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1 Introduction

In computational neuroscience, based on methods from statistical mechanics,
mean �eld approach is used widely to abstract analytically a large pool of neu-
rons into a single behaviorally equivalent unit that can be employed as a com-
ponent in larger scale networks (Faugeras, Touboul, and Cessac 2009; Nykamp
et al. 2017; Ostojic 2014; El Boustani and Destexhe 2009). Considering ho-
mogeneous behaviors (all neurons have the same state and output behaviors)
and all-to-all or randomly uniform couplings between neurons, particular equa-
tions of neurons are derived while preserving the average �ring rate of the pool.
Usually, the connections between the neurons are taken to be inversely pro-
portional to an in�nite number of neurons leading to a weak coupling between
neurons. The results obtained are speci�c to the derived neuronal equations
derived. Both structure and dynamics of the pool of neurons constitute a rough
abstraction of the complexity of an actual neuronal pool but this abstraction
is worth to infer more knowledge about the global behavior resulting from the
interactions between neurons.

On the other hand, linear systems (Zadeh and Desoer 1963) constitute a
general analytical tool. Based on the linear properties of system dynamics,
the set of parameters of the corresponding equations is usually studied through
phase diagrams and in/stability of the dynamics. Including non/linear systems,
general system theory (Arbib 1972; Klir 1985; Mesarovic and Takahara 1989;
Mesarovic and Takahara 1975; Wymore 1967; Arnold 1994; Harrison 1969; Ho
1992) has been developed to reason very generally over abstract states and sys-
tem dynamics. This abstraction level is right for manipulating and reasoning

∗Université Côte d'Azur, I3S CNRS, France, Email: alexandre.muzy@cnrs.fr.
†Chief Scientist, RTSync Corp, 530 Bartow Drive Suite A Sierra Vista, AZ 85635, United-

States of America.

1



over system structures and behaviors. The intertwined structures and dynam-
ics can be studied analytically to infer general properties thus providing more
knowledge on the systems before simulating them.

This article presents the implementation of an abstraction of linear systems
using system morphism representations and mean �eld conditions. Computa-
tional modeling is done using a system speci�cation formalism (Zeigler, Muzy,
and Kofman 2018). Base networks of linear systems are abstracted into lumped
networks. The lumping is detailed based on the base network. Mean �eld con-
ditions ensure the preservation of the average activity in the network. Also,
the coupling of networks is studied to be able to construct networks of net-
works while still usefully preserving the dynamics of the whole system. Finally,
the mathematical framework proposed allows connecting computational systems
modularly through their input/output interfaces following an engineering ap-
proach. It allows di�erentiating between the convergence of the dynamics of
networks of systems and the computational error introduced. Although usual
mean �eld conditions lead to zero error in the dynamics, these conditions can be
relaxed (with a �nite number of systems and non-uniform couplings among the
systems) identifying the frontier between analytical analysis and the necessity
of simulation to better understand the dynamics of the overall network. Finally,
all the results obtained are discussed in the context of neuronal network and a
linear version of the Wilson�Cowan model (Wilson and Cowan 1973). �Rather
than focus on the microscopic properties of neurons, Wilson and Cowan analyzed
the collective properties of large numbers of neurons� (Destexhe and Sejnowski
2009).

In Section 2, mathematical system and mean �eld theories are introduced.
In Section 3, the mathematical framework of linear time invariant systems with
inputs/outputs is de�ned. In Section 4, the mean �eld abstraction is clearly
de�ned for linear systems using computational morphisms. Section 6 presents
the abstraction of network dynamics based on the connections in the network.
Section 8 discusses the results obtained for linear systems in the context of neu-
ron models. Section 8 discusses the computational error approximation achieved
at each network transition in the context of approximate morphisms and brain
simulation. Finally, in Section 10, conclusions are provided.

2 Mathematical general system and mean �eld

theories

2.1 Mathematical system theory

Mathematical general systems consist of state-based systems with inputs and
outputs. These systems can be linear or non-linear, with few hypotheses about
their structure (e.g., as time invariance described in the mathematical framework
section), making these structures very abstract. Input/Output (I/O) interac-
tions of systems make them very realistic but require adding particular math-
ematical properties to derive theorems about the expected behavior of these
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(Faugeras, Touboul, and Cessac 2009) x x x x

(Nykamp et al. 2017) x x x

(El Boustani and Destexhe 2009) x x

(Ostojic 2014) x x

us x x x x x

Table 1: Mean �eld conditions in neural networks.

systems. In the theory of modeling and simulation (Zeigler, Muzy, and Kofman
2018), a computational speci�cation of general systems has been proposed. The
computational systems considered here consist of linear systems.

2.2 Mean �eld theory

Many references using the mean �eld hypotheses in the context of neural net-
works could be cited here. In Table 1, we focus on the main usual hypotheses
and breakthrough results with respect to neural network structures (Nykamp
et al. 2017; El Boustani and Destexhe 2009; Ostojic 2014) (allowing neuronal
networks with arbitrary random degree distributions) and behavior (Faugeras,
Touboul, and Cessac 2009) (exploring the state correlation between neurons).
For mathematical convergence to a �xed point, usual hypotheses consist of all-
to-all couplings between networks, an in�nite number of neurons, weights in-
versely proportional to the number of neurons. We will show here that the
all-to-all couplings between networks is su�cient but not necessary and that
a special way of generating couplings (based on a permutation between the in-
�uencing components sampled by the in�uenced components) is su�cient and
necessary. The same way, we will show that an in�nite number of neurons in
a network is su�cient but not necessary and that a �nite number of neurons is
possible.
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3 Mathematical framework

3.1 I/O general state-based systems

De�nition 1. A deterministic general I/O system is a structure (cf. behavior
introduced in Figure 1)

SY S = (δ, λ)

Where

δ : Q× Ω→ Q is the transition function, with Q the set of states, Ω
the set of (piecewise continuous) input segments ω :< t, t2 >→
X1, with < t1, t2 > the interval of the segment2, and X the set
of input values. The sets of input values X and states Q are
arbitrary.

λ : Q→ Y is the output function, which can be considered as a (par-
tial) observation of the state of the system.

Figure 1: General I/O system dynamics: When receiving an input segment
ω ∈ Ω, the system achieves a transition from initial state qinit ∈ Q to �nal state
qend ∈ Q and generates an output segment ρ ∈ P.

For one input segment ω ∈ Ω de�ned over an interval < t1, t2 >, with t1
and t2 not �xed3, the system goes continuously from one initial state qinit ∈ Q
to one �nal state qend ∈ Q by its transition function: qend = δ(qinit, ω). To do
so, intermediate states are computed for particular (allowed) time breakpoints
t ∈< t1, t2 > based on the composition property of the transition function (cf.
Figure 2): δ(q, ω) = δ(δ(q, ωt>), ω<t), with ωt> = ω|<t1,t> and ωt> = ω|<t,t2>
being respectively the left sub-segment and the right sub-segment of ω. Finally,
the system generates an output segment ρ ∈ P such that ρ :< t1, t2 >→ Y
and ρt> = λ(δ(q, ωt>)). The set of input segments, Ω, is the union of all input
segments ωt> and ω<t and the set of output segments, P, is the union of all
output segments ρt> and ρ<t.

1A piecewise continuous input segment is a map from each time point t ∈< t1, t2 > (with
t1 and t2 not �xed) to a corresponding input value x ∈ X.

2Signs '<' and '>' correspond either to a square brackets '[' or a square bracket ']'.
3Segments can be also de�ned as starting from time 0 showing then that they can be

translated, this is the time invariance property of systems (Zeigler, Muzy, and Kofman 2018).

4



Figure 2: Composition of segments.

The current state is the minimal information to deterministically compute
the next state in a very large state space. The system is markovian. However,
notice that a current state can be seen as the result of previous input-state
transitions (Zadeh and Desoer 1963). Then, the state of the system can be
considered at a higher dependence order, a state being the result of several
previous state transitions. Notice also that the system holds inputs and outputs,
which is a more general and convenient principle for modeling complex systems,
although it makes these systems more unpredictable. (Ivanov 2013) proves also
that previous inputs can be stored in states showing the equivalence of both
closed and open system structures.

Systems are very abstract and general structures that proved to map all usual
modeling formalisms (Zeigler, Muzy, and Kofman 2018). They allow integrating
and comparing these formalisms. However, abstract does not mean trivial in
the sense that the properties shown for arbitrary inputs, states and outputs can
be shown to hold at a lower speci�cation level, i.e., for speci�c inputs, states
and outputs.

Systems can be time invariant, i.e., any input segment ω :< t1, t2 >→ X,
applied at time t1 can be applied at a time t3, leading to the same state and
output transitions. De�ning a translation operator for each time t ∈ T , as
TRANSτ : Ω→ Ω, for an input segment ω, ω′ = TRANS(ω), with ω′(t+ τ) =
ω(t) for all t ∈< t1, t2 >. Then, a system SY S = (δ, λ) is time invariant for all
input segments ω ∈ Ω and all times τ ∈ T , if:

1. Ω is closed under translation: for ω ∈ Ω⇒ TRANSτ (ω) ∈ Ω.

2. δ is time invariant: for all states q ∈ Q, δ(q, ω) = δ(q, TRANSτ (ω)).

3.2 Linear time invariant systems

De�nition 2. A Linear time invariant System (LSYS) is a structure

LSY S = (δ, λ)

5



Where

X,Q, Y are dimensional vector spaces over R,
δ(q, ω) = qeAl(ω) +

∫ l(ω)
0

eA(l(ω)−τ)Bω(τ)dτ is the transition function4,

λ(q) = CQ is the output function,

A : Q→ Q, B : X → Q and C : Q→ Y are linear operators.

De�nition 3. Amatrix representation

{
dq(t)
dt = Aq(t) +Bx(t)

y(t) = Cq(t)
is represented

by a Linear Time Invariant System as

{
δ(q, ω) = qeAt +

∫ t
0
eA(t−τ)Bωτ>dτ

λ(q) = CQ
.

De�nition 4. A linear time invariant system consists of linear transition and
output functions with additive and distributive properties:

1. δ(q1 + q2, ω1,t> + ω2,t>) = δ(q1, ω1,t>) + δ(q2, ω2,t>)

2. δ(aq, aωt>) = aδ(q, ωt>)

3. λ(δ(q1 + q2, ω1,t> + ω2,t>)) = λ(δ(q1, ω1,t>)) + λ(δ(q2, ω2,t>))

Let us prove these properties.

Proposition 1. δ(q1 + q2, ω1,t> + ω2,t>) = δ(q1, ω1,t>) + δ(q2, ω2,t>)

Proof. Based on matrix representation,

δ(q1 + q2, ω1,t> + ω2,t>) = eAtq1 +
∫
eA(t−τ)Bω1,τ>dτ + eAtq2 +

∫
eA(t−τ)Bω2,τ>dτ

= eAtq1 + eAtq2 +
∫
eA(t−τ)Bω1,τ>dτ +

∫
eA(t−τ)Bω2,τ>dτ

= eAt(q1 + q2) +
∫
eA(t−τ)B(ω1,τ> + ω2,τ>)dτ

= δ(q1, ω1,t>) + δ(q2, ω2,t>)

Proposition 2. δ(aq, aωt>) = aδ(q, ωt>)

Proof. Similar to Proposition 1.

Proposition 3. λ(δ(q1 + q2, ω1,t> + ω2,t>)) = λ(δ(q1, ω1,t>)) + λ(δ(q2, ω2,t>))

Proof. Starting from additive properties,
λ(δ(q1 + q2, ω1,t> + ω2,t>)) = λ(δ(q1, ω1,t>) + δ(q2, ω2,t>)) by Proposition 1

= C(δ(q1, ω1,t>) + δ(q2, ω2,t>)) by Definition 2
= Cδ(q1, ω1,t>) + Cδ(q2, ω2,t>) by linearity of C
= λ(δ(q1, ω1,t>)) + λ(δ(q2, ω2,t>))

In the sequel we will use linear time invariant systems called linear systems
for short.

4Notice that all segments are translated to 0, for simplicity.

6



3.3 General system morphisms

I/O general systems can be considered as abstract machines achieving temporal
computations (or executions of system (output) transitions functions). A tem-
poral computation relies on a delay (possibly zero) between inputs and outputs.
Computations take time. The number of the computations should be �nite to
guarantee that the simulation ends.

Simulation and computers consist more and more of a huge number of com-
ponents interacting together. A fundamental modeling challenge remains the
development of a guiding mathematical framework to constructively set and
analyze the behavior of networks of components at both local and global levels.
The di�culty of developing such modeling structures is due to the number of
local state computations and to the interactions between the components (the
temporal coordination of the distributed computations). To abstract local sys-
tem behaviors into network ones, relying on local (temporal) state computations,
system morphisms can be used.

De�nition 5. A system morphism or generalized homomorphism5, between a
detailed system SY S (or base system) and another abstract system SY S′ (or
lumped system), is a pair (g, h) such that (cf. Figure 3):

1. g : Ω→ Ω′, is the input mapping,

2. h : Q→onto Q′, where Q ⊆ Q′, is the state mapping,

3. for all q ∈ Q, ω′ ∈ Ω′,h(δ(q, ω)) = δ′(h(q), g(ω)) (transition function
preservation)

4. k : P → P ′, is the output mapping.

Figure 3: Commutative diagram of morphism mappings from a small system
SY S to a big system SY S′. In red are indicated the matrix representations.

5We will use the term �homomorphism� in the sequel for state-to-state mapping in a system
is considered and �morphism� when input/output systems are considered.
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Theorem 1. Fixed point preservation under system morphisms: If there exists
a �xed point in the base system SY S, for a particular base input segment ω ∈
Ω, there exists a �xed point in the lumped system SY S′, for the lumped input
segment ω′ ∈ Ω′ corresponding to ω ∈ Ω.

Proof. Based on transition function preservation of De�nition 5:

1. For all q ∈ Q, ω′ ∈ Ω′,h(δ(q, g(ω))) = δ′(h(q), ω′),

2. For input segment ω, let q∗ be a �xed point of transition function δ:
δ(q∗, ω) = q∗

Set q = q∗ in 1., h(δ(q∗, ω)) = δ′(h(q∗), g(ω)), then by 2., h(q∗) = δ′(h(q∗), ω′),
so h(q∗) is a �xed point of δ′ for lumped input segment ω′ = g(ω).

4 Network lumping based on mean �eld condi-

tions

4.1 Mean �eld network morphism

After having informally used networks of linear systems let's de�ne more for-
mally such networks. Figure 4 shows the morphism between a base network and
a lumped network.

Base networkcinput

Lumped networkc
average input

c

c

Figure 4: Morphism between base and lumped networks. An example of input
average is provided here.

The morphism of networks can be achieved based on mean �eld conditions.

De�nition 6. Usual mean �eld conditions can be summarized into only two
su�cient and necessary conditions for abstracting linear networks:

8



1. Homogeneity: All the components of the network have the same dynamics
(or state transition/output function) and the network connectivity is per-
mutation based (to guarantee that the sum of all component inputs is a
multiple of the lumped model state - no input is missing or appears many
times, we will see how to de�ne it in a moment),

2. Stability: The transition function of the network resultant system admits
a �xed point, the system having output-to-input feedback.

Mean �eld morphism between a base network model and a lumped network
model is presented in Figure 5.

Figure 5: Commutative diagram of mean �eld network morphism.

4.2 Dynamic matching and network connectivity

Matching the local state transitions in the detailed network to the global state
transitions in the lumped network, requires a correct sampling of the local states.
As we will see, this sampling is achieved at each transition by the transitions
between in�uencing and in�uenced components in the network. This is why
the sampling depends on network connectivity. We will see how to ensure a
full deterministic sampling by generating in a constructive way the couplings
between linear systems. This sampling is based on a permutation of the global
states of the network.

Example 1. Let's detail the structure lumping achieved at coupling level be-
tween the components of a network and a simple homomorphism between the
states of base and lumped networks. Based on homogeneity condition, the
transitions of a base network embedding two pools of interacting components
and a lumped network with two corresponding single states is shown in Fig-
ure 6. Following this commutative diagrams, the homomorphism requirement,
for all states (qA, qB) in QA × QB and all states (qA′ , qB′) in QA' × QB', is
δ′(h(qA, qB)) = h(δ(qA, qB)), for h(qA, qB) = (

∑nA

i=1 qAi
,
∑nB

i=1 qBi
), i.e., taking

the sum of the states of the nA (resp. nB) components in pool A (resp. B). At
each time, the states of A′ and B′, i.e., (qA, qB) in QA' ×QB' must turn out to
be the same whether you compute them by:

1. First computing the base model transition and the projecting down using
h, or

9



2. First projecting down using h and then computing the lumped model
transition.

Besides, structural homogeneity requires the number senders in pool A being
the same for each receiver in pool B.

Remark 1. Usual all-to-all coupling of components in the base network taken
when mean �eld theory is applied to neural networks (Cessac 2019; Faugeras,
Touboul, and Cessac 2009) is su�cient but not necessary. It can be seen that
homomorphism requirement holds for either all-to-all, one-to-one, many-to-one
couplings. Also, in the computational context, the number n of components
needs not to be in�nite.

A

A’

B

B’

R is the 
coupling 
relation

h is the base 
to lumped 
mapping

R’  is the 
coupling

Single 
component

A

A’

B

B’

Figure 6: Base and lumped model transitions at times t and t + 1 based on a
simple homomorphism h between a base network and a lumped network. In
the base network (resp. lumped network), components in pool A (resp. A′)
in�uence components in pool B (resp. B′).

Both homogeneity and stability assumptions lead, for example, to the net-
work connectivity of Figure 7. At connectivity level, each receiver gets the same
values and has the same number of senders.
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1

2

3

1

2

3

4 4

...

Figure 7: Example of cyclic permutation-based two-to-one and self internal cou-
pling in a mean �eld (lumped) network. The senders are represented on the
�rst column and the receivers on the second. For the sake of simplicity, the
same component is represented twice. The homomorphism here is the mapping
of component states.

Connectivity homogeneity of mean �eld is achieved using a permutation-
based connectivity. Think of permutations as global constraints on the con-
nectivity of the network. Both examples in Figures 8 and 9 are permutation
related. In the �rst example, the connectivity consists of an identity mapping
and a (non-cyclic) permutation mapping. In the second example, connectivity
consists of an identity mapping and a cyclic permutation mapping. Permuta-
tions are one-to-one and onto maps. Think the connectivity between sender and
receiver indexes like: (0, x)(1, y)(2, z), where 0, 1, 2 are the indexes of senders,
and x, y, z are the possible indexes of receivers. Permutations are generated by
choosing in a sequence from a set without replacing the choices - that's how the
number of permutations is obtained: n! = n ∗ (n− 1) ∗ (n− 2) ∗ ...2 ∗ 1. Here we
have x that can be 1, 2, 3; y can be 2, 3 if we chose 1, and z can only be 2 if we
chose 3. So there are 3! = 3 ∗ 2 ∗ 1 = 6 possible mappings. Combinations (vs.
permutations) are made if replacement is made each time we make a choice. So
then we get nn = n∗n∗n....∗n or 3∗3∗3 = 27 here (all possible mappings). Not
allowing replacement is equivalent to not allowing a receiver to get more than
one "hit" in each map. This is saying that the resources being hit - i.e., being
connected - are limited and only a limited amount is available to any node to be
connected. In the �nite case, this also implies that the hits must be balanced -
components cannot receive more than one hit for each map- so each one receives
exactly m hits for m maps. In the �rst example, the component 8 is hit twice -
once for each map.

In a 2-D cellular space, the identity and each direction can be a map -
so there are 5 maps: identity, North, South, East, West (2 directions in each

11



dimension). Every cell gets one input from its northern neighbor in a �nite
space (torroidal wrapping makes cyclic permutation); similarly, for south, east,
west. Note in a N byM space, there are N cycles of sizeM for each direction -
so cycles do not include the whole space of N ∗M cells. A physical process could
sweep from east to west and connect each cell to its nearest neighbor; similarly
it could go west to east and north-south, south-north to make all connections.
In the random net case, instead of locally selecting in�uencees at random as in
a random graph, we break the process into globally selecting m maps (for m
coupling directions) where each map is forced to be a permutation by resource
constraints.

0 8 9
9 0 8

00

88

99

Sender-to-receiver maps 
are:
Id = {(0,0),(1,1),(2,2)}
Cy={(0,1),(1,2),(2,0)}

Sender-to-receiver maps 
are:
Id = {(0,0),(1,1),(2,2)}
Cy={(0,1),(1,2),(2,0)}

0 receives 0+9 = 9
1 receives 0+8 =8
2  receives 9+8 =17
Total = 9+8+17 = 34 = 2*17

0 receives 0+9 = 9
1 receives 0+8 =8
2  receives 9+8 =17
Total = 9+8+17 = 34 = 2*17

Figure 8: Connectivity example of components in a network with identity map-
ping Id and cyclic permutation mapping Perm.

00

0 8 9
9 8 0

88

99

permutation-based 
relation

Sender-to-receiver maps 
are:
Id = {(0,0),(1,1),(2,2)}
Perm = {(0,2),(1,1),(3,0)}

Sender-to-receiver maps 
are:
Id = {(0,0),(1,1),(2,2)}
Perm = {(0,2),(1,1),(3,0)}

0 receives 0+9 = 9
1 receives 8+8 =16
2  receives 0+9 =9
Total = 9+16+9 = 34 = 2*17

0 receives 0+9 = 9
1 receives 8+8 =16
2  receives 0+9 =9
Total = 9+16+9 = 34 = 2*17

Figure 9: Connectivity example of components in a network with identity map-
ping Id and non-cyclic permutation mapping Perm.

By examples in Figures 8 and 9, it can be seen graphically that permutation
(and identity) maps lead to many-to-one, one-to-one, or all-to-all couplings. The
multiset of senders received by any receiver is represented by the disjoint union
of maps, which leads to an onto mapping. For example, let's have two permu-
tation maps and two components with indexes 0, 1: Perm = {(0, 1), (1, 0)}
and Id = {(0, 0), (1, 1)}, then the disjoint union consists of Perm q Id =
{(0, 1), (1, 0}, (0, 0), (1, 1)}, which is all-to-all coupling.

Figure 10 shows a matrix representation of the permutation-based connec-
tivity. It can be seen that summing the rows (global state permutations) is equal

12



to summing the column (local state computations). This shows that whatever
the permutation mappings chosen, all the states at network level are fully sam-
pled locally by components. Finally, it can be seen that the number of inputs
times the sum of component states is also equal to the sum of rows (and also of
columns). Thus a morphism from base to lumped model can be based on the
sum (or average) of component states .

co
m

po
ne

nt
 

st
at

es
 

pe
rm

ut
at

io
n

sum=4 sum=5 sum=3 sum=3

sum=5

sum=5

sum=5

sum=15

sum=15

input set 
of receiver 0

receiver input sets 

number of inputs
of each component

Figure 10: Matrix representation of a connectivity permutation: Each cell con-
sists of a component state, each column of the inputs received from a sender and
each row consists of the global state of the network composed of four components
(s1, s2, s3, s4). The �rst row represents the identity mapping.

In conclusion, for deterministic couplings:

• Full sampling (permutation-based) coupling leads to no error,

• Partial sampling (or permutation de�cient) coupling leads to error,

• Random couplings (e.g., Erd®s-Renyi, which is uniform so good to average
error): A full sampling is 100% and a de�cient sampling is less %.

In deterministic couplings, we are interested in maps. To get no error all-to-
all is su�cient but nut necessary. Identity or permutation coupling maps are
su�cient and necessary (because they lead to a full sampling).

4.3 Base and lumped networks of systems

Let's de�ne now more precisely the base and lumped model structures.

De�nition 7. A base network of systems consists of

η = (δ, λ, {Si})
Where

δ(q, ω) = ×iδi(qi, ωi), for i = 1, ..., n, is the base network transition function
based on the component transition functions δi,which depend on: (i) the
base network state, q = (..., qi, ...), with qi the component states and on
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the base network external input ω = (..., ωi, ...), with ωi the component
inputs.

λ(q) = ×iλi(δi(qi)) is the base network output function based on the component
output functions λi,

{Si} = {Sexti ∪ Sinti } is the set of senders to the network (cf. Example 1) such
that Si = {j | ωi = λj(δj(qj , ωj)} is the set of sending components j
external or internal to the network (as pool A in Figure 6) connected to
the input, ωi ∈ Ωi, of a receiving component i.

De�nition 8. A lumped network of systems consist of

η′ = (δ′, λ′, {S′i})

Where

δ′(q′, ω′) is the transition function of the network, for all lumped states q′ ∈ Q′,
and lumped input ω′ ∈ Ω′,

λ′(δ′(q′)) is the output transition function of the network.

{S′} is the set of senders to the network such that S′ = {j | ω′ = λ′j(δ
′
j(q
′
j , ω
′
j)} is

the set of sending components j to the network, connected to the input ω′ ∈ Ω′.

Remark 2. In a base network, a pool of states of the components consists of
equivalent states mapped into a single state of the lumped network. At dynam-
ics level, for each transition, each pool of states in the base network matches
a single state in corresponding lumped network. The mapping (or homomor-
phism) between state pools to single states can be generalized (instead of a
simple average or summation) as a census of states in a pool, i.e., as counting
the number of components in a particular state in the pool. For mean �eld
conditions, the summation-based aggregation of the states in a pool requires
permutation-based couplings between the components.

The method for modeling and lumping networks consists of the following
independent steps: (1) Specify the base network (using De�nition 7), (2) specify
the lumped network (using De�nition 8), and (3) Specify the morphism triple
(g, h, k) (using De�nition 5).

Notice that this method works for any I/O systems. Let's now make it
speci�c to networks of linear systems and mean �eld morphisms.

4.4 Lumping a network of linear systems based on mean
�eld morphisms

Let's consider now a base network of linear components (i.e., having the linear
properties de�ned in De�nition 4) and a lumped network as a single linear
system.

Based on mean �eld assumptions (cf. De�nition 6), applying the lumping
method steps consists of:
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1. Specify both transition and output functions of the base network of linear
systems (using De�nition 7) ηlinear = (δlinear, λlinear, {Slineari}): Based
on dynamics homogeneity mean �eld conditions of De�nition 6, all tran-

sition functions have the same behavior, i.e., δi
def
= δj , for all components

i, j of the network and all output functions have the same behavior, i.e.,

λi
def
= λj , for all components i, j of the network..

2. Specify both transition and output functions of the lumped network (using
De�nition 8) η′linear = (δ′linear, λ

′
linear, {S′linear}): Based on mean �eld

conditions on dynamics homogeneity (cf. De�nition 6), δ′
def
= δi, where δi

are the transition functions in the base network and λ′
def
= λi, where λi are

the output functions in the base network and considering internal coupling
relation from the component outputs of the network to the output of the
network (as described in Example 1)..

3. Specify the morphism (g, h) (using De�nition 5 and with no output map-
ping for simpli�cation): g(..., ωi, ...) is the input mapping (a sum or aver-
age of base component states as in Example 1) with (..., ωi, ...) the inputs
of the components in the base network (external or internal to the base
network), h(..., qi, ...) is the homomorphism (a sum or average of base
component states as in Example 1) with qi the component states in the
base network. Finally, the lumped transition function thus consisting of
δ′(q′, ω′) = δ′(h(×iq), g(×iωi)).

We will discuss in the next sections the properties and examples of such linear
networks.

5 Mean �eld conditions explained by structure

morphisms

5.1 Homogeneity and stability condition

When applied to a network, a system morphism is called a structure morphism.
Let's take a simple example of a network of linear systems to expose the notion
of structure morphism with respect to mean �eld conditions.

Example 2. A network of two 1-D linear components with identical structure
(following homogeneity condition of mean �eld theory (cf. De�nition 6)) consists
of: {

q1' = aq1 + bx1

y1 = cq1
and

{
q2' = aq2 + bx2

y2 = cq2
The stability condition of mean �eld theory (cf. De�nition 6), based on

feedback, can be represented by di�erent homomorphisms and structures of the
network as long as each component receives the same values, i.e., they have the
same number of in�uencers of the same kind (or dynamic transition) through
di�erent feedback loops:
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1. A network with feedback being the (same) average output to each com-

ponent: x1 = x2 = y1 +y2
2 = cq1 +cq2

2 = c(q1 +q2)
2 .

2. A network where components have self and independent feedback loops:

x1 = y1
2 and x2 = y2

2 , also leads to x1 = x2 = c(q1 +q2)
2 .

3. A network where components have cross feedback loops: x1 = y2 and

x2 = y1, also leads to x1 = x2 = c(q1 +q2)
2 .

In all feedback loop cases, taking the homomorphism h(q1, q2) = q1 + q2, the
state of the lumped network is given by: q′1 + q′2 = a(q1 + q2) + b(x1 + x2) =
a(q1 + q2) + 2bx1 = a(q1 + q2) + bc(q1 + q2), thus leading to equation:

Q′ = (a+ bc)Q (1)

With Q = q1 + q2.
In conclusion, based on di�erent homogeneity and stability conditions, dif-

ferent structures lead to the same lumped network dynamics.

Remark 3. This simple example shows that the stability of the lumped network
dynamics depends on the sign of parameters a + bc: if a + bc > 0, the system
dynamics is exponentially growing, the system thus being unstable while for
a+ bc < 0, the system dynamics is stable.

Following previous assumptions, the relationship between the base and lumped
model networks consists of:

Theorem 2. If there exists a �xed point in the base network of linear systems,
ηbase = (δ, λ, {Si}), for a particular input segment ω ∈ Ω, there exists a �xed
point in the lumped network of linear systems, ηlumped = (δ′, λ′, {S′i}), for the
lumped input segment ω′ ∈ Ω′ corresponding to ω ∈ Ω.

Proof. In Theorem 1, we proved that �xed points are preserved by homorphisms.
Here we extend this result at network level taking, for the sake of simplicity,
an all-to-all coupling and a homomorphism based on the average of component
states. The proof can be easily extended to all other cases of Example 1, by
considering the set of senders. The �xed point in the base network consists
of ω = λ(δ(q, ω)). In a lumped network averaging both states and inputs, the
latter equation can be developed as follows:

ω = λ(δ(q, ω))
= λ(..., δi(qi, ωi), ...) based on base network structure (cf. De�nition 7)
= λ′( 1

n

∑n
i=1 δi(qi, ωi)) based on lumped network structure (cf. De�nition 8)

= λ′(δi(
1
n

∑n
i=1 qi,

1
n

∑n
i=1 ωi)) based on linear system properties (cf. De�nition 4)

= λ′(δ′(q′, ω′))

Remark 4. As shown by this theorem, the usual mean �eld assumption requiring
the number of components n to be in�nite is su�cient but not necessary.
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5.2 Matrix expression of homomorphisms

For linear systems, the matrix expression of homomorphisms is a simple and
constructive way to implement general systems morphisms. We provide here
the conditions to ful�ll for such homomorphism to hold.

Theorem 3. From a matrix representation point of view, let H : Q →onto Q
be a linear mapping, then H is a homomorphism from a big system SY S to a
small system SY S′, if the following conditions hold (cf. Figure 3):

1. H ′A = AH, being the state-to-state linear mapping (or state mapping for
short) with A �large� compared to corresponding parameter A′ of the small
system being �small�,

2. HB = B′, being the input-to-state linear mapping (or input mapping for
short) with B �large� compared to corresponding parameter B′ of the small
system being �small�,

3. C ′H = C , being the state-to-output linear mapping (or output mapping
for short) with C �large� compared to corresponding parameter C ′ of the
small system being �small�.

Proof. Let us take the simple example of the network of two 1-D linear com-
ponents (cf. Example 2). The matrix form of the linear operators consists

of A =

[
a 0
0 a

]
, Q =

[
q1
q2

]
, B =

[
b b

]
, X =

[
x1
x2

]
, C =

[
c
c

]

and Y =

[
y1
y2

]
. Taking homomorphism H

[
1 1

]
and applying state lin-

ear mapping condition, we obtain A'H = a
[

1 1
]

=
[
a a

]
and HA =

[
1 1

] [ a 0
0 a

]
=
[
a a

]
. So A'H = HA. Applying input linear map-

ping, HB =
[

1 1
] [

b b
]

= [2b] = B′. Applying output linear mapping,

C ′H = [c]
[

1 1
]

=
[
c c

]
= C. Hence, the parameters of the lumped

system consist of: A′ = [a], B′ = [2b], and C ′ = [c], with Q′ = (a + bc)Q,
Y ′ = Y = [y1], and X ′ = X = [x1] through identity mapping Id = [1].

6 Lumping connected networks

6.1 Lumping large coupled networks into small coupled
networks

Figure 11 shows the morphism between two base networks and two lumped
networks.
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Base network 2c

all-to-all 
connectivity

Lumped network 2c
average input

Base network 1 c

Lumped network 1 c

cc

cc

Figure 11: Morphism between two base networks and two lumped networks, an
example of all-to-all coupling between the base networks.

The set of coupled base networks is closed under morphism, meaning that
coupling base networks, a morphism holds when coupling corresponding lumped
networks.

Theorem 4. The dynamics of base linear networks is closed under morphism.

Proof. Figure 12 shows the commutative diagram of the morphism between two
base networks and two lumped networks, with the same number of components
n. We prove here that the state transition of the target lumped network 2
depends on the output transition of the source network 1:

δ′(q′1), δ′(q′2, ω
′
2) = δ′( 1

n

∑n
k=1 q

1
k), δ′( 1

n

∑n
k=1 q

2
k,

1
n

∑n
k=1 ωk)

= δ′( 1
n

∑n
k=1 q

1
k), δ′( 1

n

∑n
k=1 q

2
k,

1
n

∑n
k=1

∑
k∈Si

λk(qk))
= δ′( 1

n

∑n
k=1 q

1
k), δ′( 1

n

∑n
k=1 q

2
k, λ
′( 2
n

∑n
k=1 qk)) if all |Si| = 2n

= δ′(q′1), δ′(q′2, 2λ
′(q′)) ∀q′ ∈ Q1 ∪Q2

avg avg avg

Figure 12: Commutative diagram of the morphism between two base networks
and two lumped networks.
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Figure 13 summarizes the large to small correspondence between the struc-
tures of base and lumped networks of networks.

c

Large
Pool 1 c

Large 
Pool 2 

Large
Pool 3 

c

c
cc

cc

c
Small

Pool 1 c
Small 
Pool 2 

Large
Pool 3 

c

ccc

cc

large

B  ₁ 

A  ₁ 

 -B  ₂ 

small

B ’ ₁ 

A ’ ₁ 

-B ’  ₂ 

homomorphism

C  ₁ 

C ’ ₁ 

cc
cc
cc
cc
cc

cc
cc

c

c

Figure 13: Couplings and lumping of a network of 3 networks. In the base
network, the number of inputs (B), components and states in the state space
(A), and outputs (C) is large. In the lumped network, corresponding numbers
of lumped parameters {A′, B′, C ′} are small.

We will see hereafter that these conditions can be used to model network
model connections.

6.2 Simple discrete formulation

Figure 14 describes the lumping of two connected pools of components with no
internal couplings. The discrete time state dynamics of a neuron i = 1, ..., n
consists of

qi(t+ 1) = qi(t) + Ii(t)

Where Ii is the input of component i.
For a lumped network, the lumped state at time t, Q(t), consists of the sum of

the component states in corresponding base network, Q(t) =
∑n
i=1 qi(t), and the

lumped input at time t, I(t), is the average of external inputs, I(t) =
∑n
i=1

Ii(t)
n .

So the state of a lumped of:

Q(t+ 1) = Q(t) + I(t)

With I1(t) as output of the �rst pool and input to the second pool. Then,
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Q2(t+ 1) = Q2(t) +Q1(t)

Feeding back the output of a pool to itself, it is obtained for each component,

Ii(t) =
∑n
i=1

Qi(t)
n , so I(t) =

∑n
i=1

∑n
i=1

qi(t)
n = Q(t). So, Q(t+1) = Q(t)+Q(t)

and

Q(t+ 1) = 2Q(t)

 

... ...

all-to-all

Figure 14: Simple discrete formulation of the lumping of two fully coupled
networks.

This illustrates a homomorphism h({qi}) =
∑n
i=1 qi. Starting with qi(t) the

transition to the next state is qi(t + 1) = qi(t) + Ii(t) = qi(t) +
∑n
i=1

Qi(t)
n .

Applying h to both {qi(t)} and {qi(t + 1)}, we have Q(t + 1) and Q(t) +∑n
i=1

∑n
i=1

Qi(t)
n = 2Q(t) which match the lumped model transition Q(t+ 1) =

2Q(t).
The solution of the lumped model is

Q(t) = Q(0)2t

Remark 5. In neuronal pools, averaging the inputs can be conceived as averaging
the �ring rates of neurons when taking their inputs as �ring rates.

6.3 Example of Cascade networks

Figure 15 shows an example of linear components connected via permutation
coupling. All components are linear with the same coe�cients multiplying the
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input ports. But the inputs to the components do not have to be the same as
required by all-to-all coupling.

Figure 15: Example of a network called �PermNet� of linear components con-
nected via permutation coupling on input/output ports, each port type connects
all components through a permutation, i.e ”out0” → ”in0”, ”out1” → ”in1”,
etc. (here only two). The output sum is what the lumped model predicts.

Figure 16 shows the connection of two networks of linear components con-
nected via permutation coupling and how to check that the lumped models
predict the activity in the base models. No self input is needed for �xed point.
Convergence happens for the sum of coe�cients adding to strictly less than 1.
More precisely, equations and parameters consist of:

• The �rst base network: The input port �In0� of components �ID0�, �ID1�,�ID2� con-
sists of parameter a0 while input port �In0� consists of a1. The transition
function components consists after using coupling of:




qfirst(ID0)(t+ 1) = a0qfirst(ID2)(t) + a1qfirst(ID1)(t)

qfirst(ID1)(t+ 1) = a0qfirst(ID0)(t) + a1qfirst(ID2)(t)

qfirst(ID2)(t+ 1) = a0qfirst(ID1)(t) + a1qfirst(ID0)(t)

• Corresponding �rst lumped network:

QFirst = qfirst(ID0) + qfirst(ID1) + qfirst(ID2)

With:
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QFirst(t+ 1) = qfirst(ID0)(t+ 1) + qfirst(ID1)(t+ 1) + qfirst(ID2)(t+ 1)
= a0QFirst(t+ 1) + a1QFirst(t+ 1)
= (a0 + a1)QFirst(t+ 1)

,

with h parameter mapping: a = (a0 + a1).

• First Base Component to Second Base Component Coupling is all-to-all
for both couplings:





qsecond(ID0)(t+ 1) = a0qsecond(ID2)(t) + a1qsecond(ID1)(t) + a0QFirst + a1QFirst

qsecond(ID1)(t+ 1) = a0qsecond(ID0)(t) + a1qsecond(ID2)(t) + a0QFirst + a1QFirst

qsecond(ID2)(t+ 1) = a0qsecond(ID1)(t) + a1qsecond(ID0)(t) + a0QFirst + a1QFirst

• Corresponding second lumped network: QSecond(t + 1) = a(QSecond(t) +
bI(t)), with I(t) = bQFirst and h parameter mapping: a = (a0 + a1),
b = 3. Then,QSecond(t + 1) = (a0 + a1)(QSecond(t) + 3 ∗ QFirst(t)) and
QSecond(t+ 1) = (a0 + a1)QSecond(t) + 3 ∗ (a0 + a1)QFirst(t).
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Figure 16: Two base networks �First_PermNet� and �Second_PermNet� are
connected. Each one is lumped into networks �First_LumpLinear� and �Sec-
ond_LumpLinear� are connected. �First_CompareBaseLumped� and �Sec-
ond_CompareBaseLumped� compare if the activity dynamics of each base net-
work matches corresponding lumped network.

7 Computational approximation

7.1 Uniformly to non-uniformly connected network in a
discrete case

Based on the simple discrete example in Sub-section 6.2, the exact lumped state
can be exactly computed as Q(t) = Q(0)2t with uniformly connected pools and
an large number of components. However, real network simulation frequently
consists of non-uniformly coupled networks, of �nite size, leading to an approxi-
mation of the dynamics of the lumped network. Figure 17 shows the simulation

lumping approximation, Qsim(t)
Q(t) , where Qsim(t) is the simulated lumped state. It
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can be seen that for a �nite number of components, n = 100, the approximation
of the lumped state is acceptable. The error increases after for smaller proba-
bilities of connection. In a fully connected network a component samples all the
states of other components. With, e.g., a probability p = 30%, a component
samples randomly 30% of all the components, at each step.

Figure 17: Lumping approximation as the ratio Qsim(t)
Q(t) . Simulation are obtained

according to the probability of connection p between the component pools, and
with a number of components n = 100. Parameters of Equation 1 are a = 1
and bc = −0.1, so the exact state consists of Q(t) = Q(0)0.9t, thus exhibiting a
decreasing stable behavior.

We will see in the neural network application that stability and dynamics
error accumulated at each state transition should not be confused.

7.2 Network activity vs de�ciency in permutation connec-
tivity

Figure 18 shows how a permutation-based connectivity can be degraded. The
domain of map D consists of {0, 1, 2, 3, 4, 5} and the range of map D consists
of {1, 2, 3, 4, 5}. Map D is not a permutation since 0 is not hit. The departure
from permutation is measured by the number of misses (=|domain Map|-|range
Map|). But note that every miss also results in a multiple hit.
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0

1

2

3

4

5

0 is not hit so 
s0 is not in the 

sum

0 is not hit so 
s0 is not in the 

sum

5 is hit twice so s5 
is added to the 

sum twice

5 is hit twice so s5 
is added to the 

sum twice

Senders Receivers

s₁s  ₀ 

s₂s₁

s₃s  ₂

s₄s  ₃

s₅s  ₄

Indexes

s₅s₅

Figure 18: Error in sum due to permutation de�ciency. The map D is not a
permutation and consists of D = {(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 5)}.

Let the component states, si, be either 0 or 1. Then, there is zero error
when a missed component has a 0 value. Also a component that receives more
than one input may contribute several ones to the sum. So the error in the
sum may be zero even when the map is not a permutation. The error due to
a permutation de�ciency in a map D is then computed based on TrueSum =∑
i∈Dom(D) si and ReceivedSum =

∑
i∈Dom(D) sD(i), through the Error =

|TrueSum−ReceivedSum| and the RelativeError = Error
TrueSum .

Let's de�ne the probability p of a 1 at a component where there are n
(= 10 000, eg.) components. So with p = 0, there are no 1's only 0's and p = 1
generates all 1's. So p represents how active the network is. Given a map, the
number of 1's it sees versus the true number is the Error, where p = 0 and p = 1
there are obviously no error.

The computational experiment generates maps at random and takes the
average of their errors as the values plotted in Figure 19. The error turns
out to be max at p = 0.5. The average number of 1's (the true number)
increases directly with p so the relative error decreases with p. This result can
be interpreted as getting at worst a random activity error prediction based on
a permutation connectivity de�ciency.
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Figure 19: Average error with respect to the activity probability p, for a number
of components n = 10 000. For each activity probability p, 1 000 maps were
generated.

Figure 20 shows that increasing the network activity probability, the average
relative error goes to zero.
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Figure 20: Average relative error with respect to the activity probability p, for a
number of components n = 10 000. For each activity probability p, 1 000 maps
were generated.

Figure 21 shows the average relative error with respect to the number of
components. It can be seen that increasing the number of neurons (and notice
that it is possible to simulate easily 4 000 000 components), the error goes to
zero. The connectivity is �xed at p = 0.5 for this experiment since it shows
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the maximum error. Note that the plot uses the negative logarithm to show
decrease in error over several decades.
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Figure 21: Negative log plot of average relative error with respect to the number
of components up to 4 000 000 of components.

8 Application to neuronal networks

8.1 Motivation

Figure 22 describes the lumping application onto models of brain regions. The
base model consists of many details preventing simulation under reasonable
execution times, while the lumped model abstracting the base model details
aims to be simulatable.
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Base model

Simulatable
lumped model

lumping

modeling

modeling

Real system

Figure 22: Modeling of the brain regions and model lumping for simulatability.
Free picture of the brain lobes from Wikipedia.

Figure 23 presents a coupling between two brain regions that can be con-
sidered as coupling two neuronal networks with inhibitory external synaptic
connections coming from another network (or brain region). Inside the net-
works, synaptic connections are considered to be excitatory. This assumption
follows the one of balanced networks (Brunel 2000).

c
Brain

Region 1 c
Brain 

Region 2 

A  ₁ 

C₁    

A   ₂  
-B₂  

Figure 23: Couplings between two brain regions. The synaptic inputs received
by Brain region 2 from Brain region 1 are inhibitory thus leading to matrix
C1 −B2 for output-to-input mapping.

The goal is to get simulatable models of brain regions. This can be under-
stood easily by a simple analytical formula. Imagine a detailed network with
106 discrete neuron models and 100 possible states each. The total number
of possible network states is then (106)100 = 10600, which is not simulatable.
Being able to lump this detailed network into 1000 lumped components having
10 possible states each, the possible number of states of the lumped network is
then 100010, which makes the lumped model simulatable.
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8.2 Neuron dynamics model

A well known model of neuron dynamics is the the Amari-Wilson-Cowan model
(Amari 1972; Wilson and Cowan 1972; Wilson and Cowan 1973), slightly mod-
i�ed by taking external input current to the network as external inputs from
another network:

dqi
dt

= aqi +
∑

j∈Si

bijf(xj) (2)

Where qi represents the voltage of the neuron i, a ≤ 0 is the leak parameter,
bij is a synaptic weight (with bij < 0 an inhibitory synapse and bij > 0 an exci-
tatory synapse), xj is the input voltage received from an in�uencing (external
or internal to the network) neuron j in Si, and f is a typical non-linear sigmoid
function f(x) = 1

2 (1 + tanh(gx)), g a gain parameter (cf. Figure 24). �In region
I (low voltage), the neuron does not emit spikes. In region II, f(xj) is roughly
linear. In region III (high voltage), the �ring rate reaches a plateau, �xed by
the refractory period�(Cessac 2019).Linear response in neuronal networks 5

(See70 and references therein). A recent method, synthetis-
ing previous approaches has also been proposed by C. Maes
and co-workers5,8. The application of these formalisms allows
to construct a linear response theory in neuronal models, from
the equations ruling neurons’ dynamics, as we now show.

III. FROM FIRING RATE NEURONS DYNAMICS TO
LINEAR RESPONSE

A. The Amari-Wilson-Cowan model

As a first example of linear response in neural network we
consider a canonical model of neuronal dynamics, the Amari-
Wilson-Cowan model3,131,132. It consists of a set of N neu-
rons, i = 1 . . .N, with membrane voltage Vi, whose dynamics
is given by the dynamical system:

dVi

dt
=−Vi +

N

∑
j=1

Ji j f (Vj(t))+ εSi(t); i = 1 . . .N. (8)

This equation can be derived from equation (1) up to several
approximations explained e.g. in35,38. Note that the decay
(leak) term −Vi has a more general form − 1

τ (Vi−VL) where
VL is a reversal potential and τ is a characteristic time. It is
easy to get to the form (8) by rescaling time and voltages.

We will also consider the discrete time version of (8):

Vi(t +1) =
N

∑
j=1

Ji j f (Vj(t))+ εSi(t); i = 1 . . .N. (9)

This form is more convenient to understand the mechanisms
that shape the linear response, namely the interplay between
neurons interactions and non linear dynamics, because one
can follow the effect of a stimulus time-step by time-step. For
this reason we will mainly stick at the discrete time dynam-
ics, except in the next subsection (Contractive regime), where
the derivation of the linear response and its consequences are
more straightforward and familiar to readers in the continuous
time case.

Neurons are coupled via synaptic weights Ji j characterising
the strength of interaction from the pre-synaptic neuron j to
the post-synaptic neuron i. This defines an oriented graph, i.e.
Ji j 6= J ji in general, in contrast to physics where interactions
are symmetric. This graph is also signed: when Ji j > 0 the in-
teraction (synapse) is excitatory, when Ji j < 0, it is inhibitory.

In this model, the pre-synaptic neuron j influences the post
synaptic neuron i via its firing rate (probability to emit a spike
in a small time interval) which is a function f (Vj) of the pre-
synaptic neuron voltage. Here, f is a non linear, sigmoid func-
tion as depicted in Fig. 1. A typical form for f is:

f (x) =
1
2
(1+ tanh(gx)) . (10)

The sigmoidal shape has a deep biological importance. In-
deed, one can distinguish 3 rough regions (Fig. 1). In region
I (low voltage), the neuron does not emit spikes. In region II,

FIG. 1. The sigmoidal shape of the function f and its effects on volt-
age fluctuations. Top. When the neuron’s voltage fluctuates around
the inflection point of the sigmoid, and if the gain g is large enough
fluctuations are amplified. Bottom. When the neuron’s voltage fluc-
tuates in the flat parts of the sigmoid (here, the saturated region) fluc-
tuations are damped. Dashed red lines correspond to a piecewise
linear approximation of the sigmoid, allowing to delimit regions I,
II, III.

f (V ) is roughly linear. In region III (high voltage), the firing
rate reaches a plateau, fixed by the refractory period.

The parameter g in (10), either called "gain" or "non lin-
earity", is of up most importance. On biophysical grounds, it
characterises the sensitivity of the neuron’s firing rate to fluc-
tuations of its voltage. Consider indeed Fig. 1, top. When g
is larger than 1 the fluctuations are amplified by f in region
II. In contrast, in region I and III they are damped. This
remark, made at the level of single neuron, has a deep im-
portance when interpreting the linear response of a network
governed by eq. (8) or (9). On dynamical grounds this effect
controls the local expansion / contraction in the phase space,
as developed below.

Finally, in eq. (8), (9), Si(t) is an "external stimulus". Here,
it depends only on time but the analysis made below affords a
situation where Si depends also on the neuron’s voltage.

We introduce the state vector ~V =
(

Vi
)N

i=1, the stimulus

vector ~S =
(

Si
)N

i=1 and the matrix of synaptic weights J =(
Ji j
)N

i, j=1. With a slight abuse of notations we write f (~V ) for

the vector
(

f (Vi)
)N

i=1. Then, we may rewrite (8) in vector
form:

d~V
dt

=−~V +J . f (~V )︸ ︷︷ ︸
~F(~V )

+ε~S(t), (11)

Figure 24: The sigmoidal shape of the function f and its e�ects on voltage �uc-
tuations. Top: When neuron's voltage �uctuates around the in�ection point of
the sigmoid, and if the gain g is large enough �uctuations are ampli�ed. Bot-
tom: When the neuron's voltage �uctuates in the �at parts of the sigmoid (here,
the saturated region) �uctuations are damped. Dashed red lines correspond to
a piecewise linear approximation of the sigmoid, allowing to delimit regions I,
II, III (legend and �gure from (Cessac 2019)).

Lumping neurons consists of using the linear part of the sigmoid, with pa-
rameters bcg = b for simpli�cation, where c is the signal attenuation on the
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axon, b is the pulse attenuation on synapses and dendrites.

9 Computational approximation, dynamics and

stability

Figure 25 describes the error dynamics in the lumping model. In stable linear
systems, any two states converge to one state unless there is a break of the
convergence because of :

1. The non linearities of the sigmoid,

2. Positive synaptic weights, bji,

3. Random sampling couplings instead of a uniform ones in brain regions.
Then, the dynamics could di�er just a little bit from the average.

In all cases, lumping analytic results are not possible anymore and simulation
is required to study the dynamics between brain regions.

avg avg avg

Dynamics between 
base brain regions

Dynamics between 
lumped brain regions

error grows

error disappears

Figure 25: The error depends on the dynamics between base and lumped brain
regions: Usually, the brain is a stable system where the error of the lumped
model used for study should disappear. Sometimes, the brain turns unstable
(as during epileptic crises).

10 Conclusion

Su�cient and necessary mean �eld conditions have been proposed in De�ni-
tion 6 for abstracting I/O general linear networks. These conditions proved to
be implemented by system morphisms leading to �xed points in networks (cf.
Theorems 1 and 2) and allowing lumping coupled networks (cf. Theorem 6.1)
with no error at each system transition. The error at each transition has been
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explored based on de�cient permutation-based couplings in the network as well
as a non in�nite number of components. We believe that this whole approach
provides a computational method for both abstracting general linear systems
and investigating the computational error induced at each transition, based on
a more realistic network connectivity. Our next work will consist of investi-
gating probabilistic mean �eld conditions (as e.g. shown in (El Boustani and
Destexhe 2009; Brunel 2000)) and their error approximation based on system
theory morphisms.
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