

Assessment of PEF and PET

stretch ability above Tg

Emilie Forestier

C. Combeaud, N. Guigo, G. Corvec, C. Pradille,

N. Sbirrazzuoli, N. Billon

BSSM Conference

September 10th , 2019

Bottles market

- Leader in this field until the 80's
- → Poly(ethylene terephtalate)
- Bottles forming= reaching of high deformation above Tg

- Good mechanical, thermal and barrier properties
- Transparency

 $\lambda_2 = 3-4$

Around 20/30% of crystal

PET uniaxial stretching

- From a certain deformation development of a strain hardeing
- Apparition of a strain hardening = microstructural changes

Natural Draw Ratio (NDR) ≈ 2-3

 $\lambda = \exp(\varepsilon)$

E.Gorlier and al., Plastic Rubber and Composites. doi:10.1179/146580101101541435

PEF uniaxial stretching

Poly(ethylene furandicarboxylate)

- PEF stretching at 85°C, ἐ=7,5*10⁻⁴ s⁻¹
- → Almost in the same conditions as PET
- Apparition of a low strain hardening for ε ≥ 450% (engineering curves)
- Development of a microstructural organization

z = 0%

ε = 50%

c = 200%

E = 300%

c = 350%

s = 5009

r = 600

ε = 700f

\$ = 7009

800

SAXS

G. Stoclet and al., Polymer. doi:10.1016/j.polymer.2017.11.071.

Evolution of the stiffness according to the temperature (25-210°C), 1°C/min, 1Hz

PEF and PET forming range

Comparison of PET and PEF rubbery plateau

 \rightarrow PEF stretching range has to be different from the PET one

How to find PEF suitable stretching range to

reach high deformations ?

Time/temperature principle

→ Building of master curves

- Time/temperature principle
- → Building of master curves

From the mastercurve to the uniaxial stretching

→ Mechanical behavior in large deformation domain

- Time/temperature principle
- → Building of master curves
- From the mastercurve to the uniaxial stretching
- \rightarrow Mechanical behavior in large deformation domain
- Microstructural development
- → Apparition of an organized microstructure

Time/temperature principle

Sidel

BSSM Conference

September 10th , 2019

I) Time/temperature dependence

- Existence of a dependence in time and temperature
- Possibility to describe it on the same graphe ?
- → Master curve at a reference temperature
- Description with an unique variable: **Equivalent strain rate at a reference temperature**

E.Gorlier and al., Plastic Rubber and Composites. doi:10.1179/146580101101541435

I) PEF frequency sweep

- Frequency sollicitation (0,1 Hz \leq f \leq 100 Hz) in the forming range
- 90°C \leq T \leq 140°C, isothermal step of 5 °C
- Sweep of the scans on the reference temperature choosen close to the T α ($f \rightarrow f * a_{\tau}$)
- a_{T} : shift factor related to an unique temperature

I) PEF master curve with $T_{ref} = 100^{\circ}C$

- Description of the mechanical behaviour on a large frequency range
- Description of the material state depending on the frequency and the temperature

→ PEF mechanical behaviour can be modelized by a master curve

I) Master curves

Realization of two master curves at two different reference temperatures choosen

close to the $T\alpha$ 1000 Master Curve PEF Master Curve PET 100 E' (MPa) PEF PEF (T_{ref} = 100°C) PET **PET (T**_{ref} = 90°C) 10 $T\alpha$ (1Hz) = 100 °C $T\alpha$ (1Hz) = 87°C 1 10⁻³ 10⁻² 10⁻¹ 10^{0} 10^{1} 10^{2} $10^3 \quad 10^4 \quad 10^5 \quad 10^6$ 10⁻⁴ 10^{7} Frequency*aT (Hz)

→ PEF and PET master curves are close

I) Forming range

Realization of two master curves at two different reference temperatures choosen

→ Superposition of PEF and PET forming ranges

PEF and PET uniaxial stretching

BSSM Conference

BSSM

September 10th , 2019

II) Choice of the stretching conditions

- Hypothesis: $f * a_T \approx \epsilon * a_T (\epsilon : strain rate s^{-1}) = equivalent strain rate$
- Calculation of έ

→ Example: $\dot{\epsilon} * a_T = 0,01 \text{ s}^{-1} \rightarrow \dot{\epsilon} = \frac{0,01}{a_T} s^{-1} (a_T : shift factor dependent on the temperature)$

• Exploration of the master curve: $\mathbf{\acute{e}} * \mathbf{a}_{T} = \mathbf{0,01}$ and $\mathbf{0,1} \text{ s}^{-1}$

II) Etifi presentation

8

8

- Samples withdrawn from extruded sheets of 700µm of thickness *
- * Hot uni-axial stretching until rupture (exponential velocity)
- ** Optical measurement (1 camera): DIC
- * Thermal measurement (pyrometer)
- *

II) PEF uniaxial stretching

- → Validity of the time/temperature principle for both
- → Strain hardening is postponed for PEF
- → Slope of the strain hardening sharper for PEF

→ Materials with a low stiffness and a high strain hardening

II) Uniaxial deformation

a_T έ = 0,1 s⁻¹ and 0,01 s⁻¹

→ Validity of time/temperature principle for others equivalent strain rate

II) Uniaxial deformation

• a_T έ = 0,1 s⁻¹ and 0,01 s⁻¹

1000

Master Curve PEF Master Curve PET

→ Validity of time/temperature principle for others equivalent strain rate

BSSM Conference

BSSM

September 10th, 2019

Characterization of the orientation by a Debye-Scherrer in plane chamber analysis

Amorphous PEF

Amorphous PET

Characterization of the orientation by a Debye-Scherrer in plane chamber analysis

- Characterization of the orientation by a Debye-Scherrer in plane chamber analysis
- After the stretching: semi-crystalline material

Interrupted tests during the loading

Interrupted tests during the loading

 $\varepsilon_{xx} = 0.9$

Interrupted tests during the loading

35

Interrupted tests during the loading

Interrupted tests during the loading

37

Interrupted tests during the loading

Interrupted tests during the loading

2

 $\varepsilon_{xx} = 1,2$

Interrupted tests during the loading

40

 $\epsilon_{xx} = 1,75$

Interrupted tests during the loading

Interrupted tests during the loading

Conclusions

- Two molecules: PEF and PET
- PET stretching is known for several years
- PEF is relative new and is most of the time stretched as PET = low strain hardening

Conclusions

- Two molecules: PEF and PET
- PET stretching is known for several years
- PEF is relative new and is most of the time stretched as PET= low strain hardening
- Building of two master curves which are the starting point to find
 the suitable stretching conditions
- Validation of the time/temperature principle
- PEF can reach higher draw ratio than PET

Conclusions

- Two molecules: PEF and PET
- PET stretching is known for several years
- PEF is relative new and is most of the time stretched as PET= low strain hardening
- Building of two master curves which are the starting point to find
 the suitable stretching conditions
- Validation of the time/temperature principle
- PEF can reach higher draw ratio than PET
- Creation of an organized microstructure in PEF and PET
- Microstructural organization begins before the strain hardening Quenched PET
 for PEF and after for PET

 \rightarrow PEF is able to strain harden in biaxial stretching

Acknowledgements to « Agence De l'Environnement et de la Maîtrise de l'Energie

(ADEME) », Sidel and Avantium for their support

