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1 Introduction

This article presents preliminary results concerning the implementation of the
abstraction of linear dynamic systems based on computational morphisms and
mean �eld conditions. Computational modeling is done using the iterative sys-
tem speci�cation formalism (Zeigler, Muzy, and Kofman 2018). Base networks
of linear systems are abstracted into lumped lumped networks. The lumping
is detailed providing an analytical tool to study the dynamics abstracted from
the base network. Mean �eld conditions ensure the preservation of the average
activity in the network. Also, the coupling of networks is studied to be able to
construct networks of networks while still getting a good idea of the dynamics
of the whole system.

In Section 2, mathematical system and mean �eld theories are introduced.
In Section 3, the mathematical framework of linear time invariant systems with
inputs/outputs is de�ned. In Section 4, the mean �eld abstraction is clearly
de�ned for linear systems using computational morphisms. Section 5 presents
the abstraction of network dynamics based on the connections in the network.
Finally, in Section 6 a conclusion and perspectives are provided.

2 Mathematical system and mean �eld theories

2.1 Mathematical system theory

Mathematical general systems (Arbib 1972; Klir 1985; Mesarovic and Taka-
hara 1989; Mesarovic and Takahara 1975; Wymore 1967; Arnold 1994; Harrison
1969; Ho 1992) consist of state-based systems with inputs and outputs. These
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systems can be linear or non-linear, with few hypotheses about their structure
(as time invariance described in the mathematical framework section), mak-
ing these structures very abstract. Input/Output (I/O) interactions of systems
make them very realistic but require adding particular mathematical properties
to derive theorems about the expected behavior of these systems. In the theory
of modeling and simulation (Zeigler, Muzy, and Kofman 2018), a computational
speci�cation of general systems has been proposed. The computational systems
considered here consist of linear systems.

2.2 Mean �eld theory

Many references using the mean �eld hypotheses in the context of neural net-
works could be cited here. In Table 1, we focus on the main usual hypotheses
and breakthrough results with respect to neural network structures (Nykamp
et al. 2017; El Boustani and Destexhe 2009; Ostojic 2014) (allowing neuronal
networks with arbitrary random degree distributions) and behavior (Faugeras
2009) (exploring the state correlation between neurons). For mathematical con-
vergence to a �xed point, usual hypotheses consist of all-to-all couplings between
networks, an in�nite number of neurons, weights inversely proportional to the
number of neurons. We will show here that the all-to-all couplings between
networks is su�cient but not necessary and that many-to-many coupling is nec-
essary. The same way, we will show that the an in�nite number of neurons in
a network is su�cient but not necessary and that a �nite number of neurons is
possible.

3 Mathematical framework

3.1 I/O general state-based systems

De�nition 1. A deterministic general I/O system is a structure (cf. behavior
introduced in Figure 1)

SY S = (δ, λ)

Where

δ : Q× Ω→ Q is the transition function, with Q the set of states, Ω
the set of (piecewise continuous) input segments ω : [t1, t2] →
X1, with [t1, t2] the interval of the segment and X the set of
input values. The sets of input values X and states Q are
arbitrary.

λ : Q→ Y is the output function, which can be considered as a (par-
tial) observation of the state of the system.

1A piecewise continuous input segment is a map from each time point t ∈ [t1, t2] (with t1
and t2 not �xed) to a corresponding input value x ∈ X.
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(Faugeras 2009) x x x x

(Nykamp et al. 2017) x x x

(El Boustani and Destexhe 2009) x x

(Ostojic 2014) ? x x

us x x x x x

Table 1: Mean �eld conditions in neural networks.
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Figure 1: General I/O system dynamics: When receiving an input segment
ω ∈ Ω, the system achieves a transition from initial state qinit ∈ Q to �nal state
qend ∈ Q and returns an output segment ρ ∈ P.

For one input segment ω ∈ Ω de�ned over an interval [t1, t2], with t1 and
t2 not �xed2, the system goes continuously from one initial state qinit ∈ Q to
one �nal state qend ∈ Q by its transition function: qend = δ(qinit, ω). To do
so, intermediate states are computed for particular (allowed) time breakpoints
t ∈ [t1, t2] based on the composition property of the transition function (cf.
Figure 2): δ(q, ω) = δ(δ(q, ωt]), ω[t), with ωt] = ω|[t1,t] and ωt] = ω|[t,t2] being
respectively the left sub-segment and the right sub-segment of ω. Finally, the
system generates an output segment ρ ∈ P such that ρ : [t1, t2] → Y and ρt] =
λ(δ(q, ωt])). The set of input segments, Ω, is the union of all input segments ωt]
and ω[t and the set of output segments, P, is the union of all output segments
ρt] and ρ[t.

Figure 2: Composition of segments.

The current state is the minimal information to deterministically compute
the next state in a very large state space. The system is markovian. However,
notice that a current state can be seen as the result of previous input-state
transitions(Zadeh and Desoer 1963). Then, the state of the system can be
considered at a higher dependence order, a state being the result of several
previous state transitions. Notice also that the system holds inputs and outputs,
which is a more general and convenient principle for modeling complex systems,

2Segments can be also de�ned as starting from time 0 showing then that they can be
translated, this is the time invariance property of systems (Zeigler, Muzy, and Kofman 2018).
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although it makes these systems more unpredictable. In (Ivanov 2013), it is
proven also that previous inputs can be stored in states showing the equivalence
of both closed and open system structures.

Systems are very abstract and general structures that proved to map all usual
modeling formalisms (Zeigler, Muzy, and Kofman 2018). They allow integrating
and comparing these formalisms. However, abstract does not mean trivial in
the sense that the properties shown for arbitrary inputs, states and outputs can
be shown to hold at a lower speci�cation level, i.e., for speci�c inputs, states
and outputs.

Systems are time invariant, i.e., any input segment ω : [t1, t2]→ X, applied
at time t1 can be applied at a time t3, leading to the same state and output
transitions. De�ning a translation operator for each time t ∈ T , as TRANSτ :
Ω→ Ω, for an input segment ω, ω′ = TRANS(ω), with ω′(t+ τ) = ω(t) for all
t ∈ [t1, t2]. Then, a system SY S = (δ, λ) is time invariant for all input segments
ω ∈ Ω and all times τ ∈ T , if:

1. Ω is closed under translation: for ω ∈ Ω⇒ TRANSτ (ω) ∈ Ω.

2. δ is time invariant: for all states q ∈ Q, δ(q, ω) = δ(q, TRANSτ (ω)).

3.2 Linear time invariant systems

De�nition 2. A Linear time invariant System (LSYS) is a structure

LSY S = (δ, λ)

Where

X,Q, Y are �nite dimensional vector spaces over R,

δ(q, ω) = qeAl(ω) +
∫ l(ω)
0

eA(l(ω)−τ)Bω(τ)dτ is the transition function3,

λ(q) = CQ is the output function,

A : Q→ Q, B : X → Q and C : Q→ Y are linear operators.

De�nition 3. Amatrix representation

{
q´(t) = Aq(t) +Bx(t)

y(t) = Cq(t)
is represented

by a Linear Time Invariant System as

{
δ(q, ω) = qeAt +

∫ t
0
eA(t−τ)Bωτ>dτ

λ(q) = CQ
.

De�nition 4. A linear time invariant system consists of linear transition and
output functions with additive and distributive properties:

1. δ(q1 + q2, ω1,t> + ω2,t>) = δ(q1, ω1,t>) + δ(q2, ω2,t>)

2. δ(aq, aωt>) = aδ(q, ωt>)

3Notice that all segments are translated to 0, for simplicity.
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3. λ(δ(q1 + q2, ω1,t> + ω2,t>)) = λ(δ(q1, ω1,t>)) + λ(δ(q2, ω2,t>))

Let us prove these properties.

Proposition 1. δ(q1 + q2, ω1,t> + ω2,t>) = δ(q1, ω1,t>) + δ(q2, ω2,t>)

Proof. Based on matrix representation,

δ(q1 + q2, ω1,t> + ω2,t>) = eAtq1 +
∫
eA(t−τ)Bω1,τ>dτ + eAtq2 +

∫
eA(t−τ)Bω2,τ>dτ

= eAtq1 + eAtq2 +
∫
eA(t−τ)Bω1,τ>dτ +

∫
eA(t−τ)Bω2,τ>dτ

= eAt(q1 + q2) +
∫
eA(t−τ)B(ω1,τ> + ω2,τ>)dτ

= δ(q1, ω1,t>) + δ(q2, ω2,t>)

Proposition 2. δ(aq, aωt>) = aδ(q, ωt>)

Proof. Similar to Proposition 1.

Proposition 3. λ(δ(q1 + q2, ω1,t> + ω2,t>)) = λ(δ(q1, ω1,t>)) + λ(δ(q2, ω2,t>))

Proof. Starting from additive properties,
λ(δ(q1 + q2, ω1,t> + ω2,t>)) = λ(δ(q1, ω1,t>) + δ(q2, ω2,t>)) by Proposition 1

= C(δ(q1, ω1,t>) + δ(q2, ω2,t>)) by Definition 2
= C(δ(q1, ω1,t>) + δ(q2, ω2,t>)) by linearity of C
= λ(δ(q1, ω1,t>)) + λ(δ(q2, ω2,t>))

Example 1. Pool of two 1-D linear components with identical structure:{
q1´ = aq1 + bx1

y1 = cq1
and

{
q2´ = aq2 + bx2

y2 = cq2
Let the feedback be the (same) average output to each component:

x1 = x2 = y1 +y2
2 = cq1 +cq2

2 = c(q1 +q2)
2

The state of the network is:
q′1 +q′2 = a(q1 +q2)+b(x1 +x2) = a(q1 +q2)+2bx1 = a(q1 +q2)+bc(q1 +q2)
with Q = q1 + q2 and Q′ = (a+ bc)Q

3.3 Computational morphisms

I/O general systems can be considered as abstract machines achieving temporal
computations (or executions of system (output) transitions functions). A tem-
poral computation relies on a delay (possibly zero) between inputs and outputs.
Computations take time. The number of the computations should be �nite to
guarantee that the simulation ends.

Simulation and computers consist more and more of a huge number of com-
ponents interacting together. A fundamental modeling challenge remains the
development of a guiding mathematical framework to constructively set and
analyze the behavior of networks of components at both local and global levels.
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Figure 3: Morphism mapping.

The di�culty of developing such modeling structures is due to the number of
local state computations and to the interactions between the components (the
temporal coordination of the distributed computations). To abstract local sys-
tem behaviors into network ones, relying on local (temporal) state computations,
computational morphisms can be used.

De�nition 5. A system morphism or generalized homomorphism, between a
detailed system SY S (or base model) and another abstract system SY S′ (or
lumped model), is a pair (g, h) such that (cf. Figure 3):

1. g : Ω→ Ω′

2. h : Q→onto Q′, where Q ⊆ Q′,

3. for all q ∈ Q, ω′ ∈ Ω′,h(δ(q, g(ω′))) = δ′(h(q), ω′) (transition function
preservation)

4 Mean �eld abstraction

Figure 4 shows the morphism between a base network and a lumped network.

De�nition 6. We summarize all usual mean �eld assumptions into only two
su�cient and necessary assumptions for abstracting linear networks:

1. Stability: The transition function of the network resultant system admits
a �xed point, the system having input to output feedback,

2. Homogeneity: All the components of the network have the same dynam-
ics (or state transition function) and the same structure (same transi-
tion/output functions and receive the same inputs).

Both assumptions lead to the network structure of Figure 5.
Mean �eld morphism between a base network model and a lumped network

model is presented in Figure 6.
In the computational context, the number n of components needs not to be

in�nite.
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Figure 4: Morphism between base and lumped networks.
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Figure 5: Coupling.

8



Figure 6: Commutative diagram of mean �eld network morphism.

De�nition 7. A base model network of linear time invariant systems consists
of

ηbase = (δ, λ)

Where
δ(q, ω) = ×iδi(qi, ωi) with q = (..., qi, ...) and ω = (..., ωi, ...),
λ(q) = ×iλi(qi)

De�nition 8. A lumped model network of linear time invariant systems consist
of

ηlumped = (δ′, λ′)

Where ω′ = 1
n

∑n
i=1 ωi, δ

′ def= δi, with q
′ = 1

n

∑n
i=1 qi and λ

′ def= λi.

Following previous assumptions, the relationship between the base and lumped
model networks consists of:

Theorem 1. If there exists a �xed point in the base model network of linear
time invariant systems for a particular input segment ω ∈ Ω, there exists a �xed
point in the lumped network of linear time invariant systems for the same input
segment ω ∈ Ω.

Proof. The �xed point in the base model network consists of ω = λ(δ(q, ω)),
the latter equation can be developed as follows:

ω = λ(δ(q, ω))
= λ(..., δi(qi, ωi), ...) based on base network structure (cf. De�nition 7)
= λ′( 1

n

∑n
i=1 δi(qi, ωi)) based on lumped network structure (cf. De�nition 8)

= λ′(δi(
1
n

∑n
i=1 qi,

1
n

∑n
i=1 ωi)) based on linear system properties (cf. De�nition 4)

= λ′(δ′(q′, ω′))

Remark 1. As shown by this theorem, the usual mean �eld assumption requiring
the set of components to be in�nite is su�cient but not necessary.
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Figure 7: Morphism between two base networks and two lumped networks.

5 Connection of networks

Figure 7 shows the morphism between two base networks and two lumped net-
works.

The set of coupled base networks is closed under morphism, meaning that
coupling base networks, a morphism holds when coupling corresponding lumped
networks.

Theorem 2. The set of base coupled networks is closed under morphism.

Proof. Figure 8 shows the commutative diagram of the morphism between two
base networks and two lumped networks. We prove here that the state transition
of the target lumped network 2 depends on the output transition of the source
network 1:

{δ(q1i )}, {δ(q2k, 1
n

∑n
k=1 ωk} = {δ(q1i )}, {δ(q2k, 1

n

∑n
k=1

∑n
k∈Si

ωik}
= {δ(q1i )}, {δ(q2k, 1

n2

∑n
k=1

∑n
k∈Si

λ(q1i )}
= {δ(q1k)}, {δ(q2i , 1

n

∑n
k=1 λ(q1i )} if all |Si| = n

= {δ(q1), λ(q1)}

Remark 2. All-to-all coupling condition is su�cient but not necessary. Many-
to-many coupling is possible. For example one-to-one correspondence does not
require all-to-all coupling but still works. Using for example identity mapping
instead of average (between the lumped networks in Figure 8); so does any
partition on the �rst set (of in�uencing components in the source network) with
the second set (of in�uenced components in the target network) being smaller
or equal to the �rst set.

�
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avg avg avg

Figure 8: Commutative diagram of the morphism between two base networks
and two lumped networks.

6 Conclusion

Su�cient and necessary conditions have been proposed in De�nition 6 for I/O
general linear invariant systems. These conditions proved to be implemented
by computational morphisms leading to �xed points in networks (cf. Theorem
1) and allowing lumping coupled networks (cf. Theorem 5). Compared to usual
mean �eld conditions shown in Table 1, computational assumptions allowed a
non in�nite number of components in networks as well as many-to-many cou-
plings (cf. Remarks 1 and 2).
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