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1 Introduction

Mean �eld theory is used widely to abstract analytically a large pool of neurons
(Faugeras, Touboul, and Cessac 2009; Nykamp et al. 2017; Ostojic 2014; El
Boustani and Destexhe 2009). Considering homogeneous behaviors (all neurons
have the same state transition functions) and all-to-all or randomly uniform
couplings between neurons, particular equations of neurons are derived until the
average �ring rate of the pool. Usually, the connections between the neurons
are taken to be inversely proportional to an in�nite number of neurons leading
to a weak coupling between neurons. The results obtained are speci�c to the
neuronal equations derived. Both structure and dynamics of the pool of neurons
constitute a rough abstraction of the complexity of an actual neuronal pool but
this abstraction is worth to infer more knowledge about the global behavior
resulting from the interactions between neurons.

On the other hand, linear systems (Zadeh and Desoer 1963) constitute a
general analytical tool. Based on the linear properties of system dynamics,
the set of parameters of the corresponding equations is usually studied through
diagram phases and un/stability of the dynamics. Including non/linear systems,
general system theory (Arbib 1972; Klir 1985; Mesarovic and Takahara 1989;
Mesarovic and Takahara 1975; Wymore 1967; Arnold 1994; Harrison 1969; Ho
1992) has been developed to reason very generally over abstract states and
system dynamics. This abstraction level is worth for manipulating and reasoning
over system structures and behaviors. The intertwined structures and dynamics
can be studied analytically inferring general properties thus providing more
knowledge on the systems before simulating them.

∗Université Côte d'Azur, I3S CNRS, France, Email: alexandre.muzy@cnrs.fr.
†Chief Scientist, RTSync Corp, 530 Bartow Drive Suite A Sierra Vista, AZ 85635, United-
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This article presents the implementation of an abstraction of linear systems
using a system morphism representation and mean �eld conditions. Computa-
tional modeling is done using the system speci�cation formalism (Zeigler, Muzy,
and Kofman 2018). Base networks of linear systems are abstracted into lumped
networks. The lumping is detailed based on the base network. Mean �eld con-
ditions ensure the preservation of the average activity in the network. Also, the
coupling of networks is studied to be able to construct networks of networks
while still getting a good idea of the dynamics of the whole system. Finally,
the mathematical framework proposed allows di�erentiating between the con-
vergence of the dynamics of networks of systems and the computational error
introduced. Although usual mean �eld conditions lead to no error dynamics,
these conditions can be relaxed (with a �nite number of systems and non uni-
form coulings between the systems) identifying the frontier between analytical
analysis and the necessity of simulation to better understand the dynamics of
the overall network. Finally, all the results obtained are discussed in the context
of neuronal network modeling.

In Section 2, mathematical system and mean �eld theories are introduced.
In Section 3, the mathematical framework of linear time invariant systems with
inputs/outputs is de�ned. In Section 4, the mean �eld abstraction is clearly
de�ned for linear systems using computational morphisms. Section 6 presents
the abstraction of network dynamics based on the connections in the network.
Section 7 discusses the results obtained for linear systems in the context of
neuron models. Finally, in Section 8 a conclusion is provided.

2 Mathematical general system and mean �eld

theories

2.1 Mathematical system theory

Mathematical general systems consist of state-based systems with inputs and
outputs. These systems can be linear or non-linear, with few hypotheses about
their structure (as time invariance described in the mathematical framework sec-
tion), making these structures very abstract. Input/Output (I/O) interactions
of systems make them very realistic but require adding particular mathematical
properties to derive theorems about the expected behavior of these systems. In
the theory of modeling and simulation (Zeigler, Muzy, and Kofman 2018), a
computational speci�cation of general systems has been proposed. The compu-
tational systems considered here consist of linear systems.

2.2 Mean �eld theory

Many references using the mean �eld hypotheses in the context of neural net-
works could be cited here. In Table 1, we focus on the main usual hypotheses
and breakthrough results with respect to neural network structures (Nykamp
et al. 2017; El Boustani and Destexhe 2009; Ostojic 2014) (allowing neuronal
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(Faugeras, Touboul, and Cessac 2009) x x x x

(Nykamp et al. 2017) x x x

(El Boustani and Destexhe 2009) x x

(Ostojic 2014) ? x x

us x x x x x

Table 1: Mean �eld conditions in neural networks.

networks with arbitrary random degree distributions) and behavior (Faugeras,
Touboul, and Cessac 2009) (exploring the state correlation between neurons).
For mathematical convergence to a �xed point, usual hypotheses consist of all-
to-all couplings between networks, an in�nite number of neurons, weights in-
versely proportional to the number of neurons. We will show here that the
all-to-all couplings between networks is su�cient but not necessary and that
many-to-many coupling is necessary. The same way, we will show that the an
in�nite number of neurons in a network is su�cient but not necessary and that
a �nite number of neurons is possible.

3 Mathematical framework

3.1 I/O general state-based systems

De�nition 1. A deterministic general I/O system is a structure (cf. behavior
introduced in Figure 1)

SY S = (δ, λ)

Where
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δ : Q× Ω→ Q is the transition function, with Q the set of states, Ω
the set of (piecewise continuous) input segments ω :< t, t2 >→
X1, with < t1, t2 > the interval of the segment, signs '<' and
'>' correspond either to a square brackets '[' or a square bracket
']', and X the set of input values. The sets of input values X
and states Q are arbitrary.

λ : Q→ Y is the output function, which can be considered as a (par-
tial) observation of the state of the system.

Figure 1: General I/O system dynamics: When receiving an input segment
ω ∈ Ω, the system achieves a transition from initial state qinit ∈ Q to �nal state
qend ∈ Q and returns an output segment ρ ∈ P.

For one input segment ω ∈ Ω de�ned over an interval < t1, t2 >, with t1
and t2 not �xed2, the system goes continuously from one initial state qinit ∈ Q
to one �nal state qend ∈ Q by its transition function: qend = δ(qinit, ω). To do
so, intermediate states are computed for particular (allowed) time breakpoints
t ∈< t1, t2 > based on the composition property of the transition function (cf.
Figure 2): δ(q, ω) = δ(δ(q, ωt>), ω<t), with ωt> = ω|<t1,t> and ωt> = ω|<t,t2>
being respectively the left sub-segment and the right sub-segment of ω. Finally,
the system generates an output segment ρ ∈ P such that ρ :< t1, t2 >→ Y
and ρt> = λ(δ(q, ωt>)). The set of input segments, Ω, is the union of all input
segments ωt> and ω<t and the set of output segments, P, is the union of all
output segments ρt> and ρ<t.

1A piecewise continuous input segment is a map from each time point t ∈< t1, t2 > (with
t1 and t2 not �xed) to a corresponding input value x ∈ X.

2Segments can be also de�ned as starting from time 0 showing then that they can be
translated, this is the time invariance property of systems (Zeigler, Muzy, and Kofman 2018).
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Figure 2: Composition of segments.

The current state is the minimal information to deterministically compute
the next state in a very large state space. The system is markovian. However,
notice that a current state can be seen as the result of previous input-state
transitions (Zadeh and Desoer 1963). Then, the state of the system can be
considered at a higher dependence order, a state being the result of several
previous state transitions. Notice also that the system holds inputs and outputs,
which is a more general and convenient principle for modeling complex systems,
although it makes these systems more unpredictable. In (Ivanov 2013), it is
proven also that previous inputs can be stored in states showing the equivalence
of both closed and open system structures.

Systems are very abstract and general structures that proved to map all usual
modeling formalisms (Zeigler, Muzy, and Kofman 2018). They allow integrating
and comparing these formalisms. However, abstract does not mean trivial in
the sense that the properties shown for arbitrary inputs, states and outputs can
be shown to hold at a lower speci�cation level, i.e., for speci�c inputs, states
and outputs.

Systems are time invariant, i.e., any input segment ω :< t1, t2 >→ X,
applied at time t1 can be applied at a time t3, leading to the same state and
output transitions. De�ning a translation operator for each time t ∈ T , as
TRANSτ : Ω→ Ω, for an input segment ω, ω′ = TRANS(ω), with ω′(t+ τ) =
ω(t) for all t ∈< t1, t2 >. Then, a system SY S = (δ, λ) is time invariant for all
input segments ω ∈ Ω and all times τ ∈ T , if:

1. Ω is closed under translation: for ω ∈ Ω⇒ TRANSτ (ω) ∈ Ω.

2. δ is time invariant: for all states q ∈ Q, δ(q, ω) = δ(q, TRANSτ (ω)).

3.2 Linear time invariant systems

De�nition 2. A Linear time invariant System (LSYS) is a structure

LSY S = (δ, λ)

5



Where

X,Q, Y are �nite dimensional vector spaces over R,
δ(q, ω) = qeAl(ω) +

∫ l(ω)
0

eA(l(ω)−τ)Bω(τ)dτ is the transition function3,

λ(q) = CQ is the output function,

A : Q→ Q, B : X → Q and C : Q→ Y are linear operators.

De�nition 3. Amatrix representation

{
dq(t)
dt = Aq(t) +Bx(t)

y(t) = Cq(t)
is represented

by a Linear Time Invariant System as

{
δ(q, ω) = qeAt +

∫ t
0
eA(t−τ)Bωτ>dτ

λ(q) = CQ
.

De�nition 4. A linear time invariant system consists of linear transition and
output functions with additive and distributive properties:

1. δ(q1 + q2, ω1,t> + ω2,t>) = δ(q1, ω1,t>) + δ(q2, ω2,t>)

2. δ(aq, aωt>) = aδ(q, ωt>)

3. λ(δ(q1 + q2, ω1,t> + ω2,t>)) = λ(δ(q1, ω1,t>)) + λ(δ(q2, ω2,t>))

Let us prove these properties.

Proposition 1. δ(q1 + q2, ω1,t> + ω2,t>) = δ(q1, ω1,t>) + δ(q2, ω2,t>)

Proof. Based on matrix representation,

δ(q1 + q2, ω1,t> + ω2,t>) = eAtq1 +
∫
eA(t−τ)Bω1,τ>dτ + eAtq2 +

∫
eA(t−τ)Bω2,τ>dτ

= eAtq1 + eAtq2 +
∫
eA(t−τ)Bω1,τ>dτ +

∫
eA(t−τ)Bω2,τ>dτ

= eAt(q1 + q2) +
∫
eA(t−τ)B(ω1,τ> + ω2,τ>)dτ

= δ(q1, ω1,t>) + δ(q2, ω2,t>)

Proposition 2. δ(aq, aωt>) = aδ(q, ωt>)

Proof. Similar to Proposition 1.

Proposition 3. λ(δ(q1 + q2, ω1,t> + ω2,t>)) = λ(δ(q1, ω1,t>)) + λ(δ(q2, ω2,t>))

Proof. Starting from additive properties,
λ(δ(q1 + q2, ω1,t> + ω2,t>)) = λ(δ(q1, ω1,t>) + δ(q2, ω2,t>)) by Proposition 1

= C(δ(q1, ω1,t>) + δ(q2, ω2,t>)) by Definition 2
= C(δ(q1, ω1,t>) + δ(q2, ω2,t>)) by linearity of C
= λ(δ(q1, ω1,t>)) + λ(δ(q2, ω2,t>))

In the sequel we will use linear time invariant systems called linear systems
for short.

3Notice that all segments are translated to 0, for simplicity.
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3.3 General system morphisms

I/O general systems can be considered as abstract machines achieving temporal
computations (or executions of system (output) transitions functions). A tem-
poral computation relies on a delay (possibly zero) between inputs and outputs.
Computations take time. The number of the computations should be �nite to
guarantee that the simulation ends.

Simulation and computers consist more and more of a huge number of com-
ponents interacting together. A fundamental modeling challenge remains the
development of a guiding mathematical framework to constructively set and
analyze the behavior of networks of components at both local and global levels.
The di�culty of developing such modeling structures is due to the number of
local state computations and to the interactions between the components (the
temporal coordination of the distributed computations). To abstract local sys-
tem behaviors into network ones, relying on local (temporal) state computations,
system morphisms can be used.

De�nition 5. A system morphism or generalized homomorphism4, between a
detailed system SY S (or base model) and another abstract system SY S′ (or
lumped model), is a pair (g, h) such that (cf. Figure 3):

1. g : Ω→ Ω′, is the input mapping,

2. h : Q→onto Q′, where Q ⊆ Q′, is the state mapping,

3. for all q ∈ Q, ω′ ∈ Ω′,h(δ(q, g(ω))) = δ′(h(q), ω′) (transition function
preservation)

4. k : P → P ′, is the output mapping.

Figure 3: Commutative diagram of morphism mappings from a small system
SY S to a big system SY S′. In red are indicated the matrix representations.

4We will use the term �homomorphism� in the sequel for state-to-state mapping in a system
is considered and �morphism� when input/output systems are considered.
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4 Network lumping based on mean �eld condi-

tions

After having informally used networks of linear systems let's de�ne more for-
mally such networks. Figure 4 shows the morphism between a base network and
a lumped network.

Base networkcinput

Lumped networkc
average input

c

c

Figure 4: Morphism between base and lumped networks. An example of input
average is provided here.

The morphism of networks can be achieved based on mean �eld conditions.

De�nition 6. Usual mean �eld conditions can be summarized into only two
su�cient and necessary conditions for abstracting linear networks:

1. Homogeneity: All the components of the network have the same dynam-
ics (or state transition function) and the same structure (same transi-
tion/output functions and receive the same inputs),

2. Stability: The transition function of the network resultant system admits
a �xed point, the system having input to output feedback.

Mean �eld morphism between a base network model and a lumped network
model is presented in Figure 5.

8



Figure 5: Commutative diagram of mean �eld network morphism.

Example 1. Let's detail the structure lumping achieved at coupling level be-
tween the components of a network and a simple homomorphism between the
states of base and lumped networks. Based on homogeneity condition, the
transitions of a base network embedding two pools of interacting components
and a lumped network with two corresponding single states is shown in Fig-
ure 6. Following this commutative diagrams, the homomorphism requirement,
for all states (qA, qB) in QA × QB and all states (qA′ , qB′) in QA' × QB', is
δ′(h(qA, qB)) = h(δ(qA, qB)), for h(qA, qB) = (

∑nA

i=1 qAi
,
∑nB

i=1 qBi
), i.e., taking

the sum of the states of the nA (resp. nB) components in pool A (resp. B). At
each time, the states of A′ and B′, i.e., (qA, qB) in QA' ×QB' must turn out to
be the same whether you compute them by:

1. First computing the base model transition and the projecting down using
h, or

2. First projecting down using h and then computing the lumped model
transition.

Besides, structural homogeneity requires the number senders in pool A being
the same for each receiver in pool B.

Remark 1. Usual all-to-all coupling of components in the base network taken
when mean �eld theory is applied to neural networks (Cessac 2019; Faugeras,
Touboul, and Cessac 2009) is su�cient but not necessary. It can be seen that
homomorphism requirement holds for either all-to-all, one-to-one, many-to-one
couplings. Also, in the computational context, the number n of components
needs not to be in�nite.

9



A

A’

B

B’

R is the 
coupling 
relation

h is the base 
to lumped 
mapping

R’  is the 
coupling

Single 
component

A

A’

B

B’

Figure 6: Base and lumped model transitions at times t and t + 1 based on a
simple homomorphism h between a base network and a lumped network. In
the base network (resp. lumped network), components in pool A (resp. A′)
in�uence components in pool B (resp. B′).

Both homogeneity and stability assumptions lead, for example, to the net-
work structure of Figure 7. At structural level, each receiver gets the same values
and has the same number of senders. The feedback consists of independent self
couplings.
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1

2

3

1

2

3

4 4

...

Figure 7: Example of two-to-one and self internal coupling in a mean �eld
(lumped) network. The senders are represented on the �rst column and the
receivers on the second. For the sake of simplicity, the same component is
represented twice. The homomorphism here is the sum of component states.

Let's de�ne now more precisely the base and lumped model structures.

De�nition 7. A base network of linear systems consists of

ηbase = (δ, λ, {Si})
Where

δ(q, ω) = ×iδi(qi, ωi), for i = 1, ..., n, is the base network transition function
based on the component transition functions δi,which depend on: (i) the
base network state, q = (..., qi, ...), with qi the component states and on
the base network external input ω = (..., ωi, ...), with ωi the component
inputs. Based on dynamics homogeneity mean �eld condition of De�nition

6, all transition functions have the same behavior, i.e., δi
def
= δj , for all

components i, j of the network.

λ(q) = ×iλi(qi) is the base network output function based on the component
output functions λi. Based on dynamics homogeneity mean �eld condition

of De�nition 6, all output functions have the same behavior, i.e., λi
def
= λj ,

for all components i, j of the network.

{Si} = {Sexti ∪ Sinti } is the set of senders to the network (cf. Example 1) such
that Si = {j | ωi = λj(δj(qj , ωj)} is the set of external or internal sending
components j (as pool A in Figure 6) connected to the input, ωi ∈ Ωi, of
a a receiving component i. Structural homogeneity requires the number
(external or internal) senders in pool A being the same for each receiver in

11



pool B and couplings between senders and receivers being either all-to-all
(or one-to-all), one-to-one or many-to-one.

De�nition 8. A lumped network of linear systems consist of

ηlumped = (δ′, λ′, {S′i})

Where

δ′(q′, ω′) = δ′(h(×iq), g(×iωi)) is the transition function of the network, where
(for all q ∈ Q, ω′ ∈ Ω′), ×iωi, ×iqi and δ represent respectively the com-
ponent inputs, the component states, and the transition function of the
base network ηbase; and g(ω1, ω2, ..., ωn) is the input mapping, considering
an external coupling relation from external components or networks to the
input of the network (as described in Example 1). Besides based on mean

�eld conditions on dynamics homogeneity (cf. De�nition 6), δ′
def
= δi,

where δi are the transition functions in the base network.

λ′(δ′(q′)) is the output transition function of the network. Besides based on

mean �eld conditions on dynamics homogeneity (cf. De�nition 6), λ′
def
=

λi, where λi are the output functions in the base network and considering
internal coupling relation from the component outputs of the network to
the output of the network (as described in Example 1).

{S′i} is the set of senders to the network such that S′i = {j | ω′i = λ′j(δ
′
j(q
′
j , ω
′
j)}.

Remark 2. In a base network, a pool of states of the components consists of
equivalent states mapped into a single state of the lumped network. At dynam-
ics level, for each transition, each pool of states in the base network matches
a single state in corresponding lumped network. The mapping (or homomor-
phism) between state pools to single states can be generalized (instead of a
simple average or summation) as a census of states in a pool, i.e., as counting
the number of components in a particular state in the pool. Also, notice that
the states in a pool are permutable (either using a summation, an average or a
census mapping).

5 Mean �eld conditions explained by structure

morphisms

5.1 Homogeneity and stability condition

When applied to a network, a system morphism is called a structure morphism.
Let's take a simple example of a network of linear systems to expose the notion
of structure morphism with respect to mean �eld conditions.

Example 2. A network of two 1-D linear components with identical structure
(following homogeneity condition of mean �eld theory (cf. De�nition 6)) consists
of:

12



{
q1' = aq1 + bx1

y1 = cq1
and

{
q2' = aq2 + bx2

y2 = cq2
The stability condition of mean �eld theory (cf. De�nition 6), based on

feedback, can be represented by di�erent homomorphisms and structures of the
network as long as each component receives the same values, i.e., they have the
same number of in�uencers of the same kind (or dynamic transition) through
di�erent feedback loops:

1. A network with feedback being the (same) average output to each com-

ponent: x1 = x2 = y1 +y2
2 = cq1 +cq2

2 = c(q1 +q2)
2 .

2. A network where components have self and independent feedback loops:

x1 = y1
2 and x2 = y2

2 , also leads to x1 = x2 = c(q1 +q2)
2 .

3. A network where components have cross feedback loops: x1 = y2 and

x2 = y1, also leads to x1 = x2 = c(q1 +q2)
2 .

In all feedback loop cases, taking the homomorphism h(q1, q2) = q1 + q2, the
state of the lumped network is given by: q′1 + q′2 = a(q1 + q2) + b(x1 + x2) =
a(q1 + q2) + 2bx1 = a(q1 + q2) + bc(q1 + q2), thus leading to equation:

Q′ = (a+ bc)Q (1)

With Q = q1 + q2.
In conclusion, based on di�erent homogeneity and stability conditions, dif-

ferent structures lead to the same lumped network dynamics.

Remark 3. This simple example shows that the stability of the lumped network
dynamics depends on the sign of parameters a + bc: if a + bc > 0, the system
dynamics is exponentially growing, the system thus being unstable while for
a+ bc < 0, the system dynamics is stable.

Following previous assumptions, the relationship between the base and lumped
model networks consists of:

Theorem 1. If there exists a �xed point in the base network of linear systems,
ηbase = (δ, λ, {Si}), for a particular input segment ω ∈ Ω, there exists a �xed
point in the lumped network of linear systems, ηlumped = (δ′, λ′, {S′i}), for the
lumped input segment ω′ ∈ Ω′ corresponding to ω ∈ Ω.

Proof. For the sake of simplicity, let's take an all-to-all coupling. The proof can
be easily extended to all other cases of Example 1, by considering the set of
senders. The �xed point in the base network consists of ω = λ(δ(q, ω)). In a
lumped network averaging both states and inputs, the latter equation can be
developed as follows:

ω = λ(δ(q, ω))
= λ(..., δi(qi, ωi), ...) based on base network structure (cf. De�nition 7)
= λ′( 1

n

∑n
i=1 δi(qi, ωi)) based on lumped network structure (cf. De�nition 8)

= λ′(δi(
1
n

∑n
i=1 qi,

1
n

∑n
i=1 ωi)) based on linear system properties (cf. De�nition 4)

= λ′(δ′(q′, ω′))

13



Remark 4. As shown by this theorem, the usual mean �eld assumption requiring
the number of components n to be in�nite is su�cient but not necessary.

5.2 Matrix expression of homomorphisms

For linear systems, the matrix expression of homomorphisms is a simple and
constructive way to implement general systems morphisms. We provide here
the conditions to ful�ll for such homomorphism to hold.

Theorem 2. From a matrix representation point of view, let H : Q →onto Q
be a linear mapping, then H is a homomorphism from a big system SY S to a
small system SY S′, if the following conditions hold (cf. Figure 3):

1. H ′A = AH, being the state-to-state linear mapping (or state mapping for
short) with A �large� compared to corresponding parameter A′ of the small
system being �small�,

2. HB = B′, being the input-to-state linear mapping (or input mapping for
short) with B �large� compared to corresponding parameter B′ of the small
system being �small�,

3. C ′H = C , being the state-to-output linear mapping (or output mapping
for short) with C �large� compared to corresponding parameter C ′ of the
small system being �small�.

Proof. Let us take the simple example of the network of two 1-D linear com-
ponents (cf. Example 2). The matrix form of the linear operators consists

of A =

[
a 0
0 a

]
, Q =

[
q1
q2

]
, B =

[
b b

]
, X =

[
x1
x2

]
, C =

[
c
c

]

and Y =

[
y1
y2

]
. Taking homomorphism H

[
1 1

]
and applying state lin-

ear mapping condition, we obtain A'H = a
[

1 1
]

=
[
a a

]
and HA =

[
1 1

] [ a 0
0 a

]
=
[
a a

]
. So A'H = HA. Applying input linear map-

ping, HB =
[

1 1
] [

b b
]

= [2b] = B′. Applying output linear mapping,

C ′H = [c]
[

1 1
]

=
[
c c

]
= C. Hence, the parameters of the lumped

system consist of: A′ = [a], B′ = [2b], and C ′ = [c], with Q′ = (a + bc)Q,
Y ′ = Y = [y1], and X ′ = X = [x1] through identity mapping Id = [1].

6 Lumping connected networks

Figure 8 shows the morphism between two base networks and two lumped net-
works.
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Base network 2c

all-to-all 
connectivity

Lumped network 2c
average input

Base network 1 c

Lumped network 1 c

cc

cc

Figure 8: Morphism between two base networks and two lumped networks, an
example of all-to-all coupling between the base networks.

The set of coupled base networks is closed under morphism, meaning that
coupling base networks, a morphism holds when coupling corresponding lumped
networks.

Theorem 3. The dynamics of base linear networks is closed under morphism.

Proof. Figure 9 shows the commutative diagram of the morphism between two
base networks and two lumped networks, with the same number of components
n. We prove here that the state transition of the target lumped network 2
depends on the output transition of the source network 1:

δ′(q′1), δ′(q′2, ω
′
2) = δ′( 1

n

∑n
k=1 q

1
k), δ′( 1

n

∑n
k=1 q

2
k,

1
n

∑n
k=1 ωk)

= δ′( 1
n

∑n
k=1 q

1
k), δ′( 1

n

∑n
k=1 q

2
k,

1
n

∑n
k=1

∑
k∈Si

λk(qk))
= δ′( 1

n

∑n
k=1 q

1
k), δ′( 1

n

∑n
k=1 q

2
k, λ
′( 2
n

∑n
k=1 qk)) if all |Si| = 2n

= δ′(q′1), δ′(q′2, 2λ
′(q′)) ∀q′ ∈ Q1 ∪Q2

avg avg avg

Figure 9: Commutative diagram of the morphism between two base networks
and two lumped networks.
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Figure 10 summarizes the large to small correspondence between the struc-
tures of base and lumped networks of networks.

c

Large
Pool 1 c

Large 
Pool 2 

Large
Pool 3 

c

c
cc

cc

c
Small

Pool 1 c
Small 
Pool 2 

Large
Pool 3 

c

ccc

cc

large

B  ₁ 

A  ₁ 

 -B  ₂ 

small

B ’ ₁ 

A ’ ₁ 

-B ’  ₂ 

homomorphism

C  ₁ 

C ’ ₁ 

cc
cc
cc
cc
cc

cc
cc

c

c

Figure 10: Couplings and lumping of a network of 3 networks. In the base
network, the number of inputs (B), components and states in the state space
(A), and outputs (C) is large. In the lumped network, corresponding numbers
of lumped parameters {A′, B′, C ′} are small.

Notice that if the inputs to a linear system in a network consist of the sum
of the output from its in�uencers,

∑
k∈Si

λk(qk), with linear and homogeneity
properties it is obtained: λk(

∑
k∈Si

qk) = λ(q′). Also, input is strictly positive
if and only if

∑
k∈Si

λk(qk) > 0, i.e., sensitive only to whether or not in�uencers
send positive outputs λk(

∑
k∈Si

qk) = λ(q′) > 0 and if and only if
∑
k∈Si

qk > 0,
for state range strictly positive, and λ monotonically increasing. We will see
hereafter that these conditions can be used to model network model connections.

6.1 Simple discrete formulation

Figure 11 describes the lumping of two connected pools of components with no
internal couplings. The discrete time state dynamics of a neuron i = 1, ..., n
consists of

qi(t+ 1) = qi(t) + Ii(t)

Where Ii is the input of component i.
For a lumped network, the lumped state at time t, Q(t), consists of the sum of

the component states in corresponding base network, Q(t) =
∑n
i=1 qi(t), and the

16



lumped input at time t, I(t), is the average of external inputs, I(t) =
∑n
i=1

Ii(t)
n .

So the state of a lumped of:

Q(t+ 1) = Q(t) + I(t)

With I1(t) as output of the �rst pool and input to the second pool. Then,

Q2(t+ 1) = Q2(t) +Q1(t)

Feeding back the output of a pool to itself, it is obtained for each component,

Ii(t) =
∑n
i=1

Qi(t)
n , so I(t) =

∑n
i=1

∑n
i=1

qi(t)
n = Q(t). So, Q(t+1) = Q(t)+Q(t)

and

Q(t+ 1) = 2Q(t)

 

... ...

all-to-all

Figure 11: Simple discrete formulation of the lumping of two fully coupled
networks.

This illustrates a homomorphism h({qi}) =
∑n
i=1 qi. Starting with qi(t) the

transition to the next state is qi(t + 1) = qi(t) + Ii(t) = qi(t) +
∑n
i=1

Qi(t)
n .

Applying h to both {qi(t)} and {qi(t + 1)}, we have Q(t + 1) and Q(t) +∑n
i=1

∑n
i=1

Qi(t)
n = 2Q(t) which match the lumped model transition Q(t+ 1) =

2Q(t).
The solution of the lumped model is

Q(t) = Q(0)2t

17



Remark 5. In neuronal pools, averaging the inputs can be conceived as averaging
the �ring rates of neurons when taking their inputs as �ring rates.

6.2 Computational approximation

Based on previous simple discrete result, the exact lumped state can be exactly
computed asQ(t) = Q(0)2t with uniformly connected pools and an large number
of components. However, real network simulation frequently consists of non-
uniformly coupled networks, of �nite size, leading to an approximation of the
dynamics of the lumped network. Figure 12 shows the simulation lumping

approximation, Qsim(t)
Q(t) , where Qsim(t) is the simulated lumped state. It can be

seen that for a �nite number of components, n = 100, the approximation of the
lumped state is acceptable. The error increases after for smaller probabilities
of connection. In a fully connected network a component samples all the states
of other components. With, e.g., a probability p = 30%, a component samples
randomly 30% of all the components, at each step.

Figure 12: Lumping approximation as the ratio Qsim(t)
Q(t) . Simulation are obtained

according to the probability of connection p between the component pools, and
with a number of components n = 100. Parameters of Equation 1 are a = 1
and bc = −0.1, so the exact state consists of Q(t) = Q(0)0.9t, thus exhibiting a
decreasing stable behavior.

We will see in the neural network application that stability and dynamics
error accumulated at each state transition should not be confused.

7 Application to neuronal networks

7.1 Motivation

Figure 13 describes the lumping application onto models of brain regions. The
base model consists of many details preventing simulation under reasonable
execution times, while the lumped model abstracting the base model details
aims to be simulatable.
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Base model

Simulatable
lumped model

lumping

modeling

modeling

Real system

Figure 13: Modeling of the brain regions and model lumping for simulatability.
Free picture of the brain lobes from Wikipedia.

Figure 14 presents a coupling between two brain regions that can be con-
sidered as coupling two neuronal networks with inhibitory external synaptic
connections coming from another network (or brain region). Inside the net-
works, synaptic connections are considered to be excitatory. This assumption
follows the one of balanced networks (Brunel 2000).

c
Brain

Region 1 c
Brain 

Region 2 

A  ₁ 

C₁    

A   ₂  
-B₂  

Figure 14: Couplings between two brain regions. The synaptic inputs received
by Brain region 2 from Brain region 1 are inhibitory thus leading to matrix
C1 −B2 for output-to-input mapping.

7.2 Neuron dynamics model

A well known model of neuron dynamics is the the Amari-Wilson-Cowan model
(Amari 1972; Wilson and Cowan 1972; Wilson and Cowan 1973), slightly mod-
i�ed by taking external input current to the network as external inputs from
another network:
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dqi
dt

= aqi +
∑

j∈Si

bijf(xj) (2)

Where qi represents the voltage of the neuron i, a ≤ 0 is the leak parameter,
bij is a synaptic weight (with bij < 0 an inhibitory synapse and bij > 0 an exci-
tatory synapse), xj is the input voltage received from an in�uencing (external
or internal to the network) neuron j in Si, and f is a typical non-linear sigmoid
function f(x) = 1

2 (1 + tanh(gx)), g a gain parameter (cf. Figure 15).
Linear response in neuronal networks 5

(See70 and references therein). A recent method, synthetis-
ing previous approaches has also been proposed by C. Maes
and co-workers5,8. The application of these formalisms allows
to construct a linear response theory in neuronal models, from
the equations ruling neurons’ dynamics, as we now show.

III. FROM FIRING RATE NEURONS DYNAMICS TO
LINEAR RESPONSE

A. The Amari-Wilson-Cowan model

As a first example of linear response in neural network we
consider a canonical model of neuronal dynamics, the Amari-
Wilson-Cowan model3,131,132. It consists of a set of N neu-
rons, i = 1 . . .N, with membrane voltage Vi, whose dynamics
is given by the dynamical system:

dVi

dt
=−Vi +

N

∑
j=1

Ji j f (Vj(t))+ εSi(t); i = 1 . . .N. (8)

This equation can be derived from equation (1) up to several
approximations explained e.g. in35,38. Note that the decay
(leak) term −Vi has a more general form − 1

τ (Vi−VL) where
VL is a reversal potential and τ is a characteristic time. It is
easy to get to the form (8) by rescaling time and voltages.

We will also consider the discrete time version of (8):

Vi(t +1) =
N

∑
j=1

Ji j f (Vj(t))+ εSi(t); i = 1 . . .N. (9)

This form is more convenient to understand the mechanisms
that shape the linear response, namely the interplay between
neurons interactions and non linear dynamics, because one
can follow the effect of a stimulus time-step by time-step. For
this reason we will mainly stick at the discrete time dynam-
ics, except in the next subsection (Contractive regime), where
the derivation of the linear response and its consequences are
more straightforward and familiar to readers in the continuous
time case.

Neurons are coupled via synaptic weights Ji j characterising
the strength of interaction from the pre-synaptic neuron j to
the post-synaptic neuron i. This defines an oriented graph, i.e.
Ji j 6= J ji in general, in contrast to physics where interactions
are symmetric. This graph is also signed: when Ji j > 0 the in-
teraction (synapse) is excitatory, when Ji j < 0, it is inhibitory.

In this model, the pre-synaptic neuron j influences the post
synaptic neuron i via its firing rate (probability to emit a spike
in a small time interval) which is a function f (Vj) of the pre-
synaptic neuron voltage. Here, f is a non linear, sigmoid func-
tion as depicted in Fig. 1. A typical form for f is:

f (x) =
1
2
(1+ tanh(gx)) . (10)

The sigmoidal shape has a deep biological importance. In-
deed, one can distinguish 3 rough regions (Fig. 1). In region
I (low voltage), the neuron does not emit spikes. In region II,

FIG. 1. The sigmoidal shape of the function f and its effects on volt-
age fluctuations. Top. When the neuron’s voltage fluctuates around
the inflection point of the sigmoid, and if the gain g is large enough
fluctuations are amplified. Bottom. When the neuron’s voltage fluc-
tuates in the flat parts of the sigmoid (here, the saturated region) fluc-
tuations are damped. Dashed red lines correspond to a piecewise
linear approximation of the sigmoid, allowing to delimit regions I,
II, III.

f (V ) is roughly linear. In region III (high voltage), the firing
rate reaches a plateau, fixed by the refractory period.

The parameter g in (10), either called "gain" or "non lin-
earity", is of up most importance. On biophysical grounds, it
characterises the sensitivity of the neuron’s firing rate to fluc-
tuations of its voltage. Consider indeed Fig. 1, top. When g
is larger than 1 the fluctuations are amplified by f in region
II. In contrast, in region I and III they are damped. This
remark, made at the level of single neuron, has a deep im-
portance when interpreting the linear response of a network
governed by eq. (8) or (9). On dynamical grounds this effect
controls the local expansion / contraction in the phase space,
as developed below.

Finally, in eq. (8), (9), Si(t) is an "external stimulus". Here,
it depends only on time but the analysis made below affords a
situation where Si depends also on the neuron’s voltage.

We introduce the state vector ~V =
(

Vi
)N

i=1, the stimulus

vector ~S =
(

Si
)N

i=1 and the matrix of synaptic weights J =(
Ji j
)N

i, j=1. With a slight abuse of notations we write f (~V ) for

the vector
(

f (Vi)
)N

i=1. Then, we may rewrite (8) in vector
form:

d~V
dt

=−~V +J . f (~V )︸ ︷︷ ︸
~F(~V )

+ε~S(t), (11)

Figure 15: The sigmoidal shape of the function f and its e�ects on voltage �uc-
tuations. Top: When neuron's voltage �uctuates around the in�ection point of
the sigmoid, and if the gain g is large enough �uctuations are ampli�ed. Bot-
tom: When the neuron's voltage �uctuates in the �at parts of the sigmoid (here,
the saturated region) �uctuations are damped. Dashed red lines correspond to
a piecewise linear approximation of the sigmoid, allowing to delimit regions I,
II, III (legend and �gure from (Cessac 2019)).

Lumping neurons consists of using the linear part of the sigmoid, with pa-
rameters bcg = b for simpli�cation, where c is the signal attenuation on the
axon, b is the pulse attenuation on synapses and dendrites.

7.3 Computational approximation, dynamics and stability

Figure 16 describes the error dynamics in the lumping model. In stable linear
systems, any two states converge to one state unless there is a break of the
convergence because of :

1. The non linearities of the sigmoid,
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2. Positive synaptic weights, bji,

3. Random sampling couplings instead of a uniform ones in brain regions.
Then, the dynamics could di�er just a little bit from the average.

In all cases, lumping analytic results are not possible anymore and simulation
is required to study the dynamics between brain regions.

avg avg avg

Dynamics between 
base brain regions

Dynamics between 
lumped brain regions

error grows

error disappears

Figure 16: The error depends on the dynamics between base and lumped brain
regions: Usually, the brain is a stable system where the error of the lumped
model used for study should disappear. Sometimes, the brain turns unstable
(as during epileptic crises).

8 Conclusion

Su�cient and necessary conditions have been proposed in De�nition 6 for I/O
general linear systems. These conditions proved to be implemented by system
morphisms leading to �xed points in networks (cf. Theorem 1) and allowing
lumping coupled networks (cf. Theorem 6). Compared to usual mean �eld
conditions shown in Table 1, computational assumptions allowed a non in�nite
number of components in networks as well as di�erent couplings (cf. Remarks
4 and ??).
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