpolation basis and the interpolation index at hand, the
definition of the rank-one correction δ f is completed. Coefficients γ ∈ R

S+1 can be readily
computed by solving the interpolation problem defined in Eq. (18).

The final rank of the approximation is determined by looking at the maximum of the
residual, which should in principle be located at the interpolation index. For some prescribed
tolerance, the stop criterion is as follows:

∣∣∣∣∣ f

({
D⊙

d=0

PT
d Wd

}
α

)
−

{
D⊙

d=0

PT
d Vd

}
γ

∣∣∣∣∣ < tol, (22)

where Pd ∈ R
Nd×1 is an extractor matrices full of zeros, except the entry ρd which is equal

to one. Due to some issues discussed below, the criterion given in Eq. (22) may not behave
consistently. In practice, we prefer to evaluate the residual at a test set of indices, and not
only at the interpolation index, in order to ensure the approximation is below the specified
tolerance.

4.3 Discussion and Alternative Tensor Formats

In this section, limitations inherited from the canonical tensor format shall be discussed, and
perspectives on the use of other tensor formats as a basis for future research shall be given.

Compared to other formats, the canonical format suffers from ill-posedness of the best
approximation problem in general dimension [29,31]. As a consequence, it is not possible
to recover exactly a low-rank tensor from samples [27]. In two-dimensional problems, it can
be proven that δ f interpolates f (u�

M) at the cross defined by the new interpolation index ρ

[21,27]. Equivalently, the residual vanishes at the cross. From a practical point of view, this
property implies that the interpolation matrix defined in the left-hand side of Eq. (18) is lower
triangular. However, in dimension higher than two, the interpolation property on the crosses is
lost, i.e. the residualmay not vanish on three or higher dimensional crosses.As a consequence,
cross approximations as formulated in Sect. 4.2 are likely to yield tensor decompositions of
an unnecessarily high rank, see [21,27] for details. A PGDprojection step can be used in order
to control the rank of the approximation, as discussed in Sect. 4.4. Some refinements related
to the fiber search algorithm are also provided in the previous references. In our experience,
cross approximations as formulated in Sect. 4.2 deliver reasonably good results in moderate
dimension (two or three order tensors). Potentially, this would allow addressing problems
defined in up to 6-D or 9-D domains, assuming that each tensor direction corresponds to the
discretization of a 3-D domain.

In order to overcome limitations of the canonical format, cross approximations were
extended to other tensor formats, such as Tucker [51], Tensor Train [41] and more general
tree-based Hierarchical Tucker tensors [28]. We refer the interested reader to [5,8,43,44].
Contrary to the canonical format, the aforementioned formats allow recovering exactly a
low-rank tensor from samples in general dimension. These could be used as a means to
enforce tensorization, as suggested in this paper, and coupled with efficient solvers for high-
dimensional systems [20,42], other than the PGD used in this paper. These are valuable
references that might motivate future research and extension of the ideas discussed in this
paper.

4.4 Compressed Rank via PGD Projection

Cross approximations as formulated in 4.2 may deliver tensor decompositions of an unneces-
sarily high rank. Therefore, in this section we propose to use a PGD projection step in order
to compute a rank as small as possible. Note that, in general, the compressed rank shall not
be the exact rank, since PGD relies on the canonical tensor format, see Sect. 4.3 for details.
The projection problem is formulated as in Eq. (15), but letting the approximation basis as an
unknown to be optimized with the PGDmethod. Another difference is that in this section we

do not seek to project f (u�
M), but f S ∈ TS instead, which has tensor structure. This yields

a conveniently tensorized PGD projection problem, as it shall be shown below.
Therefore, we seek to build a lower-rank subspace, T�, with � ≤ S, such that f � ∈ T� is

equal to f S , up to some desired tolerance. Let us assume that f Q has already been computed
and we seek a rank-one correction δ f ∈ T1 such that

f Q+1 := f Q + δ f where

f Q =
D⊙

d=0

V′ γ ′ with γ ′ ∈ R
Q, V′

d ∈ R
Nd×Q and δ f =

D⊗

d=0

v′
d .

(23)

The projection problem is formulated as follows:

δ f := arg min
z∈T1

〈z, z〉 + 〈 f Q − f S, z〉, (24)

Since all quantities in Eq. (24) are tensorized, an alternating directions algorithm can be
applied straightforwardly in order optimize each v′

d . Assuming that the current direction
being optimized is v′∗:

v′∗ := arg min
z∗∈RN∗

〈a∗z∗, z∗〉∗ + 〈V′∗γ̃ ′∗ − V∗γ̃ ∗, z∗〉∗, (25)

where coefficients a∗ ∈ R, γ̃ ′∗ ∈ R
Q and γ̃ ∗ ∈ R

S can be deduced applying the same
methodology already shown in “Appendix A”, and therefore, their definition is not given
explicitly for the sake of brevity.

5 Linearization and Incremental Subspace Construction

Both the solution and the non-linear subspaces are built incrementally. This yields several
strategies for coupling a given linearization scheme with the incremental subspace construc-
tion. In next lines, we choose for the sake of clarity a fixed-point linearization and analyze
several strategies.

Consider the non-linear problem already introduced in Eq. (11). The following strategies
for coupling the linearization schemewith the incremental subspace construction are possible.

5.1 TheOuter Linearization Strategy

The first and most intuitive option consists in first linearizing the problem at hand, then
applying a tensor method to solve the resulting linearized problem. Therefore, we have
essentially two nested loops: one for the linearization scheme (the outer loop) and another
one for the PGD rank-one corrections (the inner loop). The outer loop iterations are indexed
by �.

For the sake of notational clarity, we denote in this section u� := uM�
∈ TM�

, that is, a
rank-M� approximation of the solution at iteration �. Likewise the non-linear term is denoted
as f � := f S�

∈ TS�
. Therefore, the previous iterate is u�−1. After tensorization of the non-

linear term evaluated at the previous iteration, f �−1, the next iterate u� can be computed
from the solution of:

Au� + f �−1 = 0. (26)

A tensormethod can be used to solve Eq. (26). Observe that here the tensormethod is regarded
merely as a linear solver. Algorithm 1 summarizes the just described strategy.

Algorithm 1 The outer linearization strategy
1: Set � = 0 and flag = true
2: Solution initialization: u�

3: while (� ≤ �max & flag) do � Outer loop
4: Set � = � + 1
5: Tensorize non-linear term: f �−1 ≈ f (u�−1) � Cross Approx.
6: New iterate: u� ← PGD on Eq. (26) � Inner loop
7: if Convergence then
8: Set flag = false

return u� ∈ TM�

Observe that the outer linearization strategy as described in Algorithm 1 builds a tensor
subspace TM�

from scratch. A possible variant is to reuse the subspace of the previous iterate
by setting: TM�

:= TM�−1 + TM̃ , where TM̃ is a rank-M̃ correction. As we converge, we
expect u� ≈ u�−1, and then we can hope M̃ � M�. Consequently, much less terms per
iteration would be need to be computed. This variant of the outer linearization scheme may
tend to cumulate terms unnecessarily during intermediate iterations. A compressed rank can
be obtained via PGD projection, as explained in Sect. 4.4.

5.2 The Inner Linearization Strategy

In this strategy, the order of the outer and inner loops defined in Sect. 5.1 is interchanged: the
linearization loop becomes the inner loop while the PGD rank-one corrections loop becomes
the outer loop. Therefore, suppose that we have already built uM ∈ TM and we want to
compute a rank-one correction:

uM+1 := uM + δu. (27)

Introducing Eq. (27) into Eq. (11), we have

Aδu + AuM + f (uM + δu) = 0, (28)

that can be linearized around the correction. We denote by δu� the �-th iterate of the correc-
tion δu. The fixed-point linearization yields the following approximation: f (uM + δu) ≈
f (uM +δu�−1), that is, the non-linear term is evaluated at the previous iterate of the rank-one
correction. Next, the non-linear term is tensorized: f �−1 := f S�−1

≈ f (uM + δu�−1). The
current iterate of the rank-one correction can be computed from the solution of:

Aδu� + AuM + f �−1 = 0. (29)

Equation (29) can be solved with an alternating direction algorithm. The just described
strategy is summarized in Algorithm 2.

Algorithm 2 The inner linearization strategy
1: Set M = 0 and flagPgd = true
2: Solution initialization: uM ≡ 0
3: while (M ≤ Mmax & flagPgd) do � Outer loop
4: Set M = M + 1
5: Set � = 0 and flagNl = true
6: Initialize δu�

7: while (� ≤ �max & flagNl) do � Inner loop
8: Set � = � + 1
9: Compute f �−1 ≈ f (uM + δu�−1) � Using cross approximations
10: δu� ← ADA on Eq. (29) � Alternating Dir. Algorithm
11: if Convergence then
12: Set flagNl = false
13: uM ← uM + δu�

14: if Convergence then
15: Set flagPgd = false

return uM ∈ TM

Observe that the inner linearization strategy as described in Algorithm 2 builds a subspace
TM from rank-one corrections, each one of them being iterated until convergence of the
linearization. In doing so, the non-linear term needs to be tensorized several times (until
convergence of the linearization scheme) for each rank-one correction. A possible variant is to
reuse the non-linear term subspace fromone iteration to another by setting: TS�

:= TS�−1+TS̃ .
As rank-one correction converges, we expect δu� ≈ δu�−1 and hope that S̃ � S�.

In the following lines, we briefly summarize some of the convergence properties observed
from the numerical experiments carried out in Sect. 6. See Sect. 6.2 for a detailed comparison
between outer and inner schemes. As a matter of fact, both schemes showed quite different
behavior. While the outer scheme converged monotonically at a constant rate, the inner
scheme behaved less smoothly, and in some cases, the correction did not even converge.
However, in spite of this lack of robustness, the global convergence of the inner strategy
seemed to be faster. Specifically, the inner scheme required a smaller number of calls to the
alternating directions algorithm. The number of calls to the fiber search algorithm was also
counted for both outer and inner schemes. Results showed that the outer scheme required
significantly less calls. As the computational cost tends to be dominated by the alternating
directions algorithm rather than by the fiber search algorithm, the inner strategy seemed to
be globally faster.

6 A Non-linear 2-D Steady State Problem

In this section we provide a first numerical example in order to illustrate and assess the
performance of the algorithms discussed in previous sections.

Let u := u(x, y) be the solution the following non-linear 2-D steady state problem, defined
in a unit square domain:

{
−∇2u + σ sin(2πu) = s in Ω := [0, 1]2

u = 0 on ∂Ω,
(30)

where the source term is defined as s := s(x, y) = 100 sin(2πx) sin(2π y). On the other
hand, σ stands for the magnitude of the non-linear term. We shall consider four different

uM

{wm
0 }3m=1

(a) Reconstructed 2-D view of the solution:

(b) First 3 x-dir. modes: (c) First 3 y-dir. modes: {wm
1 }3m=1

Fig. 2 PGD solution (σ = 10) at last iteration (� = 11), using an outer linearization strategy. Solution’s rank
is M = 19

values: σ ∈ {1, 5, 10, 15} as a means to analyze the convergence of different linearization
strategies. In what follows, we associate x and y with subscripts 0 and 1, respectively.

A rank-M approximation u ≈ uM := (W0 	 W1)α is sought, where u stands for the
discretized version of u. Both directions x and y are discretized with N0 = N1 = 100
nodes, i.e. 99 two-nodes linear finite elements per direction. This yields an equivalent 2-D
finite element mesh with 99× 99 bi-linear, four-nodes quadrangular elements (only used for
visualization purposes).

6.1 Illustrating Cross Approximations

To illustrate cross approximations,we considerσ = 10 and an outer linearization strategy, see
Sect. 5.1. Convergence is measured with the relative norm-2 of the residual, with respect to

linear term: fS ≈ f(u −1
M)

HS

{vs
0}3s=1

(a) Reconstructed 2-D view of the non- (b) Set of interpolation indices:

(c) First 3 x-dir. modes: (d) First 3 y-dir. modes: {vs
1}3s=1

Fig. 3 Cross approximation of the non-linear term (σ = 10) at last iteration (� = 11), using an outer
linearization strategy. Solution’s rank is M = 19. Non-linear term’s rank is S = 14

the first iterate. Stopping tolerance is set to 10−6. In these conditions, the solution is obtained
after � = 11 non-linear iterations, and the final rank of the solution is M = 19. Figure 2b and
c show, respectively, the first three modes (unit norm) of the solution in 0-direction {wm

0 }3m=1
and 1-direction {wm

1 }3m=1. Figure 2a shows the 2-D reconstruction of the solution.
We illustrate now the tensorization using cross approximations of the non-linear term in the

last iteration before convergence, � = 11.We denote by f S := (V0	V1) γ an approximation
of the non-linear term in Eq. (30). The convergence tolerance of cross approximations is set
to 10−9, yielding an approximation rank S = 14. Figure 3c and d show, respectively, the first
three modes (unit norm) in 0-direction {vs0}3s=1 and 1-direction {vs1}3s=1. The interpolation
indices associated to all 14 modes are depicted in Fig. 3b. On the other hand, Fig. 3a shows
the reconstruction of the non-linear term’s approximation.

r0 and interpolation in-
dex ρ0 = (0.54, 0.19)

r1 and interpo-
lation index ρ1 = (0.78, 0.04)

r2 and interpo-
lation index ρ2 = (0.11, 0.69)

(a) Initial residual (b) Residual after 1 mode

(c) Residual after 2 modes (d) Last residual, after 14 terms: r14

Fig. 4 Reconstructed 2-D view of the residual of the non-linear term cross approximation. Crosses and
interpolation points depicted in red (Color figure online)

We shall now illustrate the incremental construction of the non-linear term subspace.
Figure 4a shows the 2-D reconstruction of the initial residual, that is, when S = 0. The
maximum of the residual is sought using a fiber search algorithm which is initialized with
a random index. After 4 iterations, the algorithm converges to the point ρ0 = (0.54, 0.19),
depicted in red in Fig. 4a, as well as its associated cross. Figure 4b and c show the residual
after one term and two terms have been computed, respectively, as well as their corresponding
interpolation indices. Finally, Fig. 4d shows that the final residual is in the order of 10−9.

6.2 Comparison of Linearization Strategies

The outer and inner linearization strategies defined in Sect. 5 are discussed here. To this
end, we introduce a quantity measuring the cumulated number of mode computations, or
equivalently, the total number of calls to the alternating directions algorithm (ADA) within
PGD. This quantity is defined, in each case, as follows:

(a) Outer linearization (b) Inner linearization

Fig. 5 Residual reduction of both outer and inner linearization strategies, varying the magnitude of the non-
linear term with the coefficient σ . In a each dot stands for a non-linear iteration, while in b each dot stands
for a mode

Couter
ADA =

��∑

�=1

M� and Cinner
ADA =

M�∑

M=1

��
M , (31)

where �� is the number of non-linear iterations until convergence and M� is the number
of modes computed at each iteration. On the other hand, M� is the number of modes at
convergence and ��

M is the number of non-linear iterations for the convergence of each mode.
Figure 5 depicts the total number of ADA calls against the relative residual reduction. Four

different values of the non-linear term’s magnitude are used. As expected, the greater is the
magnitude of the non-linear term, the more ADA calls are required to attain the same error
level. However, convergence plots for outer and inner strategies are quite different, see Fig. 5a
and b, respectively. While the outer strategy behaves regularly and converges at a constant
rate, the inner strategy is less predictable. In some cases, the computed correction does not
converge (it stagnates but no divergence is observed), as indicated in red in Fig. 5b. A possible
explanation may be that two kinds of non-linearities are addressed simultaneously inside the
inner loop, see Algorithm 2: the computation of the multiplicative factors of the correction
and the non-linear term itself. Despite its lack of robustness, the global convergence of the
inner strategy is faster, as less ADA calls are required to attain the predefined error level.

In order to evaluate the cost of cross approximation for both outer and inner approaches,
the total number of calls to the fiber search algorithm (FSA) is evaluated. This quantity is
defined, in each case, as follows:

Couter
FSA =

��∑

�=1

S� and Cinner
FSA =

M�∑

M=1

��
M∑

�M=1

S�M , (32)

where S� is the number of modes of the non-linear term at each non-linear iteration �. On
the other hand, S�M is the number of modes of the non-linear term at iteration � of mode M .
Therefore, the inner scheme is likely to require a higher cost in terms of FSA calls. Figure 6
compares the number of ADA versus FSA calls for both inner and outer schemes, and several
values of the non-linear term’s magnitude.

(a) σ = 1 (b) σ = 5

(c) σ = 10 (d) σ = 15

Fig. 6 Assessment of the algorithmic performances of both outer and inner strategies: ADA versus FSA calls,
varying the magnitude of the non-linear term with the coefficient σ

7 Parametrized Fully-Developed Flow

To further assess the performance of the cross approximations algorithm, in this section we
consider a problem of practical interest. The problem at hand consist in the fully developed
inertialess flow of two stratified non-Newtonian fluids in a channel with square cross section.
The flow field is described in terms of the streamwise velocity component w(x, y). The
governing equation is formulated as follows:

∇ · (η∇w) = −∂ p

∂z
, (33)

in which ∂ p
∂z is the pressure gradient in the streamwise direction, which is arbitrarily set to

the unit value, while∇ := i∂/∂x + j∂/∂ y is the gradient operator in the cross section plane.
The non-linear viscosity is modeled according to the Carreau-Yasuda law:

η(γ̇) = η∞ + (η0 − η∞)(1 + (τ γ̇)a)
n−1
a . (34)

x

y

Fluid 1

Fluid 1

Fluid 2

(a) (b)

Fig. 7 Schematics of bicomponent three-layer flow of non-Newtonian fluids in a square cross section channel.
Velocity profiles for the high viscosity core configuration (a) and low viscosity core configuration (b)

In the latter expression the viscosity is a function of the shear rate:

γ̇ =
√(

∂w

∂x

)2

+
(

∂w

∂ y

)2

. (35)

The material parameters η∞, η0, τ , denote respectively the infinite and zero shear viscosities
and the characteristic relaxation time of the fluid, while the phenomenological constants n
and a are adjusted to reproduce shear thinning behavior. In what follows, we shall assume
n = 0.2 and a = 2. In practical applications stratified flow of shear thinning fluids can be
found in simulation of multi-component coextrusion flows of molten polymers [12,13]. In
this section we assume a bicomponent three-layer flow with uniformly distributed thickness
of the fluid layers as depicted in Fig. 7. In practice, for fixed layer thicknesses and pressure
gradient, the difference in viscosity between the two fluids determines how the flow rate is
distributed in the cross section. Indeed, the layer with smallest viscosity is characterized by
the highest flow rate. The differences in the velocity profile between low viscosity and high
viscosity core configuration are also shown in Fig. 7.

For the numerical solution, the equation of flow is considered in its dimensionless form.
Therefore the following parameters are defined:

μ1 = η02

η01
∈ [0.1, 10] Zero shear viscosity ratio

μ2 = η∞1

η01
∈ [0.1, 1] Infinite to zero shear viscosity ratio (fluid 1)

μ3 = η∞2

η02
∈ [0.1, 1] Infinite to zero shear viscosity ratio (fluid 2)

μ4 = τ2

τ1
∈ [0.1, 10] Characteristic relaxation time ratio

When written in dimensionless form for two fluids, the expression for the viscosity given in
Eq. (34) reads as:

Fluid 1: η1(γ̇) = 2

1 + μ1

(
μ2 + (1 − μ2)(1 + γ̇ a)

n−1
a

)
,

Fluid 2: η2(γ̇) = 2μ1

1 + μ1

(
μ3 + (1 − μ3)(1 + (μ4γ̇)a)

n−1
a

)
.

(36)

Non-linear Iterations
1 2 3 4 5 6 7

S
ta

gn
at

io
n

cr
ite

rio
n

10-5

10-4

10-3

10-2

10-1

100

Fig. 8 Convergence of the non-linear problem measured in terms of the relative difference between two
consecutive iterations (stagnation criterion)

Both space and parametric dimensions are discretized using standard first order Finite
Element approximation. Each dimension is discretized with 64 equally spaced nodes.

The problem is then linearized using Picard iterations. At iteration �, the viscosity is
estimated using the cross approximation scheme based on the velocity field at iteration �−1.
The iteration loop is started using the Newtonian fluid flow as initial solution guess and is
stopped when the relative variation in the solution between two successive iterations is less
than 10−4. The convergence diagram of this iterative procedure is presented in Fig. 8.

At each non-linear iteration, PGD sub-iterations are used to construct a separated variables
format of the solution (outer linearization scheme, see Sect. 5.1). In particular the following
tensor format is enforced:

w(x, y, μ1, μ2, μ3, μ4) =
M∑

m=1

Wm
0 (x, y)Wm

1 (μ1, μ2)W
m
2 (μ3, μ4). (37)

The complexity of the original six-dimensional problem is broken into a succession of three
two-dimensional problems. The final solution consists ofM = 28 terms. In terms ofmemory,
the reduced solution requires 2.63 MB, whereas the full explicit storage of its equivalent
6D solution would take 512 GB in double-precision format (recall there are 64 nodes per
dimension). This represents a reduction factor in the order of 105, i.e. five orders ofmagnitude.
Average CPU time over 5 runs was 724.71 s (around 12 min) on a 64 bit machine with the
following specifications: 2.9 GHz Intel Core i5 with 16 GB 1867 MHz DDR3, running
under MacOS X 10.12.6. Total RAM consumption during execution never went over 410
MB, which could eventually further reduced in an optimized implementation. CPU time of a
brute-force approach was not measured for practical reasons, but it can be estimated instead.
Assuming an optimistic runtime per simulation of 1ms, it would take about 5 h to complete

velocity
0 0.02 0.04 0.06 0.08

y
(m

id
 li

ne
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PGD
FEM

velocity
0 0.02 0.04 0.06 0.08

y
(m

id
 li

ne
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PGD
FEM

velocity
0 0.02 0.04 0.06 0.08 0.1

y
(m

id
 li

ne
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PGD
FEM

velocity
0 0.05 0.1 0.15

y
(m

id
 li

ne
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PGD
FEM

μ1 = (0.35, 0.93, 0.98, 0.66) μ2 = (1.09, 0.35, 0.84, 0.60)

μ3 = (3.07, 0.75, 0.33, 0.51) μ4 = (8.76, 0.80, 0.57, 0.15)

(a) (b)

(c) (d)

Fig. 9 Comparison of the PGD solution against the direct FEM solution at the vertical centerline of the cross
section, for four randomly drawn parameter combinations

in a single-thread implementation. Runtime for a compression step to reduce the 512 GB is
excluded from this estimation.

Finally, the PGD solution is compared to the FEM at randomly drawn points in the
parametric space. Results shown in Fig. 9 refer to the velocity profile in the vertical centerline
of the cross section and are in goodagreementwith thedirect FEMreference solutions. Indeed,
the computed relative error in the maximum norm is in all cases less than 10−3.

8 Conclusions

In this paper, we have shown the importance of tensorization for the efficiency of tensor-based
algorithms. The main ideas have been presented in the Proper Generalized Decomposition
framework, but they could also be applied to other tensor representations. We have discussed

the adequacy of interpolation rather than projection-based approaches as a means to approxi-
mate non-linear equations aswell as to enforce tensorization. The use of cross approximations
reveals simple and efficient for an interpolation-based approximation of models in moder-
ate dimension. Finally, the performance of several schemes for the linearization of tensor
problems has been assessed.

AppendixA: CoefficientsDefinition for AlternatingDirectionsOptimiza-
tion

Coefficients βr∗ ∈ R, α̃r∗ ∈ R
M and γ̃ ∗ ∈ R

S in Eq. (10) are defined as follows:

βr∗ :=
D∏

d=0,d �=∗
〈Ar

dvd , vd〉d ,

α̃r∗ := α ◦
⎛

⎝
D⊙

d=0,d �=∗
〈Ar

dWd , vd〉d
⎞

⎠
T

and

γ̃ ∗ := γ ◦
⎛

⎝
D⊙

d=0,d �=∗
〈Vd , vd〉d

⎞

⎠
T

,

where “•T ” denotes the transpose and “◦” stands for the Hadamard (component-wise) prod-
uct. Recall that α contains the representation coefficients of the rank-M approximation of
the solution, while γ are the representation coefficients of the rank-S representation of the
non-linear term. See Eqs. (6) and (8), respectively.

Using the coefficients defined above, we can define the following quantities:

Ã∗ :=
R∑

r=1

βr∗Ar∗ and b̃∗ := −
R∑

r=1

Ar∗W∗α̃r∗ − V∗γ̃ ∗,

that can be introduced in Eq. (10), leading to the following minimization problem:

w∗ = arg min
v∗∈RN∗

1

2
〈Ã∗v∗, v∗〉∗ + 〈b̃∗, v∗〉∗, (38)

whose solution is w∗ = Ã−1∗ b̃∗.

Appendix B: Fiber Search Algorithm in Detail

Let P := ⊙D
d=0 Pd ∈ R

N×1 be an extractor matrix, with P∗ := I ∈ R
N∗×N∗ . Additionally,

Pd ∈ R
Nd×1, for d �= ∗, are extractormatrices full of zeros, except the entryρd (see Sect. 4.1),

which is equal to one.
The restriction of the approximation residual onto direction “∗” can be written as follows:

r∗ := PT (f (u�
M) − f S) ≡ f (PT u�

M) − PT f S . (39)

Recalling the definition of both u�
M and f S , we arrive to:

r∗ = f (W∗ α̃∗) − V∗ γ̃ ∗, (40)

where the coefficients α̃∗ ∈ R
M and γ̃ ∗ ∈ R

S are defined as follows:

α̃∗ := α ◦
⎛

⎝
D⊙

d=0,d �=∗
PT
d Wd

⎞

⎠
T

, and

γ̃ ∗ := γ ◦
⎛

⎝
D⊙

d=0,d �=∗
PT
d Vd

⎞

⎠
T

.

Here “◦” stands for the Hadamard (component-wise) product.

References

1. Aguado, J., Borzacchiello, D., Ghnatios, C., Lebel, F., Upadhyay, R., Binetruy, C., Chinesta, F.: A sim-
ulation app based on reduced order modeling for manufacturing optimization of composite outlet guide
vanes. Adv. Model. Simul. Eng. Sci. 4(1), 1–26 (2017). https://doi.org/10.1186/s40323-017-0087-y

2. Ammar, A., Chinesta, F., Díez, P., Huerta, A.: An error estimator for separated representations of highly
multidimensional models. Comput. Methods Appl. Mech. Eng. 199(25–28), 1872–1880 (2010)

3. Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidi-
mensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II:
transient simulation using space-time separated representations. J. Non-Newton. Fluid Mech. 144(2–3),
98–121 (2007)

4. Ammar, A., Zghal, A., Morel, F., Chinesta, F.: On the space–time separated representation of integral
linear viscoelastic models. C.R. Mécanique 343(4), 247–263 (2015)

5. Ballani, J., Grasedyck, L., Kluge, M.: Black box approximation of tensors in hierarchical tucker format.
Linear Algebra Appl. 438(2), 639–657 (2013). https://doi.org/10.1016/j.laa.2011.08.010

6. Barbarulo, A., Ladevèze, P., Riou, H., Kovalevsky, L.: Proper generalized decomposition applied to linear
acoustic: a new tool for broad band calculation. J. Sound Vib. 333(11), 2422–2431 (2014)

7. Barrault, M., Maday, Y., Nguyen, N., Patera, A.: An “empirical interpolation method”: application to
efficient reduced-basis discretization of partial differential equations. C.R. Acad. Sci. I-Math. 339(9),
667–672 (2004)

8. Bebendorf, M.: Adaptive cross approximation of multivariate functions. Constr. Approx. 34, 149–179
(2011). https://doi.org/10.1007/s00365-010-9103-x

9. Beylkin, G., Mohlenkamp, M.: Algorithms for numerical analysis in high dimensions. SIAM J. Sci.
Comput. 26(6), 2133–2159 (2005)

10. Billaud-Friess, M., Nouy, A., Zahm, O.: A tensor approximation method based on ideal minimal residual
formulations for the solution of high-dimensional problems. ESAIMMath. Model. Numer. 48(6), 1777–
1806 (2014). https://doi.org/10.1051/m2an/2014019

11. Borzacchiello, D., Aguado, J., Chinesta, F.: Reduced order modelling for efficient optimisation of a hot-
wall chemical vapour deposition reactor. Int. J. Numer.MethodHeat Fluid Flow 27(4), 1602–1622 (2017).
https://doi.org/10.1108/HFF-04-2016-0153

12. Borzacchiello, D., Leriche, E., Blottière, B., Guillet, J.: Three-dimensional finite volume computation of
viscoelastic fluid encapsulation by phase-field modeling. J. Non-Newton. Fluid Mech. 200, 52–64 (2013)

13. Borzacchiello, D., Leriche, E., Blottière, B., Guillet, J.: On the mechanism of viscoelastic encapsulation
of fluid layers in polymer coextrusion. J. Rheol. 58(2), 493–512 (2014)

14. Boucinha, L., Ammar, A., Gravouil, A., Nouy, A.: Ideal minimal residual-based proper generalized
decomposition for non-symmetric multi-field models. Application to transient elastodynamics in space-
time domain. Comput. Methods Appl. Mech. Eng. 273, 56–76 (2014)

15. Capaldo, M., Guidault, P.A., Néron, D., Ladevèze, P.: The reference point method, a hyperreduction
technique: application to PGD-based nonlinear model reduction. Comput. Methods Appl. Mech. Eng.
322, 483–514 (2017). https://doi.org/10.1016/j.cma.2017.04.033

16. Chapman, T., Avery, P., Collins, P., Farhat, C.: Accelerated mesh sampling for the hyper reduction of
nonlinear computational models. Int. J. Numer. Methods Eng. 109(12), 1623–1654 (2017). https://doi.
org/10.1002/nme.5332

17. Chaturantabut, S., Sorensen, D.: Nonlinear model order reduction via discrete empirical interpolation.
SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

https://doi.org/10.1186/s40323-017-0087-y
https://doi.org/10.1016/j.laa.2011.08.010
https://doi.org/10.1007/s00365-010-9103-x
https://doi.org/10.1051/m2an/2014019
https://doi.org/10.1108/HFF-04-2016-0153
https://doi.org/10.1016/j.cma.2017.04.033
https://doi.org/10.1002/nme.5332
https://doi.org/10.1002/nme.5332

18. Chinesta, F., Ladevèze, P., Cueto, E.: A short review onmodel order reduction based on proper generalized
decomposition. Arch. Comput. Methods Eng. 18(4), 395–404 (2011)

19. De Lathauwer, L., De Moor, B., Vanderwalle, J.: A multilinear singular value decomposition. SIAM J.
Matrix Anal. Appl. 21(4), 1253–1278 (2000)

20. Dolgov, S., Savostyanov,D.: Alternatingminimal energymethods for linear systems in higher dimensions.
SIAM J. Sci. Comput. 36(5), A2248–A2271 (2013). https://doi.org/10.1137/140953289

21. Espig, M., Grasedyck, L., Hackbusch, W.: Black box low tensor-rank approximation using fiber-crosses.
Constr. Approx. 30, 557–597 (2009). https://doi.org/10.1007/s00365-009-9076-9

22. Falcó, A., Nouy, A.: A proper generalized decomposition for the solution of elliptic problems in abstract
form by using a functional Eckart–Young approach. J. Math. Anal. Appl. 376, 469–480 (2011)

23. Farhat, C., Avery, P., Chapman, T., Cortial, J.: Dimensional reduction of nonlinear finite element dynamic
models with finite rotations and energy-based mesh sampling and weighting for computational efficiency.
Int. J. Numer. Methods Eng. 98(9), 625–662 (2014)

24. Farhat, C., Chapman, T., Avery, P.: Structure-preserving, stability, and accuracy properties of the energy-
conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic
models. Int. J. Numer. Methods Eng. 102, 1077–1110 (2015). https://doi.org/10.1002/nme.4820

25. Ghnatios, C., Masson, F., Huerta, A., Leygue, A., Cueto, E., Chinesta, F.: Proper generalized decom-
position based dynamic data-driven control of thermal processes. Comput. Methods Appl. Mech. Eng.
213–216, 29–41 (2012)

26. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques
(2013). arXiv:1302.7121

27. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer Series in Computational Math-
ematics, 1st edn. Springer, Berlin (2012)

28. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5),
706–722 (2009). https://doi.org/10.1007/s00041-009-9094-9

29. Hastad, J.: Tensor rank is NP-complete. J. Algorithms 11, 644–654 (1990). https://doi.org/10.1016/0196-
6774(90)90014-6

30. Hernández, J., Caicedo, M., Ferrer, A.: Dimensional hyper-reduction of nonlinear finite element models
via empirical cubature. Comput. Methods Appl. Mech. Eng. 313, 687–722 (2017). https://doi.org/10.
1016/j.cma.2016.10.022

31. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
32. Ladevèze, P., Chamoin, L.:On the verification ofmodel reductionmethods based on the proper generalized

decomposition. Comput. Methods Appl. Mech. Eng. 200(23), 2032–2047 (2011)
33. Ladevèze, P., Passieux, J.C., Neron, D.: The LATIN multiscale computational method and the proper

generalized decomposition. Comput. Methods Appl. Mech. Eng. 199(21–22), 1287–1296 (2010)
34. Leygue, A., Chinesta, F., Beringhier, M., Nguyen, T., Grandidier, J., Pesavento, F., Schrefler, B.: Towards

a framework for non-linear thermal models in shell domains. Int. J. Numer. Methods Heat Fluid Flow
23(1), 55–73 (2013). https://doi.org/10.1108/09615531311289105

35. Maday, Y., Nguyen, N., Patera, A., Pau, S.: A general multipurpose interpolation procedure: the magic
points. CPAA 8(1), 383–404 (2009). https://doi.org/10.3934/cpaa.2009.8.383

36. Modesto, D., Zlotnik, S., Huerta, A.: Proper generalized decomposition for parameterized Helmholtz
problems in heterogeneous and unbounded domains: application to harbor agitation. Comput. Methods
Appl. Mech. Eng. (2015). https://doi.org/10.1016/j.cma.2015.03.026

37. Néron, D., Ladevèze, P.: Proper generalized decomposition for multiscale and multiphysics problems.
Arch. Comput. Methods Eng. 17(4), 351–372 (2010)

38. Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Model order reduction for hyperelastic materials. Int.
J. Numer. Methods Eng. 81(9), 1180–1206 (2010)

39. Niroomandi, S., González, D., Alfaro, I., Bordeu, F., Leygue, A., Cueto, E., Chinesta, F.: Realtime
simulation of biological soft tissues: a PGD approach. Int. J. Numer. Methods Biomed. Eng. 29(5),
586–600 (2013)

40. Nouy, A.: A priori model reduction through proper generalized decomposition for solving time-dependent
partial differential equations. Comput. Methods Appl. Mech. Eng. 199, 1603–1626 (2010)

41. Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
42. Oseledets, I., Dolgov, S.: Solution of linear systems and matrix inversion in the TT-format. SIAM J. Sci.

Comput. 34(5), A2718–A2739 (2012). https://doi.org/10.1137/110833142
43. Oseledets, I., Savostianov, D., Tyrtyshnikov, E.: Tucker dimensionality reduction of three-dimensional

arrays in linear time. SIAM J. Matrix Anal. Appl. 30(3), 939–956 (2008)
44. Oseledets, I., Tyrtyshnikov, E.: TT-cross approximation for multidimensional arrays. Linear Algebra

Appl. 432(1), 70–88 (2010). https://doi.org/10.1016/j.laa.2009.07.024

https://doi.org/10.1137/140953289
https://doi.org/10.1007/s00365-009-9076-9
https://doi.org/10.1002/nme.4820
http://arxiv.org/abs/1302.7121
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1016/0196-6774(90)90014-6
https://doi.org/10.1016/0196-6774(90)90014-6
https://doi.org/10.1016/j.cma.2016.10.022
https://doi.org/10.1016/j.cma.2016.10.022
https://doi.org/10.1108/09615531311289105
https://doi.org/10.3934/cpaa.2009.8.383
https://doi.org/10.1016/j.cma.2015.03.026
https://doi.org/10.1137/110833142
https://doi.org/10.1016/j.laa.2009.07.024

45. Peherstorfer, B., Butnaru, D., Willcox, K., Bungartz, H.: Localized discrete empirical interpolation
method. SIAM J. Sci. Comput. 36(1), 168–192 (2014)

46. Prud’homme, C., Rovas, D., Veroy, K., Machiels, L., Maday, Y., Patera, A., Turinici, G.: Reliable real-
time solution of parametrized partial differential equations: reduced-basis output boundmethods. J. Fluids
Eng. 124(1), 70–80 (2001)

47. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An
Introduction, 1st edn. Modeling and Simulation in Science, Engineering and Technology. Springer, Basel
(2015). https://doi.org/10.1007/978-3-319-15431-2

48. Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for
affinely parametrized elliptic coercive partial differential equations—application to transport and contin-
uum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

49. Ryckelynck, D.: A priori hypereductionmethod : an adaptive approach. J. Comput. Phys. 202(1), 346–366
(2005)

50. Tiso, P., Rixen, D.: Discrete Empirical Interpolation Method for Finite Element Structural Dynamics, pp.
203–212. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6570-6-18

51. Tucker, L.R.: The extension of factor analysis to three-dimensional matrices. In: Gulliksen, H., Frederik-
sen, N., Holt, R., Winston, N.Y. (eds.) Contributions to Mathematical Psychology, pp. 110–127 (1964)

52. Tyrtyshnikov, E.: Incomplete cross approximation in the Mosaic–Skeleton method. Computing 64(4),
367–380 (2000). https://doi.org/10.1007/s006070070031

53. Uschmajew, A.: Local convergence of the alternating least squares algorithm for canonical tensor approx-
imation. SIAM J. Matrix Anal. Appl. 33(2), 639–652 (2012)

54. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J.
40(11), 2323–2330 (2002)

https://doi.org/10.1007/978-3-319-15431-2
https://doi.org/10.1007/978-1-4614-6570-6-18
https://doi.org/10.1007/s006070070031

	Tensor Representation of Non-linear Models Using Cross Approximations
	Abstract
	1 Introduction
	2 Basic Formulation of Tensor Methods
	2.1 From Vector to Tensor Subspaces
	2.2 Optimization Problem for Tensor Subspace Construction
	2.3 Tensorization for the Efficient Optimization

	3 Non-linear Problem Formulation
	3.1 Tensorization is Lost in Non-linear Problems
	3.2 Projection Versus Interpolation Approaches

	4 Enforcing Tensorization with Cross Approximations
	4.1 Non-linear Term Approximation Via Interpolation
	4.2 Simultaneous Construction of both Interpolation Basis and Indices
	4.3 Discussion and Alternative Tensor Formats
	4.4 Compressed Rank via PGD Projection

	5 Linearization and Incremental Subspace Construction
	5.1 The Outer Linearization Strategy
	5.2 The Inner Linearization Strategy

	6 A Non-linear 2-D Steady State Problem
	6.1 Illustrating Cross Approximations
	6.2 Comparison of Linearization Strategies

	7 Parametrized Fully-Developed Flow
	8 Conclusions
	Appendix A: Coefficients Definition for Alternating Directions Optimization
	Appendix B: Fiber Search Algorithm in Detail
	References

