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4Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK

Abstract

Estimating hand-object manipulations is essential for in-
terpreting and imitating human actions. Previous work has
made significant progress towards reconstruction of hand
poses and object shapes in isolation. Yet, reconstructing
hands and objects during manipulation is a more challeng-
ing task due to significant occlusions of both the hand and
object. While presenting challenges, manipulations may
also simplify the problem since the physics of contact re-
stricts the space of valid hand-object configurations. For
example, during manipulation, the hand and object should
be in contact but not interpenetrate. In this work, we regu-
larize the joint reconstruction of hands and objects with ma-
nipulation constraints. We present an end-to-end learnable
model that exploits a novel contact loss that favors phys-
ically plausible hand-object constellations. Our approach
improves grasp quality metrics over baselines, using RGB
images as input. To train and evaluate the model, we also
propose a new large-scale synthetic dataset, ObMan, with
hand-object manipulations. We demonstrate the transfer-
ability of ObMan-trained models to real data.

1. Introduction
Accurate estimation of human hands, as well as their in-

teractions with the physical world, is vital to better under-
stand human actions and interactions. In particular, recov-
ering the 3D shape of a hand is key to many applications
including virtual and augmented reality, human-computer
interaction, action recognition and imitation-based learning
of robotic skills.

Hand analysis in images and videos has a long history
in computer vision. Early work focused on hand estima-
tion and tracking using articulated models [19, 49, 63, 77]
or statistical shape models [31]. The advent of RGB-D sen-
sors brought remarkable progress to hand pose estimation
from depth images [17, 24, 41, 66, 68]. While depth sen-
sors provide strong cues, their applicability is limited by

Figure 1: Our method jointly reconstructs hand and object meshes
from a monocular RGB image. Note that the model generating
the predictions for the above images, which we captured with an
ordinary camera, was trained only on images from our synthetic
dataset, ObMan.

the energy consumption and environmental constrains such
as distance to the target and exposure to sunlight. Recent
work obtains promising results for 2D and 3D hand pose es-
timation from monocular RGB images using convolutional
neural networks [9, 20, 37, 45, 60, 61, 80]. Most of this
work, however, targets sparse keypoint estimation which is
not sufficient for reasoning about hand-object contact. Full
3D hand meshes are sometimes estimated from images by
fitting a hand mesh to detected joints [45] or by tracking
given a good initialization [8]. Recently, the 3D shape or
surface of a hand using an end-to-end learnable model has
been addressed with depth input [33].

Interactions impose constraints on relative configura-
tions of hands and objects. For example, stable object
grasps require contacts between hand and object surfaces,
while solid objects prohibit penetration. In this work we
exploit constraints imposed by object manipulations to re-
construct hands and objects as well as to model their in-
teractions. We build on a parametric hand model, MANO
[55], derived from 3D scans of human hands, that provides
anthropomorphically valid hand meshes. We then propose
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Figure 2: Our model predicts the hand and object meshes in a
single forward pass in an end-to-end framework. The repulsion
loss LR penalizes interpenetration while the attraction loss LA
encourages the contact regions to be in contact with the object.

a differentiable MANO network layer enabling end-to-end
learning of hand shape estimation. Equipped with the dif-
ferentiable shape-based hand model, we next design a net-
work architecture for joint estimation of hand shapes, ob-
ject shapes and their relative scale and translation. We also
propose a novel contact loss that penalizes penetrations and
encourages contact between hands and manipulated objects.
An overview of our method is illustrated in Figure 2.

Real images with ground truth shape for interacting
hands and objects are difficult to obtain in practice. Existing
datasets with hand-object interactions are either too small
for training deep neural networks [70] or provide only par-
tial 3D hand or object annotations [62]. The recent dataset
by Garcia-Hernando et al. [12] provides 3D hand joints and
meshes of 4 objects during hand-object interactions.

Synthetic datasets are an attractive alternative given their
scale and readily-available ground truth. Datasets with syn-
thesized hands have been recently introduced [33, 37, 80]
but they do not contain hand-object interactions. We gener-
ate a new large-scale synthetic dataset with objects manipu-
lated by hands: ObMan (Object Manipulation). We achieve
diversity by automatically generating hand grasp poses for
2.7K everyday object models from 8 object categories. We
adapt MANO to an automatic grasp generation tool based
on the GraspIt software [35]. ObMan is sufficiently large
and diverse to support training and ablation studies of our
deep models, and sufficiently realistic to generalize to real
images. See Figure 1 for reconstructions obtained for real
images when training our model on ObMan.

In summary we make the following contributions. First,
we design the first end-to-end learnable model for joint 3D
reconstruction of hands and objects from RGB data. Sec-
ond, we propose a novel contact loss penalizing penetra-
tions and encouraging contact between hands and objects.
Third, we create a new large-scale synthetic dataset, Ob-
Man, with hand-object manipulations. The ObMan dataset
and our pre-trained models and code are publicly avail-
able1.

1http://www.di.ens.fr/willow/research/obman/

2. Related work

In the following, we review methods that address hand
and object reconstructions in isolation. We then present re-
lated works that jointly reconstruct hand-object interactions.
Hand pose estimation. Hand pose estimation has attracted
a lot of research interest since the 90s [19, 49]. The avail-
ability of commodity RGB-D sensors [25, 48, 59] led to sig-
nificant progress in estimating 3D hand pose given depth or
RGB-D input [17, 24, 39, 40]. Recently, the community has
shifted its focus to RGB-based methods [20, 37, 45, 60, 80].
To overcome the lack of 3D annotated data, many meth-
ods employed synthetic training images [9, 33, 37, 38, 80].
Similar to these approaches, we make use of synthetic ren-
derings, but we additionally integrate object interactions.

3D hand pose estimation has often been treated as pre-
dicting 3D positions of sparse joints [20, 37, 80]. Unlike
methods that predict only skeletons, our focus is to out-
put a dense hand mesh to be able to infer interactions with
objects. Very recently, Panteleris et al. [45] and Malik et
al. [33] produce full hand meshes. However, [45] achieves
this as a post-processing step by fitting to 2D predictions.
Our hand estimation component is most similar to [33]. In
contrast to [33], our method takes not depth but RGB im-
ages as input, which is more challenging and more general.

Regarding hand pose estimation in the presence of ob-
jects, Mueller et al. [37, 38] grasp 7 objects in a merged
reality environment to render synthetic hand pose datasets.
However, objects only serve the role of occluders, and the
approach is difficult to scale to more object instances.
Object reconstruction. How to represent 3D objects in a
CNN framework is an active research area. Voxels [34, 76],
point clouds [64], and mesh surfaces [15, 23, 73] have
been explored. We employ the latter since meshes allow
better modeling of the interaction with the hand. Atlas-
Net [15] inputs vertex coordinates concatenated with im-
age features and outputs a deformed mesh. More recently,
Pixel2Mesh [73] explores regularizations to improve the
perceptual quality of predicted meshes. Previous works
mostly focus on producing accurate shape and they output
the object in a normalized coordinate frame in a category-
specific canonical pose. We employ a view-centered vari-
ant of [15] to handle generic object categories, without any
category-specific knowledge. Unlike existing methods that
typically input simple renderings of CAD models, such as
ShapeNet [5], we work with complex images in the pres-
ence of hand occlusions. In-hand scanning [44, 56, 71, 75],
while performed in the context of manipulation, focuses on
object reconstruction and requires RGB-D video inputs.
Hand-object reconstruction. Joint reconstruction of hands
and objects has been studied with multi-view RGB [2, 42,
74] and RGB-D input with either optimization [16, 17, 43,
47, 62, 69–71] or classification [51–54] approaches. These
works use rigid objects, except for a few that use articu-
lated [70] or deformable objects [69]. Focusing on contact
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points, most works employ proximity metrics [62, 69, 70],
while [51] directly regresses them from images, and [47]
uses contact measurements on instrumented objects. [70]
integrates physical constraints for penetration and contact,
attracting fingers onto the object uni-directionally. On the
contrary, [69] symmetrically attracts the fingertips and the
object surface. The last two approaches evaluate all possi-
ble configurations of contact points and select the one that
provides the most stable grasp [70] or best matches visual
evidence [69]. Most related to our work, given an RGB
image, Romero et al. [54] query a large synthetic dataset
of rendered hands interacting with objects to retrieve con-
figurations that match the visual evidence. Their method’s
accuracy, however, is limited by the variety of configura-
tions contained in the database. In parallel work to ours
[67] jointly estimates hand skeletons and 6DOF for objects.

Our work differs from previous hand-object reconstruc-
tion methods mainly by incorporating an end-to-end learn-
able CNN architecture that benefits from a differentiable
hand model and differentiable physical constraints on pen-
etration and contact.

3. Hand-object reconstruction
As illustrated in Figure 2, we design a neural network ar-

chitecture that reconstructs the hand-object configuration in
a single forward pass from a rough image crop of a left hand
holding an object. Our network architecture is split into two
branches. The first branch reconstructs the object shape in
a normalized coordinate space. The second branch predicts
the hand mesh as well as the information necessary to trans-
fer the object to the hand-relative coordinate system. Each
branch has a ResNet18 [18] encoder pre-trained on Ima-
geNet [57]. At test time, our model can process 20fps on a
Titan X GPU. In the following, we detail the three compo-
nents of our method: hand mesh estimation in Section 3.1,
object mesh estimation in Section 3.2, and the contact be-
tween the two meshes in Section 3.3.

3.1. Differentiable hand model

Following the methods that integrate the SMPL para-
metric body model [30] as a network layer [21, 46], we
integrate the MANO hand model [55] as a differentiable
layer. MANO is a statistical model that maps pose (θ) and
shape (β) parameters to a mesh. While the pose parameters
capture the angles between hand joints, the shape param-
eters control the person-specific deformations of the hand;
see [55] for more details.

Hand pose lives in a low-dimensional subspace [28, 55].
Instead of predicting the full 45-dimensional pose space, we
predict 30 pose PCA components. We found that perfor-
mance saturates at 30 PCA components and keep this value
for all our experiments (see Appendix A.2).
Supervision on vertex and joint positions (LVHand

,LJ ).
The hand encoder produces an encoding ΦHand from an

image. Given ΦHand , a fully connected network regresses
θ and β. We integrate the mesh generation as a differen-
tiable network layer that takes θ and β as inputs and outputs
the hand vertices VHand and 16 hand joints. In addition to
MANO joints, we select 5 vertices on the mesh as fingertips
to obtain 21 hand keypoints J . We define the supervision on
the vertex positions (LVHand

) and joint positions (LJ ) to en-
able training on datasets where a ground truth hand surface
is not available. Both losses are defined as the L2 distance
to the ground truth. We use root-relative 3D positions as
supervision for LVHand

and LJ . Unless otherwise specified,
we use the wrist defined by MANO as the root joint.
Regularization on hand shape (Lβ). Sparse supervi-
sion can cause extreme mesh deformations when the hand
shape is unconstrained. We therefore use a regularizer,
Lβ = ‖β‖2, on the hand shape to constrain it to be close
to the average shape in the MANO training set, which cor-
responds to β = ~0 ∈ R10.

The resulting hand reconstruction lossLHand is the sum-
mation of all LVHand

, LJ and Lβ terms:

LHand = LVHand
+ LJ + Lβ . (1)

Our experiments indicate benefits for all three terms (see
Appendix A.1). Our hand branch also matches state-of-the-
art performance on a standard benchmark for 3D hand pose
estimation (see Appendix A.3).

3.2. Object mesh estimation

Following recent methods [23, 73], we focus on genus 0
topologies. We use AtlasNet [15] as the object prediction
component of our neural network architecture. AtlasNet
takes as input the concatenation of point coordinates sam-
pled either on a set of square patches or on a sphere, and
image features ΦObj . It uses a fully connected network to
output new coordinates on the surface of the reconstructed
object. AtlasNet explores two sampling strategies: sam-
pling points from a sphere and sampling points from a set
of squares. Preliminary experiments showed better gener-
alization to unseen classes when input points were sampled
on a sphere. In all our experiments we deform an icosphere
of subdivision level 3 which has 642 vertices. AtlasNet
was initially designed to reconstruct meshes in a canoni-
cal view. In our model, meshes are reconstructed in view-
centered coordinates. We experimentally verified that At-
lasNet can accurately reconstruct meshes in this setting (see
Appendix B.1). Following AtlasNet, the supervision for ob-
ject vertices is defined by the symmetric Chamfer loss be-
tween the predicted vertices and points randomly sampled
on the ground truth external surface of the object.
Regularization on object shape (LE ,LL). In order to rea-
son about the inside and outside of the object, it is impor-
tant to predict meshes with well-defined surfaces and good
quality triangulations. However AtlasNet does not explic-
itly enforce constraints on mesh quality. We find that when
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learning to model a limited number of object shapes, the tri-
angulation quality is preserved. However, when training on
the larger variety of objects of ObMan, we find additional
regularization on the object meshes beneficial. Following
[14, 22, 73] we employ two losses that penalize irregular
meshes. We penalize edges with lengths different from
the average edge length with an edge-regularization loss,
LE . We further introduce a curvature-regularizing loss, LL,
based on [22], which encourages the curvature of the pre-
dicted mesh to be similar to the curvature of a sphere (see
details in Appendix B.2. We balance the weights of LE and
LL by weights µE and µL respectively, which we empiri-
cally set to 2 and 0.1. These two losses together improve the
quality of the predicted meshes, as we show in Figure A.4
of the appendix. Additionally, when training on the ObMan
dataset, we first train the network to predict normalized ob-
jects, and then freeze the object encoder and the AtlasNet
decoder while training the hand-relative part of the network.
When training the objects in normalized coordinates, noted
with n, the total object loss is:

LnObject = LnVObj
+ µLLL + µELE . (2)

Hand-relative coordinate system (LS ,LT ). Following
AtlasNet [15], we first predict the object in a normalized
scale by offsetting and scaling the ground truth vertices so
that the object is inscribed in a sphere of fixed radius. How-
ever, as we focus on hand-object interactions, we need to
estimate the object position and scale relative to the hand.
We therefore predict translation and scale in two branches,
which output the three offset coordinates for the translation
(i.e., x, y, z) and a scalar for the object scale. We define
LT = ‖T−T̂‖22 andLS = ‖S−Ŝ‖22, where T̂ and Ŝ are the
predicted translation and scale. T is the ground truth object
centroid in hand-relative coordinates and S is the ground
truth maximum radius of the centroid-centered object.
Supervision on object vertex positions (LnVObj

,LVObj
). We

multiply the AtlasNet decoded vertices by the predicted
scale and offset them according to the predicted transla-
tion to obtain the final object reconstruction. Chamfer
loss (LVObj

) is applied after translation and scale are ap-
plied. When training in hand-relative coordinates the loss
becomes:

LObject = LT + LS + LVObj
. (3)

3.3. Contact loss
So far, the prediction of hands and objects does not lever-

age the constraints that guide objects interacting in the phys-
ical world. Specifically, it does not account for our prior
knowledge that objects can not interpenetrate each other
and that, when grasping objects, contacts occur at the sur-
face between the object and the hand. We formulate these
contact constraints as a differentiable loss, LContact, which
can be directly used in the end-to-end learning framework.
We incorporate this additional loss using a weight parame-
ter µC , which we set empirically to 10.

Figure 3: Left: Estimated contact regions from ObMan. We find
that points that are often involved in contacts can be clustered into
6 regions on the palmar surface of the hand. Right: Generic shape
of the penalization function emphasizing the role of the character-
istic distances.

We rely on the following definition of distances between
points. d(v, VObj ) = infw∈VObj

‖v−w‖2 denotes distances
from point to set and d(C, VObj ) = infv∈C d(v, VObj ) de-
notes distances from set to set. Moreover, we define a com-
mon penalization function lα(x) = α tanh

(
x
α

)
, where α is

a characteristic distance of action.
Repulsion (LR). We define a repulsion loss (LR) that pe-
nalizes hand and object interpenetration. To detect inter-
penetration, we first detect hand vertices that are inside the
object. Since the object is a deformed sphere, it is water-
tight. We therefore cast a ray from the hand vertex and count
the number of times it intersects the object mesh to deter-
mine whether it is inside or outside the predicted mesh [36].
LR affects all hand vertices that belong to the interior of the
object, which we denote Int(Obj). The repulsion loss is
defined as:

LR(VObj , VHand) =
∑

v∈VHand

1v∈Int(VObj )lr(d(v, VObj )),

where r is the repulsion characteristic distance, which we
empirically set to 2cm in all experiments.
Attraction (LA). We further define an attraction loss (LA)
to penalize cases in which hand vertices are in the vicinity
of the object but the surfaces are not in contact. This loss is
applied only to vertices which belong to the exterior of the
object Ext(Obj).

We compute statistics on the automatically-generated
grasps described in the next section to determine which
vertices on the hand are frequently involved in contacts.
We compute for each MANO vertex how often across the
dataset it is in the immediate vicinity of the object (defined
as less than 3mm away from the object’s surface). We find
that by identifying the vertices that are close to the objects
in at least 8% of the grasps, we obtain 6 regions of con-
nected vertices {Ci}i∈[[1,6]] on the hand which match the 5
fingertips and part of the palm of the hand, as illustrated in
Figure 3 (left). The attraction term LA penalizes distances
from each of the regions to the object, allowing for sparse
guidance towards the object’s surface:

LA(VObj , VHand) =

6∑
i=1

la(d(Ci∩Ext(Obj), VObj )). (4)
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We set a to 1cm in all experiments. For regions that are
further from the hand than a threshold a, the attraction will
significantly decrease and become negligible as the distance
to the object further increases, see Figure 3 (right).

Our final contact loss LContact is a weighted sum of the
attraction LA and the repulsion LR terms:

LContact = λRLR + (1− λR)LA, (5)

where λR ∈ [0, 1] is the contact weighting coefficient, e.g.,
λR = 1 means only the repulsion term is active. We show
in our experiments that the balancing between attraction and
repulsion is very important for physical quality.

Our network is first trained with LHand + LObject . We
then continue training with LHand +LObject +µCLContact

to improve the physical quality of the hand-object interac-
tion. Appendix C.1 gives further implementation details.

4. ObMan dataset
To overcome the lack of adequate training data for our

models, we generate a large-scale synthetic image dataset
of hands grasping objects which we call the ObMan dataset.
Here, we describe how we scale automatic generation of
hand-object images.
Objects. In order to find a variety of high-quality meshes of
frequently manipulated everyday objects, we selected mod-
els from the ShapeNet [5] dataset. We selected 8 object
categories of everyday objects (bottles, bowls, cans, jars,
knifes, cellphones, cameras and remote controls). This re-
sults in a total of 2772 meshes which are split among the
training, validation and test sets.
Grasps. In order to generate plausible grasps, we use the
GraspIt software [35] following the methods used to collect
the Grasp Database [13]. In the robotics community, this
dataset has remained valuable over many years [58] and is
still a reference for the fast synthesis of grasps given known
object models [27, 32].

We favor simplicity and robustness of the grasp genera-
tion over the accuracy of the underlying model. The soft-
ware expects a rigid articulated model of the hand. We
transform MANO by separating it into 16 rigid parts, 3 parts
for the phalanges of each finger, and one for the hand palm.
Given an object mesh, GraspIt produces different grasps
from various initializations. Following [13], our generated
grasps optimize for the grasp metric but do not necessarily
reflect the statistical distribution of human grasps. We sort
the obtained grasps according to a heuristic measure (see
Appendix C.2) and keep the two best candidates for each
object. We generate a total of 21K grasps.
Body pose. For realism, we render the hand and the full
body (see Figure 4). The pose of the hand is transferred to
hands of the SMPL+H [55] model which integrates MANO
to the SMPL [30, 55] statistical body model, allowing us
to render realistic images of embodied hands. Although
we zoom our cameras to focus on the hands, we vary the

Figure 4: ObMan: large-scale synthetic dataset of hand-object
interactions. We pose the MANO hand model [55] to grasp [35]
a given object mesh. The scenes are rendered with variation in
texture, lighting, and background.

body poses to provide natural occlusions and coherent back-
grounds. Body poses and shapes are varied by sampling
from the same distribution as in SURREAL [72]; i.e., sam-
pling poses from the CMU MoCap database [1] and shapes
from CAESAR [50]. In order to maximize the viewpoint
variability, a global rotation uniformly sampled in SO(3) is
also applied to the body. We translate the hand root joint
to the camera’s optical axis. The distance to the camera is
sampled uniformly between 50 and 80cm.
Textures. Object textures are randomly sampled from the
texture maps provided with ShapeNet [5] models. The body
textures are obtained from the full body scans used in SUR-
REAL [72]. Most of the scans have missing color values
in the hand region. We therefore combine the body textures
with 176 high resolution textures obtained from hand scans
from 20 subjects. The hand textures are split so that tex-
tures from 14 subjects are used for training and 3 for test
and validation sets. For each body texture, the skin tone of
the hand is matched to the subject’s face color. Based on
the face skin color, we query in the HSV color space the
3 closest hand texture matches. We further shift the HSV
channels of the hand to better match the person’s skin tone.
Rendering. Background images are sampled from both the
LSUN [78] and ImageNet [57] datasets. We render the im-
ages using Blender [3]. In order to ensure the hand and ob-
jects are visible we discard configurations if less than 100
pixels of the hand or if less than 40% of the object is visible.

For each hand-object configuration, we render object-
only, hand-only, and hand-object images, as well as the cor-
responding segmentation and depth maps.

5. Experiments
We first define the evaluation metrics and the datasets

(Sections 5.1, 5.2) for our experiments. We then analyze
the effects of occlusions (Section 5.3) and the contact loss
(Section 5.4). Finally, we present our transfer learning ex-
periments from synthetic to real domain (Sections 5.5, 5.6).

5.1. Evaluation metrics
Our output is structured, and a single metric does not

fully capture performance. We therefore rely on multiple
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evaluation metrics.
Hand error. For hand reconstruction, we compute the
mean end-point error (mm) over 21 joints following [80].
Object error. Following AtlasNet [15], we measure the ac-
curacy of object reconstruction by computing the symmet-
ric Chamfer distance (mm) between points sampled on the
ground truth mesh and vertices of the predicted mesh.
Contact. To measure the physical quality of our joint re-
construction, we use the following metrics.

Penetration depth (mm), Intersection volume (cm3):
Hands and objects should not share the same physical space.
To measure whether this rule is violated, we report the inter-
section volume between the object and the hand as well as
the penetration depth. To measure the intersection volume
of the hand and object we voxelize the hand and object us-
ing a voxel size of 0.5cm. If the hand and the object collide,
the penetration depth is the maximum of the distances from
hand mesh vertices to the object’s surface. In the absence
of collision, the penetration depth is 0.

Simulation displacement (mm): Following [70], we use
physics simulation to evaluate the quality of the produced
grasps. This metric measures the average displacement of
the object’s center of mass in a simulated environment [7]
assuming the hand is fixed and the object is subjected to
gravity. Details on the setup and the parameters used for
the simulation can be found in [70]. Good grasps should be
stable in simulation. However, stable simulated grasps can
also occur if the forces resulting from the collisions balance
each other. For estimating grasp quality, simulated displace-
ment must be analyzed in conjunction with a measure of
collision. If both displacement in simulation and penetra-
tion depth are decreasing, there is strong evidence that the
physical quality of the grasp is improving (see Section 5.4
for an analysis). The reported metrics are averaged across
the dataset.

5.2. Datasets
We present the datasets we use to evaluate our models.

Statistics for each dataset are summarized in Table 1.
First-person hand benchmark (FHB). This dataset [12] is
a recent video collection providing 3D hand annotations for
a wide range of hand-object interactions. The joints are au-
tomatically annotated using magnetic sensors strapped on
the hands, and which are visible on the RGB images. 3D
mesh annotations are provided for four objects: three differ-
ent bottles and a salt box. In order to ensure that the object
being interacted with is unambiguously defined, we filter
frames in which the manipulating hand is further than 1cm
away from the manipulated object. We refer to this filtered
dataset as FHB. As the milk bottle is a genus-1 object and
is often grasped by its handle, we exclude this object from
the experiments we conduct on contacts. We call this sub-
set FHBC . We use the same subject split as [12], therefore,
each object is present in both the training and test splits.

The object annotations for this dataset suffer from some

ObMan FHB FHBC HIC

#frames 141K/6K 8420/9103 5077/5657 251/307
#video sequences - 115/127 76/88 2/2
#object instances 1947/411 4 3 2
real no yes yes yes

Table 1: Dataset details for train/test splits.

Evaluation images
Training H-img HO-img

H-img (LH ) 10.3 14.1
HO-img (LH ) 11.7 11.6

Evaluation images
Training O-img HO-img

O-img (LO) 0.0242 0.0722
HO-img (LO) 0.0319 0.0302

Table 2: We first show that training with occlusions is important
when targeting images of hand-object interactions.

imprecisions. To investigate the range of the object ground
truth error, we measure the penetration depth of the hand
skeleton in the object for each hand-object configuration.
We find that on the training split of FHB, the average pene-
tration depth is 11.0mm (std=8.9mm). While we still report
quantitative results on objects for completeness, the ground
truth errors prevent us from drawing strong conclusions
from reconstruction metric fluctuations on this dataset.
Hands in action dataset (HIC). We use a subset of the HIC
dataset [70] which has sequences of a single hand interact-
ing with objects. This gives us 4 sequences featuring ma-
nipulation of a sphere and a cube. We select the frames in
which the hand is less than 5mm away from the object. We
split this dataset into 2 training and 2 test sequences with
each object appearing in both splits and restrict our predic-
tions to the frames in which the minimal distance between
hand and object vertices is below 5mm. For this dataset the
hand and object meshes are provided. We fit MANO to the
provided hand mesh, allowing for dense point supervision
on both hands and objects.

5.3. Effect of occlusions

For each sample in our synthetic dataset, in addition to
the hand-object image (HO-img) we render two images of
the corresponding isolated and unoccluded hand (H-img)
or object (O-img). With this setup, we can systematically
study the effect of occlusions on ObMan, which would be
impractical outside of a synthetic setup.

We study the effect of objects occluding hands by train-
ing two networks, one trained on hand-only images and one
on hand-object images. We report performance on both
unoccluded and occluded images. A symmetric setup is
applied to study the effect of hand occlusions on objects.
Since the hand-relative coordinates are not applicable to ex-
periments with object-only images, we study the normal-
ized shape reconstruction, centered on the object centroid,
and scaled to be inscribed in a sphere of radius 1.

Unsurprisingly, the best performance is obtained when
both training and testing on unoccluded images as shown in
Table 2. When both training and testing on occluded im-
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Figure 5: Qualitative comparison between with (bottom) and without (top) contact on FHBC . Note the improved contact and reduced
penetration, highlighted with red regions, with our contact loss.

ObMan Dataset FHBC Dataset
Hand Object Maximum Simulation Intersection Hand Object Maximum Simulation Intersection
Error Error Penetration Displacement Volume Error Error Penetration Displacement Volume

No contact loss 11.6 641.5 9.5 31.3 12.3 28.1 ± 0.5 1579.2 ± 66.2 18.7 ±0.6 51.2 ± 1.7 26.9 ± 0.2
Only attraction (λR = 0) 11.9 637.8 11.8 26.8 17.4 28.4 ± 0.6 1586.9 ± 58.3 22.7 ±0.7 48.5 ± 3.2 41.2 ± 0.3
Only repulsion (λR = 1) 12.0 639.0 6.4 38.1 8.1 28.6 ± 0.8 1603.7 ± 49.9 6.0 ± 0.3 53.9 ± 2.3 7.1 ± 0.1
Attraction + Repulsion (λR = 0.5) 11.6 637.9 9.2 30.9 12.2 28.8 ±0.8 1565.0 ± 65.9 12.1 ± 0.7 47.7 ±2.5 17.6 ± 0.2

Table 3: We experiment with each term of the contact loss. Attraction (LA) encourages contacts between close points while repulsion (LR)
penalizes interpenetration. λR is the repulsion weight, balancing the contribution of the two terms.
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Figure 6: We examine the relative importance between the contact
terms on the grasp quality metrics. Introducing a well-balanced
contact loss improves upon the baseline on both max penetration
and simulation displacement.

ages, reconstruction errors for hands and objects drop sig-
nificantly, by 12% and 25% respectively. This validates the
intuition that estimating hand pose and object shape in the
presence of occlusions is a harder task.

We observe that for both hands and objects, the most
challenging setting is training on unoccluded images while
testing on images with occlusions. This shows that train-
ing with occlusions is crucial for accurate reconstruction of
hands-object configurations.

5.4. Effect of contact loss

In the absence of explicit physical constraints, the pre-
dicted hands and objects have an average penetration depth
of 9mm for ObMan and 19mm for FHBC (see Table 3).
The presence of interpenetration at test time shows that the
model is not implicitly learning the physical rules governing
hand-object manipulation. The differences in physical met-
rics between the two datasets can be attributed to the higher
reconstruction accuracy for ObMan but also to the noisy ob-
ject ground truth in FHBC which produces penetrated and
likely unstable ‘ground truth’ grasps.

In Figure 6, we study the effect of introducing our con-
tact loss as a fine-tuning step. We linearly interpolate λR in
[[0, 1]] to explore various relative weightings of the attrac-
tion and repulsion terms.

We find that using LR in isolation efficiently minimizes
the maximum penetration depth, reducing it by 33% for Ob-
Man and 68% for FHBC . This decrease occurs at the ex-
pense of the stability of the grasp in simulation. Symmet-
rically, LA stabilizes the grasps in simulation, but produces
more collisions between hands and objects. We find that
equal weighting of both terms (LR = 0.5) improves both
physical measures without negatively affecting the recon-
struction metrics on both the synthetic and the real datasets,
as is shown in Table 3 (last row). For FHBC , for each metric
we report the means and standard deviations for 10 random
seeds.

We find that on the synthetic dataset, decreased pen-
etration is systematically traded for simulation instability
whereas for FHBC increasing λR from 0 to 0.5 decreases
depth penetration without affecting the simulation stability.
Furthermore, for λR = 0.5, we observe significant qualita-
tive improvements on FHBc as seen in Figure 5.

5.5. Synthetic to real transfer
Large-scale synthetic data can be used to pre-train mod-

els in the absence of suitable real datasets. We investigate
the advantages of pre-training on ObMan when targeting
FHB and HIC. We investigate the effect of scarcity of real
data on FHB by comparing pairs of networks trained using
subsets of the real dataset. One is pre-trained on ObMan
while the other is initialized randomly, with the exception
of the encoders, which are pre-trained on ImageNet [57].
For these experiments, we do not add the contact loss and
report means and standard deviations for 5 distinct random
seeds. We find that pre-training on ObMan is beneficial in
low data regimes, especially when less than 1000 images
from the real dataset are used for fine-tuning, see Figure 8.
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Figure 7: Qualitative results on CORe50. Our model, trained only on synthetic data, shows robustness to various hand poses, objects and
scenes. Global hand pose and object outline are well estimated while fine details are missed. We present failure cases in the red box.
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Figure 8: We compare training on FHB only (Real) and
pre-training on synthetic, followed by fine-tuning on FHB
(Synth2Real). As the amount of real data decreases, the benefit
of pre-training increases. For both the object and the hand recon-
struction, synthetic pre-training is critical in low-data regimes.

The HIC training set consists of only 250 images. We
experiment with pre-training on variants of our synthetic
dataset. In addition to ObMan, to which we refer as (a)
in Figure 9, we render 20K images for two additional syn-
thetic datasets, (b) and (c), which leverage information from
the training split of HIC (d). We create (b) using our grasp-
ing tool to generate automatic grasps for each of the object
models of HIC and (c) using the object and pose distribu-
tions from the training split of HIC. This allows to study
the importance of sampling hand-object poses from the tar-
get distribution of the real data. We explore training on (a),
(b), (c) with and without fine-tuning on HIC. We find that
pre-training on all three datasets is beneficial for hand and
object reconstructions. The best performance is obtained
when pre-training on (c). In that setup, object performance
outperforms training only on real images even before fine-
tuning, and significantly improves upon the baseline after.
Hand pose error saturates after the pre-training step, leav-
ing no room for improvement using the real data. These
results show that when training on synthetic data, similarity
to the target real hand and pose distribution is critical.

5.6. Qualitative results on CORe50

FHB is a dataset with limited backgrounds, visible mag-
netic sensors and a very limited number of subjects and ob-
jects. In this section, we verify the ability of our model
trained on ObMan to generalize to real data without fine-
tuning. CORe50 [29] is a dataset which contains hand-
object interactions with an emphasis on the variability of
objects and backgrounds. However no 3D hand or object
annotation is available. We therefore present qualitative re-
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Figure 9: We compare the effect of training with and without fine-
tuning on variants of our synthetic dataset on HIC. We illustrate
each dataset (a, b, c, d) with an image sample, see text for defini-
tions. Synthetic pre-training, whether or not the target distribution
is matched, is always beneficial.

sults on this dataset. Figure 7 shows that our model gen-
eralizes across different object categories, including light-
bulb, which does not belong to the categories our model
was trained on. The global outline is well recovered in the
camera view while larger mistakes occur in the perpendicu-
lar direction. More results can be found in Appendix D.

6. Conclusions
We presented an end-to-end approach for joint recon-

struction of hands and objects given a single RGB image
as input. We proposed a novel contact loss that enforces
physical constraints on the interaction between the two
meshes. Our results and the ObMan dataset open up new
possibilities for research on modeling object manipulations.
Future directions include learning grasping affordances
from large-scale visual data, and recognizing complex and
dynamic hand actions.
Acknowledgments. This work was supported in part by ERC
grants ACTIVIA and ALLEGRO, the MSR-Inria joint lab, the Louis Vuit-
ton ENS Chair on AI and the DGA project DRAAF. We thank Tsvetelina
Alexiadis, Jorge Marquez and Senya Polikovsky from MPI for help with
scan acquisition, Joachim Tesch for the hand-object rendering, Mathieu
Aubry and Thibault Groueix for advices on AtlasNet, David Fouhey for
feedback. MJB has received research gift funds from Intel, Nvidia, Adobe,
Facebook, and Amazon. While MJB is a part-time employee of Amazon,
his research was performed solely at, and funded solely by, MPI. MJB has
financial interests in Amazon and Meshcapade GmbH.

8



References
[1] Carnegie-Mellon Mocap Database. http://mocap.cs.

cmu.edu/. 5
[2] L. Ballan, A. Taneja, J. Gall, L. Van Gool, and M. Polle-

feys. Motion capture of hands in action using discriminative
salient points. In ECCV, 2012. 2

[3] Blender Online Community. Blender - a 3D modelling and
rendering package. http://www.blender.org. 5

[4] Y. Cai, L. Ge, J. Cai, and J. Yuan. Weakly-supervised
3D hand pose estimation from monocular RGB images. In
ECCV, 2018. 12

[5] A. X. Chang, homas A. Funkhouser, eonidas J. Guibas,
P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An
information-rich 3D model repository. arXiv:1512.03012,
2015. 2, 5

[6] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3D-
R2N2: A unified approach for single and multi-view 3D ob-
ject reconstruction. In ECCV, 2016. 12

[7] E. Coumans. Bullet real-time physics simulation, 2013. 6
[8] M. De La Gorce, D. J. Fleet, and N. Paragios. Model-

based 3D hand pose estimation from monocular video. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 33(9):1793–1805, 2011. 1

[9] E. Dibra, S. Melchior, T. Wolf, A. Balkis, A. C. Öztireli, and
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APPENDIX
Our main paper proposed a method for joint reconstruc-

tion of hands and objects. Below we present complemen-
tary analysis for hand-only reconstruction in Section A and
object-only reconstruction in Section B. Section C presents
implementation details.

A. Hand pose estimation
We first present an ablation study for the different losses

we defined on the MANO hand model (Section A.1). Then,
we study the latent hand representation (Section A.2). Fi-
nally, we validate our hand pose estimation branch and
demonstrate its competitive performance compared to the
state-of-the-art methods on a benchmark dataset (Sec-
tion A.3).

A.1. Loss study on MANO
As explained in Section 3.1 of the main paper, we define

three losses for the differentiable hand model while training
our network: (i) vertex positions LVHand

, (ii) joint positions
LJ , and (iii) shape regularization Lβ . The shape is only
predicted in the presence of Lβ . In the absence of shape
regularization, when only sparse keypoint supervision is
provided, predicting β without regularizing it produces ex-
treme deformations of the hand mesh, and we therefore fix
β to the average hand shape.

Table A.1 summarizes the contribution of each of these
losses. Note that the dense vertex supervision is available
on our synthetic dataset ObMan, and not available on the
real datasets FHB [12] and StereoHands [79].

ObMan FHB StereoHands

LJ 13.5 28.1 11.4
LJ + Lβ 11.7 26.5 10.0
LVHand

14.0 - -
LVHand

+ Lβ 12.0 - -
LVHand

+ LJ + Lβ 11.6 - -

Table A.1: We report the mean end-point error (mm) to study
different losses defined on MANO. We experiment with the loss
on 3D vertices (LVHand ), 3D joints (LJ ), and shape regularization
(Lβ). We show the results of training and testing on our synthetic
ObMan dataset, as well as the real datasets FHB [12] and Stereo-
Hands [79].

We find that predicting β while regularizing it with Lβ
significantly improves the mean end-point-error on key-
points. On the synthetic dataset ObMan, we find that adding
LV yields a small additional improvement. We therefore
use all three losses whenever dense vertex supervision is
available, and LJ in conjunction with Lβ when only key-
point supervision is provided.

A.2. MANO pose representation
As described in Section 3.1 of the main paper, our hand

branch outputs a 30-dimensional vector to represent the

hand. These are the 30 first PCA components from the 45-
dimensional full pose space. We experiment with different
dimensionality for the latent hand representation and sum-
marize our findings in Table A.2. While low-dimensionality
fails to capture some poses present in the datasets, we do not
observe improvements after increasing the dimensionality
more than 30. Therefore, we use this value for all experi-
ments in the main paper.

#PCA comps. 6 15 30 45

FHB 28.2 27.5 26.5 26.9
StereoHands 13.9 11.1 10.0 10.0
ObMan 23.4 13.3 11.6 11.2

Table A.2: We report the mean end-point error on error on multi-
ple datasets to study the effect of the number of PCA hand pose
components for the latent MANO representation.

A.3. Comparison with the state of the art

Figure A.1: Qualitative results on the test sequence of the Stereo-
Hands dataset.

Using the MANO branch of the network, we can also
estimate the hand pose for images in which the hands
are not interacting with objects, and compare our results
with previous methods. We train and test on the Stere-
oHands dataset [79], and follow the evaluation protocol
of [20, 37, 80] by training on 10 sequences from Stereo-
Hands and testing on the 2 remaining ones. For fair com-
parison, we add a palm joint to the MANO model by av-
eraging the positions of two vertices on the front and back
of the hand model at the level of the palm. Although the
hand shape parameter β allows to capture the variability of
hand shapes which occurs naturally in human populations,
it does not account for the discrepancy between different
joint conventions. To account for skeleton mismatch, we
add a linear layer initialized to identity which maps from
the MANO joints to the final joint annotations.

11



20 25 30 35 40 45 50
Error Thresholds (mm)

0.0

0.2

0.4

0.6

0.8

1.0

3D
 P
C
K

Stereo dataset (2 seq.)

Iqbal et al., auc=0.993
Cai et al., auc=0.993
Ours, auc=0.992
Mueller et al., auc=0.955
Z&B, auc=0.948
CHPR, auc=0.839

Figure A.2: We compare our root-relative 3D hand pose estima-
tion on Stereohands to the state-of-the-art methods from Iqbal et
al. [20], Cai et al. [4], Mueller et al. [37], Zimmermann and
Brox [80], and CHPR [65].

We report the area under the curve (auc) on the percent-
age of correct keypoints (PCK). Figure A.2 shows that our
differentiable hand model is on par with the state of the art.
Note that the StereoHands benchmark is close to saturation.
In contrast to other methods [4, 20, 37, 65, 80] that only
predicts sparse skeleton keypoints, our model produces a
dense hand mesh. Figure A.1 presents some qualitative re-
sults from this dataset.

B. Object reconstruction
In the following, we validate our design choices for the

object reconstruction branch. We experiment with object
reconstruction (i) in the camera viewpoint (Section B.1) and
(ii) with regularization losses (Section B.2).

B.1. Canonical versus camera view reconstruction
As explained in Section 3.2 of the main paper, we per-

form object reconstructions in the camera coordinate frame.
To validate that AtlasNet [15] can successfully predict ob-
jects in camera view as well as in canonical view, we repro-
duce the training setting of the original paper [15]. We use
the setting where 2500 points are sampled on a sphere and
train on the rendered images from ShapeNet [6]. To obtain
the rotated reference for the object, we apply the ground
truth azimuth and elevation provided with the renderings so
that the 3D ground truth matches the camera view. We use
the original hyperparameters (Adam [26] with a learning
rate of 0.001) and train both networks for 25 epochs. Both
for supervision and evaluation metrics, we report the Cham-
fer distance LVObj

= 1
2 (
∑
pminq‖p−q‖22+

∑
qminp‖q−

p‖22) where q spans the predicted vertices and p spans points
uniformly sampled on the surface of the ground truth object.
We always sample the same number of points on the surface
as there are vertices in the predicted mesh. We find that
both numerically and qualitatively the performance is com-
parable for the two settings. Some reconstructed meshes in

camera view are shown in Figure A.3. For better readabil-
ity they also multiply the Chamfer loss by 1000. In order
to provide results directly comparable with the original pa-
per [15], we also report numbers with the same scaling in
Table A.3. Table A.3 reports the Chamfer distances for their
released model, our reimplementation in canonical view,
and our implementation in non-canonical view. We find that
our implementation allows us to train a model with similar
performances to the released model. We observe no numer-
ical or qualitative loss in performance when predicting the
camera view instead of the canonical one.

Figure A.3: Renderings from ShapeNet models and our corre-
sponding reconstructions in camera view.

Object error

Canonical view [15] 4.87
Canonical view (ours) 4.88
Camera view (ours) 4.88

Table A.3: Chamfer loss (×1000) for 2500 points in the canon-
ical view and camera view show no degradation from pre-
dicting the camera view reconstruction. We compare our re-
implementation to the results provided by [15] on their code page
https://github.com/ThibaultGROUEIX/AtlasNet.

B.2. Object mesh regularization
We find that in the absence of explicit regularization on

their quality, the predicted meshes can be very irregular.
Sharp discontinuities in curvature occur in regions where
the ground truth mesh is smooth, and the mesh triangles
can be of very different dimensions. These shortcomings
can be observed on all three reconstructions in Figure A.3.
Following recent work on mesh estimation from image in-
puts [14, 22, 73], we introduce regularization terms on the
object mesh.
Laplacian smoothness regularization (LL). In order to
avoid unwanted discontinuities in the curvature of the mesh,
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No reg. LE LL LE + LL

Object error 0.0246 0.0286 0.0258 0.0292

Figure A.4: We show the benefits from each term of the regular-
ization. Using both the LE and LL in conjunction improves the
visual quality of the predicted triangulation while preserving the
shape of the object.

we enforce a local prior of smoothness. We use the dis-
crete Laplace-Beltrami operator to estimate the curvature at
each mesh vertex position, as we have no prior on the final
shape of the geometry, we compute the graph laplacianL on
our mesh, which only takes into account adjacency between
mesh vertices. Multiplying the laplacian L by the positions
of the object vertices VObj produces vectors which have the
same direction as the vertex normals and their norm propor-
tional to the curvature. Minimizing the norm of these vector
therefore minimizes the curvature. We minimize the mean
curvature over all vertices in order to encourage smoothness
on the mesh.
Laplacian edge length regularization (LE). LE penalizes
configurations in which the edges of the mesh have different
lengths. The edge regularization is defined as:

LE =
1

|EL|
∑
l∈EL

|l2 − µ(E2L)|, (6)

where EL is the set of edge lengths, defined as the L2 norms
of the edges, and µ(E2L) is the average of the square of edge
lengths.

To evaluate the effect of the two regularization terms
we train four different models. We train a model without
any regularization, two models for which only one of the
two regularization terms are active, and finally a model for
which the two regularization terms are applied simultane-
ously. Each of these models is trained for 200 epochs.

Figure A.4 shows the qualitative benefits of each term.
While edge regularization LE alone already significantly

improves the quality of the predicted mesh, note that un-
wanted bendings of the mesh still occur, for instance in the
last row for the cellphone reconstruction. Adding the lapla-
cian smoothness LL resolves these irregularities. However,
adding each regularization term negatively affects the final
reconstruction score. Particularly we observe that introduc-
ing edge regularization increases the Chamfer loss by 22%
while significantly improving the perceptual quality of the
predicted mesh. Introducing the regularization terms con-
tributes to the coarseness of the object reconstructions, as
can be observed on the third row, where sharp curvatures of
the object in the input image are not captured in the recon-
struction.

C. Implementation details
We give implementation details on our training proce-

dure (Section C.1) and our automatic grasp generation (Sec-
tion C.2).

C.1. Training details
For all our experiments, we use the Adam optimizer [26].

As we observe instabilities in validation curves when train-
ing on synthetic datasets, we freeze the batch normalization
layers. This fixes their weights to the original values from
the ImageNet [57] pre-trained ResNet18 [18].

For the final model trained on ObMan, we first train the
(normalized) object branch using LnObject for 250 epochs,
we start with a learning rate of 10−4 and decrease it to 10−5

at epoch 200. We then freeze the object encoder and the At-
lasNet decoder, as explained in Section 3.2 of the main pa-
per. We further train the full network with LHand +LObject

for 350 additional epochs, decreasing the learning rate from
10−4 to 10−5 after the first 200 epochs.

When fine-tuning from our main model trained on syn-
thetic data to smaller real datasets, we unfreeze the object
reconstruction branch.

For the FHBc dataset, we train all the parts of the net-
work simultaneously with the supervision LHand +LObject

for 400 epochs, decreasing the learning rate from 10−4 to
10−5 at epoch 300.

When fine-tuning our models with the additional contact
loss, LHand +LObject +µCLContact , we use a learning rate
of 10−5. We additionally set the momentum of the Adam
optimizer [26] to zero, as we find that momentum affects
negatively the training stability when we include the contact
loss.

In all experiments, we keep the relative weights between
different losses as provided in the main paper and normalize
them so that the sum of all the weights equals 1.

C.2. Heuristic metric for sorting GraspIt grasps
We use GraspIt [35] to generate grasps for the ShapeNet

object models. GraspIt generates a large variety of grasps
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Figure A.5: Qualitative results on CORe50 dataset. We present additional hand-object reconstructions for a variety of object categories
and object instances, spanning various hand poses and object shapes.

by exploring different initial hand poses. However, some
initializations do not produce good grasps. Similarly to [13]
we filter the grasps in a post-processing step in order to re-
tain grasps of good quality according to a heuristic metric
we engineer for this purpose.

For each grasp, GraspIt provides two grasp quality met-
rics ε and v [11]. Each grasp produced by GraspIt [35]
defines contact points between the hand and the object. As-
suming rigid contacts with friction, we can compute the
space of wrenches which can be resisted by the grasp: the
grasp wrench space (GWS). This space is normalized with
relation to the scale of the object, defined as the maximum
radius of the object, centered at its center of mass. The grasp
is suitable for any task that involves external wrenches that
lie within the GWS. v is the volume of the 6-dimensional
GWS, which quantifies the range of wrenches the grasp can
resist. The GWS can further be characterized by the ra-
dius ε of the largest ball which is centered at the origin
and inscribed in the grasp wrench space. ε is the maximal
wrench norm that can be balanced by the contacts for ex-
ternal wrenches applied coming from arbitrary directions. ε
belongs to [0, 1] in the scale-normalized GWS, and higher
values are associated with a higher robustness to external
wrenches.

We require a single value to reflect the quality of the
grasp in order to sort different grasps. We use the norm
of the [ε, v] vector in our heuristic measure of grasp qual-
ity. We find that in the grasps produced by GraspIt, power
grasps, as defined by [10] in which larger surfaces of the
hand and the object are in contact, are rarely produced. To
allow for a larger proportion of power grasps, we use a mul-
tiplier γpalm which we empirically set to 1 if the palm is not
in contact and 3 otherwise. We further favor grasps in which
a large number of phalanges are in contact with the object
by weighting the final grasp score using Np, the number of

phalanges in contact with the object, which is computed by
the software.

The final grasp quality score G is defined as:

G = γpalm
√
Np‖ε, v‖2. (7)

We find that keeping the two best grasps for each object
produces both diverse grasps and grasps of good quality.

D. Qualitative results on CORe50 dataset
We present additional qualitative results on the

CORe50 [29] dataset. We present a variety of diverse input
images from CORe50 in Figure A.5 alongside the predic-
tions of our final model trained solely on ObMan.

The first row presents results on various shapes of light
bulbs. Note that this category is not included in the syn-
thetic object models of ObMan. Our model can therefore
generalize across object categories. The last column shows
some reconstructions of mugs, showcasing the topological
limitations of the sphere baseline of AtlasNet which cannot,
by construction, capture handles.

However, we observe that the object shapes are often
coarse, and that fine details such as phone antennas are not
reconstructed. We also observe errors in the relative posi-
tion between the object and the hand, which is biased to-
wards predicting the object’s centroid in the palmar region
of the hand, see Figure A.5, fourth column. As hard con-
straints on collision are not imposed, hand-object interpen-
etration occurs in some configurations, for instance in the
top-right example. In the bottom-left example we present a
failure case where the hand pose violates anatomical con-
straints. Note that while our model predicts hand pose in
a low-dimensional space, which implicitly regularizes hand
poses, anatomical validity is not guaranteed.
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