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Abstract

In 1953, Lloyd Shapley defined the model of stochastic games, which were the first general
dynamic model of a game to be defined, and proved that competitive stochastic games have a
discounted value. In 1982, Jean-Francois Mertens and Abraham Neyman proved that compet-
itive stochastic games admit a robust solution concept, the value, which is equal to the limit
of the discounted values as the discount rate goes to 0. Both contributions were published
in PNAS. In the present paper, we provide a tractable formula for the value of competitive
stochastic games.

Significance Statement. Stochastic games were introduced by the Nobel Memorial Prize
winner Lloyd Shapley in 1953 in order to model dynamic interactions in which the environment
changes in response to the players’ behavior. The theory of stochastic games and its applications
have been studied in several scientific disciplines, including economics, operations research,
evolutionary biology, and computer science. In addition, mathematical tools that were used
and developed in the study of stochastic games are used by mathematicians and computer
scientists in other fields. This paper contributes to the theory of stochastic games by providing
a tractable formula for the value of finite competitive stochastic games. This result settles a
major open problem which remained unsolved for nearly 40 years.

1 Introduction

1.1 Motivation

Stochastic games are the first general model of dynamic games. Introduced by Shapley [25] in
1953, stochastic games extend the model of strategic-form games, which is due to von Neumann
[35], to dynamic situations in which the environment (henceforth, the state) changes in response
to the players’ choices. They also extend the model of Markov decision problems to competitive
situations with more than one decision-maker.

*Ecole Polytechnique, Palaiseau, France.
TUniversité Paris-Dauphine, PSL, France. Email: miquel.oliu.barton@normalesup.org



Stochastic games proceed in stages. At each stage, the players choose actions which are
available to them at the current state. Their choices have two effects: they generate a stage
reward for each player, and they determine the probability for the state at the next stage.
Consequently, the players are typically confronted with a trade-off between getting high rewards
in the present and trying to reach states that will ensure high future rewards. Stochastic games
and their applications have been studied in several scientific disciplines, including economics,
operations research, evolutionary biology, and computer science. In addition, mathematical
tools that were used and developed in the study of stochastic games are used by mathematicians
and computer scientists in other fields. We refer the readers to Solan and Vieille [29] for a
summary of the historical context and the impact of Shapley’s seminal contribution.

The present paper deals with finite competitive stochastic games, that is: two-player stochas-
tic games with finitely many states and actions, and where the stage rewards of the players add
up to zero. Shapley [25] proved that these games have a discounted value, which represents
what playing the game is worth to the players when future rewards are discounted at a constant
positive rate. Bewley and Kohlberg [3] proved that the discounted values admit a limit as the
discount rate goes to 0. Building on this result, Mertens and Neyman [15, 16] proved that finite
competitive stochastic games admit a robust solution concept, the value, which represents what
playing the game is worth to the players when they are sufficiently patient.

Finding a tractable formula for the value of finite competitive stochastic games was major
open problem for nearly 40 years, which is settled in the present contribution. While opening a
new path for faster computations, our approach may also bring new quantitative and qualitative
insights on the model of stochastic games.

1.2 Outline of the paper

The paper is organized as follows. Section 2 states our results on finite competitive stochastic
games, namely a formula for the A-discounted values (proved in Section 3), and a formula for the
value (proved in Section 4). Section 5 describes the algorithmic implications and tractability
of these two formulas. Section 6 concludes with remarks and extensions.

2 Context and main results

In order to state our results precisely, we recall some definitions and well-known results about
two-player zero-sum games (Section 2.1) and about finite competitive stochastic games (Sec-
tion 2.2). In Section 2.3 we give a brief overview of the relevant literature on finite competitive
stochastic games. Our results are described in Section 2.4.

Notation. Throughout the paper, N denotes the set of positive integers. For any finite set
E we denote the set of probabilities over E by A(E) = {f : E — [0,1] | > .. f(e) = 1} and
its cardinality by |E]|.

2.1 Preliminaries on zero-sum games
The aim of this section is to recall some well-known definitions and facts about two-player

zero-sum games, henceforth zero-sum games.

Definition. A zero-sum game is described by a triplet (S, T, p) where S and T are the sets
of possible strategies for Player 1 and 2, respectively, and p : S x T'— R is a pay-off function.
It is played as follows. Independently and simultaneously, the first player chooses s € S and



the second player chooses t € T. Player 1 receives p(s,t) and Player 2 receives —p(s,t). The
zero-sum game (5, T, p) has a value whenever

sup inf p(s,t) = inf s ,1).
R jgh (o) = fofsup e

In this case, we denote this common quantity by val p.

Optimal strategies. Let (S,T,p) be a zero-sum game which has a value. An optimal
strategy for Player 1 is an element s* € S so that p(s*,t) > valp for all t € T. Similarly, t* € T
is an optimal strategy for Player 2 if p(s,t*) < valp for all s € S.

The value operator. The following properties are well-known:

(1) Minmazx theorem. Let (S,T,p) be a zero-sum game. Suppose that S and T are two
compact subsets of some topological vector space, p is a continuous function, the map
s+ p(s,t) is concave for all ¢t € T, and the map ¢ — p(s,t) is convex for all s € S. Then
(S,T, p) has a value and both players have optimal strategies.

(73) Monotonicity. Suppose that (S,T, p) and (S, T, v) have a value, and p(s,t) < v(s,t) holds
for all (s,t) € S x T. Then valp < valv.

Matrix games. In the sequel, we identify every real matrix M = (mq,) of size p x ¢ with
the zero-sum game (Sas, Tar, par) where Sy = A({1,...,p}), T = A({1,...,q}) and where

prr(s,t) =D s(a)mapt(h)  V(s,t) € Su x T

The value of the matrix M, denoted by val M, is the value of (Sns, T, par) which exists by the
minmax theorem. The following properties are well-known:

(731) Continuity. Suppose that M (t) is a matrix with entries that depend continuously on some
parameter ¢ € R. Then the map ¢ +— val M (t) is continuous.

(iv) A formula for the value. For any matrix M, there exists a square sub-matrix M of M

so that val M = ic(tz\%’ where (M) denotes the sum of all the co-factors of M, with the
convention that ¢(M) =1 if M is of size 1 x 1.

Comments. Property (i) is taken from Sion [27], a generalization of von Neumann’s [35]
minmax theorem, while Property (iv) was established by Shapley and Snow [26]. The other
two properties are straightforward.

2.2 Stochastic games

We present now the standard model of finite competitive stochastic games, henceforth stochas-
tic games for simplicity. We refer the reader to Sorin’s book [30, Chapter 5] and to Renault’s
notes [24] for a more detailed presentation of stochastic games.

Definition. A stochastic game is described by a tuple (K, I, J, g, q, k), where K = {1,...,n}
is a finite set of states, for some n € N, I and J are the finite action sets of Player 1 and 2,
respectively, g : K X I x J — R is a reward function to Player 1, ¢: K x I x J = A(K) is a
transition function, and 1 < k < n is an initial state.

The game proceeds in stages as follows. At each stage m > 1, both players are informed
of the current state k,,, € K, where k; = k. Then, independently and simultaneously, Player



1 chooses an action i,, € I and Player 2 chooses an action j,, € J. The pair (i, j) is then
observed by both players, from which they can infer the stage reward g(km,ém,jm). A new
state kp,+1 is then chosen according to the probability distribution q(ku,, im, jm), and the game
proceeds to stage m + 1.

Discounted stochastic games. For any discount rate A € (0,1], we denote by
(K,I,J,g,q,k,\) the stochastic game (K, I, J, g, q, k) where Player 1 maximizes, in expectation,
the normalized A-discounted sum of rewards

_ m—1 . .
Zle )‘(1 )‘) g(kmalmv.]m)v
while Player 2 minimizes this amount.

In the following, the discount rate A and the initial state k& will be considered as parameters,
while (K, I, J, g,q) is fixed.

Strategies. A behavioral strategy, henceforth a strategy, is a decision rule from the set of
possible observations of a player to the set of probabilities over the set of his actions. Formally,
a strategy for Player 1 is a sequence of mappings 0 = (0 )m>1, where oy, ¢ (K x I x J)™71 x
K — A(I). Similarly, a strategy for Player 2 is a sequence of mappings 7 = (7,5, )m>1, where
Tm t (KX I xJ)™ 1 x K — A(J). The sets of strategies are denoted, respectively, by ¥ and 7.

The expected pay-off. By the Kolmogorov extension theorem, together with an initial
state k and the transition function ¢, any pair of strategies (o,7) € ¥ x T induces a unique
probability Pf;T over the sets of plays (K x I x J)N on the sigma-algebra generated by the

cylinders. Hence, to any pair of strategies (o, 7) € ¥ x T corresponds a unique pay-off v¥ (o, 7)
in the discounted game (K, I, J, g,q,k, \),

Ror) = Eb [0 M= N gl i i)

m>1

where IEZ;T denotes the expectation with respect to the probability P’gﬂ..

Stationary strategies. A stationary strategy is a strategy that depends only on the current
state. Thus, z : K — A(I) is a stationary strategy for Player 1 while y : K — A(J) is
a stationary strategy for Player 2. The sets of stationary strategies are A(I)™ and A(J)",
respectively. A pure stationary strategy is a stationary strategy that is deterministic. The sets
of pure stationary strategies are I™ and J", respectively, and we will refer to pure stationary
strategies with the bold signs i € I"™ and j € J™.

A useful expression. Suppose that both players use stationary strategies x and y in the
discounted stochastic game (K, I,J,g,q,k,A) for some A € (0,1]. The evolution of the state
then follows a Markov chain, and the stage rewards depend only on the current state. Let
Q(z,y) € R™"™ and g(x,y) € R™ denote, respectively, the corresponding transition matrix and
the vector of expected rewards. Formally, for all 1 < £, < n,

Q“(wy) = > 2@yt i) (2.1)
(4,5)€IXJ

Sy = 3 0y Gyt (2.2)
(4,5)€IXJ



Let m(z,y) = (n(2,9),...,7%(2,y)) € R™. Then Q(z,y), g(x,y) and yx(z,y) satisfy the
relations

May) = D A= wy)g(w, )
= Aglz,y) + (1 = NQ(z, y)n(z, ).

Let Id denote the identity matrix of size n. The matrix Id —(1-X)Q(x
is a stochastic matrix and A € (0, 1]. Consequently, y(x,y) = A(Id —
Thus, by Cramer’s rule,

,y) is invertible, as Q(x, y)
(1 Q. y) gl ).

d5 (z,y)
S (z,y)’

where d3(z,y) = det(Id —(1 — \)Q(z,y)) and where d5(z,y) is the determinant of the n x n-
matrix obtained by replacing the k-th column of Id —(1 — A\)Q(z,y) with Ag(z,y).

(@) = (2.3)

The discounted values. The discounted stochastic game (K, 1, J, g,q,k,\) and the zero-
sum game (X, 7T, 7’;) are equal by construction. Thus, the discounted stochastic game has a
value whenever

sup inf 4¥(o,7) = inf s Ko, 7).

sup Inf 43(0,7) Inf sup Yx(0,7)
In this case, the value is denoted by U’)f, and is often referred to as the A-discounted value of
the stochastic game (K, I, J,g,q, k). The following result is due to Shapley [25]:

(v) Every discounted stochastic game (K, I,J,g,q,k,A) has a value, and both players have
optimal stationary strategies. For each 1 < ¢ < n and u € R"™, consider the following
matrix of size |I] x |J|:

G = (Mo(Cid) + (=N D L)

=1
The vector of values vy = (v},...,v}) is then the unique fixed point of the Shapley
operator ®(), -) : R® — R™, which is defined by ®‘(\,u) := valgf\_’u7 forall1 <{<mn
and u € R™.

Remark. In the model of stochastic games, the discount rate stands for the degree of im-
patience of the players, in the sense that future rewards are discounted. Alternatively, one can
interpret A as the probability that the game stops after every stage. The more general case
of stopping probabilities that depend on the current state and on the players’ actions can be
handled in a similar way, as already noted by Shapley [25].

The value. The stochastic game (K, I, .J, g, q, k) has a value if there exists v¥ € R such that
for any € > 0 there exists My such that Player 1 can guarantee that for any My < M < 400
the expectation of the average reward per stage in the first M stages of the game is at least
vk — ¢, and Player 2 can guarantee that this amount is at most v* — e. It follows that if the
game has a value v*, then for each € > 0 there exists a pair of strategies (o.,7.) € ¥ x T such

that, for some A\g € (0, 1], the following inequalities hold for all A € (0, Ag):

T VreT
vF e Vo e .

The following result is due to Mertens and Neyman [15]:

(vi) Every stochastic game (K, I, J, g,q, k) has a value v, and vF = limy_0 U’)f.



2.3 State of the art

Since its introduction by Shapley [25], the theory of stochastic games and its applications have
been studied in several scientific disciplines. We restrict our brief literature survey to the theory
of finite competitive stochastic games and related algorithms.

The discounted values. In 1953, Shapley [25] proved that every discounted stochas-

tic game (K,1,J,9,q,k,\) admits a value v§, and that both players have optimal stationary
strategies. Furthermore, the vector of values vy = (Ui, ..., vY) is the unique fixed point of an

explicit operator.

Existence of the value. Building on Shapley’s characterization of the discounted values
and on a deep result from real algebraic geometry, the so-called Tarski-Seidenberg elimination
theorem, Bewley and Kohlberg [3] proved in 1976 that the discounted values converge as the
discount rate tends to zero. Mertens and Neyman [15, 16| strengthened this result in the early
1980s by establishing that every stochastic game (K, I,.J, g, q, k) has a value v*, and that the
value coincides with the limit of the discounted values. It is worth noting that, unlike discounted
stochastic games, where the observation of the past actions is irrelevant, the existence of the
value relies on the observation of the stage rewards.

Alternative proofs of convergence. In the late 1990s, Szczechla, Connell, Filar, and
Vrieze [33] gave an alternative proof for the convergence of the discounted values as the discount
rate goes to zero, using Shapley’s characterization of the discounted values and the geometry
of complex analytic varieties. Another proof was recently obtained by Oliu-Barton [20], based
on the theory of finite Markov chains and on Motzkin’s alternative theorem for linear systems.

Robustness of the value. The years 2010s have brought many new results concerning
the value of stochastic games. Neyman and Sorin [18] studied stochastic games with a ran-
dom duration clock. That is, at each stage, the players receive an additional signal which
carries information about the number of remaining stages. Assuming that the expected num-
ber of remaining stages decreases throughout the game, and that the expected number of
stages converges to infinity, the values of the stochastic games with a random duration clock
converge, and the limit is equal to the value of the stochastic game. Ziliotto [36] considered
weighted-average stochastic games, that is, stochastic games where Player 1 maximizes in ex-
pectation a fixed weighted average of the sequence of rewards, namely > < 0:mg(km, im, jm)-
If 3,51 165,11 — 67,| converges to zero for some p > 0, then the values of the weighted-average
stochastic games converge, and the limit is equal to the value of the stochastic game. Neyman
[17] considered discounted stochastic games in continuous time and proved that their value
coincides with the value of the discrete model. Finally, Oliu-Barton and Ziliotto [21] proved
that stochastic games satisfy the constant pay-off property, as conjectured by Sorin, Venel and
Vigeral [31]. That is, for sufficiently small A\, any pair of optimal strategies of the discounted
game (K,I,J, g,q,k,\) has the property that, in expectation, the average of the cumulated
A-discounted sum of rewards on any set of consecutive stages of cardinality of order 1/\ is
approximately equal to v¥.

Characterization of the value. The first results on the value of stochastic games go back
to the mid 1960s. By adapting the tools developed by Howard [11] for Markov decision problems,
Hoffman and Karp [10] obtained a characterization for the limit of the A-discounted values in the
irreducible case (that is, when any pair of stationary strategies induces an irreducible Markov
chain), in the spirit of an average cost optimality equation. Soon after, Blackwell and Ferguson
[4] determined the value of the “Big Match”, an example of a stochastic game whose value



depends on the initial state. In the mid 1970s, Kolhberg [13] introduced absorbing games, a
class of stochastic games in which there is at most one transition between states, and which
includes the Big Match as a particular case. Kohlberg proved that these games have a value,
and provided a characterization using the derivative of Shapley’s operator. Two additional
characterizations for the value of absorbing games were obtained recently by Laraki [14] and
by Sorin and Vigeral [32], respectively.

Algorithms. Whether the value of a finite stochastic game can be computed in polynomial
time is a famous open problem in computer science. This problem is intriguing because the
class of simple stochastic games is both NP and co-NP, and several important problems with
this property have eventually been shown to be polynomial-time solvable, such as primality
testing or linear programming. (A simple stochastic game is one where the transition function
depends on one player’s action at each state.) The known algorithms fall into two categories:
decision procedures for the first order theory of the reals, such as [6, 7, 28], and value or strategy
iteration methods, such as [9, 23]. All of them are worst-case exponential in the number of states
or in the number of actions. Recently, Hansen, Koucky, Lauritzen, Miltersen and Tsigaridas
[8] achieved a remarkable improvement by providing an algorithm which is polynomial in the
number of actions, for any fixed number of states. However, the dependence on the number
of states is both non-explicit and doubly exponential. Based on the characterization of the
value obtained in the present paper, Oliu-Barton [19] improved the algorithm of Hansen et al.
[8] by significantly reducing the dependence on the number of states to an explicit polynomial
dependence on the number of pure stationary strategies. Although not polynomial in the
number of states, this algorithm is the most efficient algorithm that is known today.

2.4 Main results

As already argued, the value is a very robust solution concept for stochastic games. Its existence
was proved nearly 40 years ago, and an explicit characterization has been missing since then.
The main contribution of the present paper is to provide a tractable formula for the value of
stochastic games.

Our result relies on a new characterization of the discounted values, which is obtained by
reducing a discounted stochastic game with n states to n independent parameterized matrix
games, one for each initial state.

For the rest of the paper, 1 < k < n denotes a fixed initial state. The parameterized game
that corresponds to k is simply obtained by linearizing the ratio in (2.3) for all pairs of pure
stationary strategies, as follows.

Definition 2.1 For any z € R, define the matriz W{(z) of size |I|" x |J|" by setting
WEGS] = db,5) — 2dd)  VGLG) € I x 7.

Theorem 1 (A formula for the discounted values). For any A € (0,1], the value
of the discounted stochastic game (K, I,J,g,q,k,\) is the unique solution to

z€R, valWf(z)=0.

Theorem 2 (A formula for the value). For any z € R, the limit F*(z) =
limy o val W{(2)/A" exists in RU {oc}. The value of the stochastic game (K, I,J,g,q,k) is
the unique solution to
k
weR, z>w = Fk(z)<0
z<w = Ff(z)>0.



Comments

1. Theorem 1 provides an uncoupled characterization of the discounted values. That is, each
initial state is considered separately. This property, which contrasts with Shapley’s [25]
characterization, provides the key to Theorem 2.

2. Theorem 1 can be extended to stochastic games with compact action spaces and continu-
ous pay-off and transition functions, but Theorem 2 cannot because the discounted values
may fail to converge in this case.

3. Theorem 2 provides a new and elementary proof of the convergence of the A-discounted
values as A tends to 0.

4. Theorem 2 captures the characterization of the value for absorbing games obtained by
Kohlberg [13].

5. The sign of F*(2) can be easily computed using linear programming techniques. This is
a crucial aspect of the formula of Theorem 2.

6. Theorems 1 and 2 suggest binary search algorithms for computing, respectively, the dis-
counted values and the value, by successively evaluating the sign of valW¥(z) and of
FF(z) for well-chosen z. These algorithms are polynomial in the number of pure station-
ary strategies. The precise description and analysis of these algorithms is the object of a
separate paper [19]. For completeness, we provide a brief description in Section 5.

3 A formula for the discounted values

In this section we prove Theorem 1. In the sequel, we consider a fixed discounted stochastic
game (K,I,J,g,q,k,\). The proof is based on the following four properties:

1.

2.
3.
4

dS (i,j) is positive for all (i,j) € I" x J".

(z,y,2) — d3(z,y) — zd5 (x,y) is a multi-linear map.
2+ val W§(z) is a strictly decreasing real map.

val WE(v) = 0.

Indeed, Theorem 1 clearly follows from the last two. The extension of this result to the

more general framework of compact-continuous stochastic games (that is, stochastic games with
compact metric action spaces and continuous pay-off and transition functions) proceeds along
the same lines, and is postponed to Section 6.2.

Notation. We use the following notation:

e For any z = (z!,...,2") € A(J)" we denote by & € A(I"™) the element that corresponds
to the direct product of the coordinates of z. Formally,

2() = [[2GY)  vi=(@,... i el
=1

The map x — & is one-to-one, and defines the canonical inclusion A(I)* C A(I™). The
map y — ¢ is defined similarly, and gives the canonical inclusion A(J)™ C A(J"™).

e The bold letters x and y refer to elements of A(I™) and A(J"), respectively.

e For all z € R and all (x,y) € A(I"™) x A(J") we set

Wi xyl = > x{)Wf(2)LilyQ).
(i,j)eInxJn



We now prove the four properties above. The first is due to Ostrovski [22], and for com-
pleteness we provide a short proof.

Lemma 3.1 For any stochastic matriz P of sizen xn and any A € (0,1], det(Id —(1 —\)P) >
A"

Proof. Set M :=1Id—(1 — \)P. Because P is a stochastic matrix, M** — D e MO > A
for all 1 < ¢ < n. Hence, M is strictly diagonally dominant. For any u € R so that u <
A, the matrix M — pId is still strictly diagonally dominant, so in particular it is invertible.
Consequently, all real eigenvalues of M are larger than or equal to A. Similarly, for any u =
a+bi € C so that |u| := Va2 + b2 < A, the matrix M — p1d is strictly diagonally dominant, so
that M —p1d is invertible. Consequently, if a+bi is a complex eigenvalue of M, then A < |a+bi|,
so that A? < |a+bi|> = a®+b* = (a+bi)(a—bi). Recall that det M = [],_, p¢, where 1, ..., i,
are the eigenvalues of M counted with multiplicities. Because each real eigenvalue contributes
at least A\ in the product, and each pair of conjugate eigenvalues contributes at least A2, it
clearly follows that det M > A™. U]

j) e A(I)™ x J" and z € R,
(I,J)

Lemma 3.2 For any (z,j
(i) d3(x,§) = Xiepn T(A)d
(i1) d5(,]) = Yiepn 2(i)d

(i) WX(2)[2,§] = df(2,) — =d} (I J)-

Proof. (i) Let j € J" be fixed. For any € A(I"™) set M(z,j) :=Id—(1 — X\)Q(z,j), so that

det M (z,j) = d}(z,j) and, in particular, det M (i, j) = dS(z,j) for all i € I". By (2.1), the first
row of M (x,j) depends on z only through z!, and the dependence is linear. Write x as a convex

combination of the stationary strategies {(i,z2,...,2"), i € I}, and use the multi-linearity of
the determinant to obtain
. _ 1/ . 2 n .
det M(z,j) = det (Ziel ()M ((i,2%,...,x ),J))

Zie] z' (i) det M ((i,2%,...,2"),]) .

Using the same argument for the remaining rows, one inductively obtains that det M (x,j) is

equal to
Soat(i)Y 2?(®) - > et det M(G 2. ,17),5),
iter i2el inel
which is equal to ) ;. Z(i) det M (i, j) by the definition of Z.
(ii) The proof goes along the same lines as (i). Fix j € J". For any z € A(J)", let M*(z,j) be
the matrix obtained by replacing the k-th column of M (z,j) by Ag(z,j), so that det M*(z,j) =
d%(z,j) and, in particular, det M*(i,j) = d§(i,j) for all i € I". By (2.1) and (2.2), the ¢-th row
of M*(z,j) depends on z only through x¢, and that the dependence is linear. Like in (), these
properties imply the desired result, namely det M*(z,j) = > icrn (i) det ME(i, j).

(iii) The result follows directly from (i), (ii), and the definition of W¥(2)[Z, j]. Indeed,
k ~ . _ ~/ k . .
W)z, = Zie]n z(HW(2)[i, ]

_ N TR
= Y EOdEN) -2 Y FORE)
= di(x,)) — 2d3(,)).



Remark. Lemma 3.2 is stated for all (z,j) for convenience, but is also valid for all (z,y).
The last property, for instance, can be stated as follows. For all (z,y,2) € A(I)™ x A(J)" x R,

WX (2)[#,9] = d(z,y) — zd} (z,y).
Lemma 3.3 For any (z1,22) € R? so that 21 < z2,
val W (z1) — val WE(2g) > (22 — 21)A".
In particular, z — val W)’f(z) is a strictly decreasing real map.

Proof. By definition, Q(i,j) is a stochastic matrix of size n x n for each (i,j) € I" x J™.
Hence, by Lemma 3.1,

d3(i,j) = det(Id —(1 — M) Q(i,j)) > A" V(i,j) e I™ x J".
Therefore, for all z; < 25 and (i, j),

WE(z1) 1,5 — WE(z2)[L.3] = (22— 21)d3(,J)
> (2’2 — 21))\n .

The result follows then from the monotonicity of the value operator, stated in item (i7) of
Section 2.1. [
Lemma 3.4 val Wf(v§) =0.

Proof. By Lemma 3.2 (ii4), the relation

holds for all (z,j) € A(I)™ x J". Let * € A(I)™ be an optimal stationary strategy of Player
lin (K,I,J,g,q,k,\), which exists by Shapley [25] as already noted in item (v) of Section 2.2,
and let z* € A(I™) denote the direct product of its coordinates. The optimality of z* implies

k(% 3
dg\(x*u!) 2 ’UI)\C,
d)\(I 7.])

The matrix Q(z*,j) is stochastic of size n x n so that d}(z*,j) = det(Id —(1 — \)Q(z*,j)) >
A" > 0 by Lemma 3.1. Consequently, the previous relation is equivalent to

Vi (a*,§) =

d3 (z*,3) — vid} (", §) > 0. (3.2)

Therefore, W (vk)[z*,j] > 0 follows from (3.1) and (3.2). For any matrix M = (mgp)
of size p X ¢ and any s € A({l,...,p}), the definition of the value implies that val M >

mini<p<q D1 <4<p 5(@)Map. Consequently,

val W(v5) > min WY(v5)[2",5] > 0.
je n

By reversing the roles of the players one similarly obtains an analogue of Lemma 3.2 for all
(i,y) € I x A(J)", and then val W{(v§) < 0, which gives the desired result. L]

Proof of Theorem 1. By Lemma 3.3, z — val W¥(2) is a strictly decreasing real function.
Consequently, the set {z € R, val W{(z) = 0} contains at most one element. By Lemma 3.4,
this element is precisely v’j. |
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4 A formula for the value

In this section we prove Theorem 2. Before we establish this result, we show that the limit
F¥(z) == limy_, val W§(2) /A" exists in R U {—o0, +00} for all z € R, and that the equation

(4.1)

z>w = FFz)<0
w € R, "
z<w = F%z)>0

admits a unique solution. This is shown in the following two lemmas.

Lemma 4.1 Let z € R. Then, there exists a rational fraction R and Ao > 0 so that
valW(z) = R(\) VA€ (0,)).

Proof. By construction, the entries of W{(z) are polynomials in A. By Shapley and Snow
[26], the value of a matrix satisfies the formula stated in item (iv) of Section 2.1. Consequently,
for any A € (0,1], there exists a rational fraction R so that val W{(z) = R()\). Because the
choice of the square sub-matrix may vary with A, the corresponding rational fraction may also
vary. However, as the number of possible square sub-matrices is finite, so is the number of
possible rational fractions that may satisfy this equality. Consequently, there exists a finite
collection E = {Ry,...,Rr} of rational fractions so that for each A\ € (0, 1] there exists R € F
that satisfies val W§(z) = R()\). Hence, for any ), the point (), val W¥(z)) belongs to the union
of the graphs of the functions Ry,...,Rr. As already noted in item (ii7) of Section 2.1, the
map A — val W{(z) is continuous on (0, 1]. Consequently, as A varies on the interval (0, 1], the
curve A — (A, val WE(2)) can “jump” from the graph of R to the graph of R’ only at points
where these two graphs intersect. Yet, for any two rational fractions, either they are congruent
or they intersect finitely many times. Hence, there exists \g so that, for any R, R’ € E, either
R(M\) = R/(\) for all (0, \g) or R(X) # R/()) for all (0, o). In particular, there exists R € E so
that val W{(z) = R()) for all (0, \o). L]

Lemma 4.2 FEquation (4.1) admits a unique solution.

Proof. By Lemma 4.1, limy_,o val W¥(2)/A\" exists for all 2 € R. Suppose that (4.1) admits
two solutions w < w’. Then, for any z € (w,w’) one has F¥(z) < 0 and F*(z) > 0, which
is impossible. Therefore, (4.1) admits at most one solution. Let (21, z2) € R? satisfy 27 < 2.
Rearranging the terms in Lemma 3.3, dividing by A" and taking A to 0 yields

Fk(Zl) > Fk(ZQ)“FZQ_Zl. (42)
In particular, the following relations hold:

FE(z) >0 = FE(') >0, V' <2

FE(z) <0 = Fk(2') <0, V' > 2 (4.3)

Fk(z)=0 = F*Z')#0, Vo' # 2.
We now show that F* is not constant, which is still compatible with (4.2) if F¥ = +oco or
F* = —co. Let O~ := ming; ; g(k,i,j) and C* := maxy; ; g(k,i,j). For any A € (0,1], one
clearly has C~ < v’/{ < C*. Consequently, by Lemma 3.3,

val W(C) < val W () < valWk(C™).

Dividing by A™ and taking A to 0 one obtains

FF(Cct)y<o< FRCT). (4.4)

11



3

We now define recursively two real sequences (u,,)m>1 and (u}),>1 by setting uj := C
uf :=C* and, for all m > 1,

- sl ) R (Glun 4 ) 20
U, otherwise,

ut = {%(um +ut) if FF (%(u;l + u;g)) <0
m—+1 7 + .
U otherwise.
By construction, F*(u,) > 0 and F¥(u}) <0 for all m > 1. Moreover, (4.3) and (4.4) imply
C~ <, <uf <CTt forall m > 1, so that (u,,), is non-decreasing and (u),, is non-

increasing. Furthermore, | —u,. ; < 2(u;}, —u;,) for all m > 1. Hence, the two sequences

admit a common limit @. For any € > 0, let m. be such that u,, > @ —e. By (4.2), this implies

F(u—e) > FF(u, )+ u,,

mMe

—(t—¢€)>0.

Similarly, F*(@ + ¢) < 0 for any ¢ > 0. Together with (4.3), this shows that @ is a solution to
(4.1). [

We are now ready to prove our main result.

Proof of Theorem 2. Let w be the unique solution (4.1) and fix £ > 0. By the choice of
w, F¥(w — ¢) > 0. Consequently, there exists \g > 0 so that

val Wh(w—¢) >0 VYA€ (0,\). (4.5)

By Lemma 3.3, the map 2z — val W{(z) is strictly decreasing. By Lemma 3.4, val W¥(v}) = 0.
Therefore, (4.5) implies
Vi >w—e  YAE(0,)). (4.6)

Because ¢ is arbitrary, liminfy_o v’/{ > w. By reversing the roles of the players, one obtains in
a similar manner limsup,_,ov§¥ < w. Hence, the A-discounted values converge as A goes to 0,
and limy_,0 v§¥ = w. The result follows then from item (vi) of Section 2.2, namely the existence
of the value v¥ and the equality limy_,0 v¥ = v*, due to Mertens and Neyman [15]. |

5 Algorithms

The formulas obtained in Theorems 1 and 2 suggest binary search methods for approximat-
ing the A-discounted values and the value of a stochastic game (K, I,J, g,q, k), based on the
evaluation of the sign of the real functions z +— val W{(z) and z — F*(z), respectively. In
this section we provide a brief description of these algorithms, and discuss their complexity
using the logarithmic cost model (a model which accounts for the total number of bits which
are involved). We refer the reader to [19] for more technical details, and for two additional
algorithms which provide ezact expressions for v’)f and v* within the same complexity class.

Notation. For any m € N, let E,, := {0, 1,2 oo} and Zp, = {0, 2%, 21 2"

Tm'm’ " my ottty gm S
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5.1 Computing the discounted values

The following bisection algorithm, which is directly derived from Theorem 1, inputs a dis-
counted stochastic game with rational data and outputs an arbitrarily close approximation of
its value.

Input. A discounted stochastic game (K, 1,.J,g,q,k,\) so that, for some (N,L) € N2, the
functions g and ¢ take values in Fy and A € Er, and a precision level r € N.
Output. A 27 "-approximation of U’)f.

Complexity. Polynomial in n |I|", |J|", log N, log L and r.

1 Setw:=0,w:=1

2 WHILE w—-w > 27" DO
21 z:=22%
2.2 v := sign of val W§(z)
2.3 IFv>0THEN w:==z
24 JF v<0THEN w:=z

3 RETURN v :=w.

By construction, the output u satisfies [u — v¥| < 27", and the number of iterations of the
“while” loop is bounded by r. Also, the complexity of each iteration depends crucially on the
complexity of Step 2.2. First of all, one needs to determine the matrix W§(z) for some z € Z,,
and this requires the computation of two n x n determinants for each of its |I|™ x |J|™ entries.
Algorithms for computing the determinant of a matrix exist which are polynomial in its size
and in the number of bits that which are needed to encode this matrix. Second, the choice of z
and Hadamard’s inequality imply that the number of bits which are needed to encode W (z)
is polynomial in n, |I|", |J|*, log N, log L and r. Third, computing the value of a matrix can
be done with linear programming techniques, and algorithms exist (for example, Karmarkar
[12]) which are polynomial in its size and in the number of bits which are needed to encode this
matrix. Consequently, the computation cost of Step 2.2 is polynomial in n, |I|", |J|", log N,
log L and r, and the same is true for the entire algorithm.

5.2 Computing the value

The following bisection algorithm, which is directly derived from Theorem 2, inputs a stochastic
game with rational data and outputs an arbitrarily close approximation of its value.

Input. A stochastic game (K, 1,J, g,q, k) so that, for some N € N, the functions g and ¢ take
values in Fy, and a precision level » € N.

Output. A 2~ "-approximation of v*.
Complexity. Polynomial in n |I|"?, |J|", log N and 7.

1 Setw:=0,w:=1
WHILE @w — w > 27" DO
21 z:= %
2.2 v :=sign of F¥(2)
23 IFv>0THEN w:=z
2.4 IF v <0 THEN w:=z
3 RETURN u:=w.

Like before, the output u satisfies |u — v*| < 27", the number of iterations of the “while” loop
is bounded by r, and the variable z always takes values in the set Z,. Unlike before, however,
each iteration requires computing the sign of F*(z) at Step 2.2, a computation that might
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seem problematic due to the limiting nature of the function F'*. However, this difficulty can
be overcome thanks to the following result.

Proposition 5.1 (Proposition 3.6 of [19]) For any r € N, introduce A\, := 4nd(bit(n) +
bit(d) + bit(N)) — rnd, where for each p € N, bit(p) := [logy(p + 1)] is the number of bits of p.
Then, the sign of F*(z) is equal to the sign of val WfT (2) for all z € Z,.

Indeed, Proposition 5.1 implies that the computation in Step 2.2 can be replaced with the
computation of val Wfr (z). By the choice of A, and z, the number of bits which are needed to
encode WfT (z) is polynomial in n, [I|", |J|*, log N and r, so that the computation in Step 2.2
is polynomial in these variables, and the same is true for the entire algorithm.

6 Remarks and extensions

First, we provide an alternative definition of the parameterized games Wf(z) Second, we
extend Theorem 1 to the more general framework of stochastic games with compact metric
action sets and continuous pay-off and transition function, and explain why the extension of
Theorem 2 fails. Finally, we show that the formula obtained by Kohlberg [13] for the value of
absorbing games is captured by Theorem 2.

6.1 An alternative formulation of the parameterized games

The parameterized game Wf(z) plays a crucial role both in Theorems 1 and 2. We provide
an alternative construction of this game which is based on the Kronecker product of matrices.
Let U denote a matrix of ones of size |I| x |J|. For each 1 < ¢,¢ < n, consider the matrices
QLY = (q(¢'|4,i,7))i; and G* = (g(£,i,7))i;, and use them to form the following n x (n + 1)
array of matrices of size |I| x |J]:

SAGL U—(1-0QY ... —(1-MNQin
Dy=| z z
SAGT —(1=NQ™ L. U—(1-AQ™"

For any 0 < ¢ < n, let D be the n x n array of matrices obtained by removing the (¢ + 1)-th
column of matrices from D. Denote by detg the determinant of a square array of matrices,
developed along columns and where the products are replaced with the Kronecker product of
matrices. By construction, detg DS = (d (i, ))ij and (—1)* detg D = (d5(i,j))ij, so that

W (z) = (=1)% detg D5 — zdetg DS .

The linearity relations established in Lemma 3.2 can also be deduced from the properties of
the Kronecker product. This alternative expression for W{(z) is reminiscent of (or, rather,
inspired by) the theory of multi-parameter eigenvalue problems initiated by Atkinson in the
1960s, see Chapter 6 of [1]. The interesting connection which exists between stochastic games
and multi-parameter eigenvalue problems is developed by L.A. and M.O-B. in a forthcoming

paper [2].

6.2 Compact-continuous stochastic games

Throughout this section we consider stochastic games (K, I, J,g,q), where K ={1,...,n} is a
finite set of states, I and J are two compact metric sets, and g and ¢ are continuous functions.
These games are referred to as compact-continuous stochastic games, for short. We denote by
A(T) and A(J), respectively, the sets of probability distributions over I and J. These sets are
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compact when endowed with the weak® topology. For any («, 8) € A(I) x A(J), we denote its
direct product by a ® 8 € A(I x J). For all 1 < {¢,¢' <n and u € R", we set

g, a, B)

/ 96,1, ) d(a ® B)(i, )
IxJ

W00, B) = / i ds 5)G.d).

PraleB) = Mg, B)+ (1 =X ql'|t,a,B).

=1

By the minmax theorem stated in item (i) of Section 2.1, the zero-sum game (A(I), A(J), p§ ,,)
has a value, so one can define the Shapley operator ®(A, -) : R” — R" like in the finite case.
Furthermore, the compact-continuous stochastic game (K, I, J, g,q, k, A) has a value v’/{, which
is the unique fixed point of ®()\, -), and both players have optimal stationary strategies. These
results are well-known.

Extension of Theorem 1. Theorem 1 can be extended to compact-continuous stochastic
games.

The proof goes along the same lines. Like in the finite case, any pair of stationary strategies
(x,y) € A(I)™ x A(J)™ induces a Markov chain with state-dependent rewards. Let Q(z,y) €
R™™ and g(z,y) € R™ denote the transition matrix of this chain and the vector of expected
rewards. Formally, they are defined like in (2.1) and (2.2), but replacing, for 1 < £,¢' < n,
the sum 7 o cry s a*(i)y*(j) with the corresponding integral [, d(z* ® y*)(i,j). Similarly,
let yx(z,y) € R™ be the vector of expected normalized A-discounted sum of rewards, which is
well-defined because the state k, the pair (z,y), and the transition function ¢ induce a unique
probability measure over (K x I x J)N on the sigma-algebra generated by the cylinders, by the
Kolmogorov extension theorem. Like in the finite case,

d5 (z,y)
S (z,y)’

where d} (z,y) := det(Id —(1-\)Q(z, y)) # 0 and where d% (z,y) is the determinant of the nxn-
matrix obtained by replacing the k-th column of Id —(1 — \)Q(z, y) with Ag(z,y). Lemma 3.2
can be extended word for word, by replacing sums with the corresponding integrals, and setting
T=rl® - @™ e AIM).

For each z € R, the auxiliary game W§(2) can be defined in a similar manner by setting

Vi (z,y) =

WE()4,j] = ds(3,j) — 2d3G,5) VG, ) eI x J".

Note that W¥(2) is no longer a matrix, but a mapping from the compact metric set I"™ x J"
to R. Like in the finite case, consider the mized extension of this game, that is: the zero-sum
game with action sets A(J™) and A(J™) and pay-off function

Wikl = [ WEEI dx o y)id).
ImxJjn

By the minmax theorem stated in item (i) of Section 2.1, this game admits a value, denoted

by val W{(z). Lemmas 3.3 and 3.4 can thus be extended word for word as well; it is enough to

replace all sums with the corresponding integrals. The extension of Theorem 1 follows directly

from these two lemmas.
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Extension of Theorem 2. Theorem 2 cannot be extended to compact-continuous stochas-
tic games.

Indeed, Vigeral [34] provided an example of a stochastic games with compact action sets and
continuous pay-off and transition functions for which the discounted values do not converge. In
this sense, the extension of our result to this framework is not possible. However, we point out
that only one point in our proof is problematic. Indeed, the failure occurs in the use of Lemma
4.1, which relies on the formula stated as Property (iv) in Section 2.1, which only holds in the
finite case. For infinite action sets it is no longer true that A — val W¥(2) is a rational fraction
in A in a neighborhood of 0 for all z € R, which was crucial to prove the existence of the limit
F*(z) := limy_, val W§(z)/\"™.

Determining necessary and sufficient conditions on I, J, g, and g which ensure the conver-
gence of the discounted values or the existence of the value is an open problem. Bolte, Gaubert
and Vigeral [5] provided sufficient conditions, namely that g and g are separable and definable.
Without going into a precise definition of these two conditions, they hold in particular when
the pay-off function g and the transition ¢ are polynomials in the players’ actions. However, the
case where I, J, g, and ¢ are semi-algebraic is still unsolved. (A subset E of R is semi-algebraic
if it is defined by finitely many polynomial inequalities; a function is semi-algebraic if its graph
is semi-algebraic.)

6.3 Absorbing games

We now show that Kohlberg’s result [13] on absorbing games is captured in Theorem 2. An
absorbing game is a stochastic game (K, I, J, g, q, k) so that, for some fixed state ko € K,

gk |kij)=1 V(ij)elxJ, Vk#k.

For any initial state k # ko, the state does not evolve during the game and, as a consequence,
v} is equal to the value of the matrix (g(k,i,7))( jyerx. for all X € (0,1] and k # ko. We will
use the notation v* to emphasize that v])f does not depend on A, for all k # k.

Notation. We assume without loss of generality that ko = 1, and set u(z) := (z,v2,...,v")
for all z € R.

Kolhberg’s result. Every absorbing game (K, I, J, g, g, 1) has a value, denoted by v!, which
is the unique point where the function 7' : R — R U {#o0} changes sign, where T is defined
using the Shapley operator by

DL\ u(z)) — 2

T(z) := lim Vz e R.

A—0

Comparison to our result. We claim that F'' = T in the class of absorbing games. To
see this, first of all note that for all (i,j) € I x J™,

d3(ij) = AH(1-(1=Ng(1]1,ih

)
di(i,j) = A (Ag(l,i1 N qe)1,it5h) )

=2

Thus, for any z € R,

W) = (W7 (Mg + =N D a(elLit ') - 2 ) )

ij
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In particular, W} (z) depends on (i,j) € I" x J" only through (i',j') € I x J. Eliminating the
redundant rows and columns of Wy(z) one thus obtains the matrix A"~!(G} , — 2U), where
G5 is the |I] x |J|-matrix described in item (v) of Section 2.2, and U is a matrix of ones of
the same size. The affine invariance of the value operator, namely val(cM + dU) = ¢ val M +d
for any matrix M and any (c,d) € (0,+00) x R, gives then

val W;: (Z) . A" Hval (g)l\,u(z) B ZU) o q)l()\a U(Z)) —z

A A B A

Taking A to 0 gives the desired equality, F' = T.
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