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A formula for the value of a stochastic game

In 1953, Lloyd Shapley defined the model of stochastic games, which were the first general dynamic model of a game to be defined, and proved that competitive stochastic games have a discounted value. In 1982, Jean-François Mertens and Abraham Neyman proved that competitive stochastic games admit a robust solution concept, the value, which is equal to the limit of the discounted values as the discount rate goes to 0. Both contributions were published in PNAS. In the present paper, we provide a tractable formula for the value of competitive stochastic games.

Significance Statement. Stochastic games were introduced by the Nobel Memorial Prize winner Lloyd Shapley in 1953 in order to model dynamic interactions in which the environment changes in response to the players' behavior. The theory of stochastic games and its applications have been studied in several scientific disciplines, including economics, operations research, evolutionary biology, and computer science. In addition, mathematical tools that were used and developed in the study of stochastic games are used by mathematicians and computer scientists in other fields. This paper contributes to the theory of stochastic games by providing a tractable formula for the value of finite competitive stochastic games. This result settles a major open problem which remained unsolved for nearly 40 years.

Introduction

Motivation

Stochastic games are the first general model of dynamic games. Introduced by Shapley [START_REF] Shapley | Stochastic games[END_REF] in 1953, stochastic games extend the model of strategic-form games, which is due to von Neumann [START_REF] Neumann | Zur Theorie der Gesellschaftsspiele[END_REF], to dynamic situations in which the environment (henceforth, the state) changes in response to the players' choices. They also extend the model of Markov decision problems to competitive situations with more than one decision-maker.

Outline of the paper

The paper is organized as follows. Section 2 states our results on finite competitive stochastic games, namely a formula for the λ-discounted values (proved in Section 3), and a formula for the value (proved in Section 4). Section 5 describes the algorithmic implications and tractability of these two formulas. Section 6 concludes with remarks and extensions.

Context and main results

In order to state our results precisely, we recall some definitions and well-known results about two-player zero-sum games (Section 2.1) and about finite competitive stochastic games (Section 2.2). In Section 2.3 we give a brief overview of the relevant literature on finite competitive stochastic games. Our results are described in Section 2.4.

Notation. Throughout the paper, N denotes the set of positive integers. For any finite set E we denote the set of probabilities over E by ∆(E) = {f : E → [0, 1] | e∈E f (e) = 1} and its cardinality by |E|.

Preliminaries on zero-sum games

The aim of this section is to recall some well-known definitions and facts about two-player zero-sum games, henceforth zero-sum games.

Definition. A zero-sum game is described by a triplet (S, T, ρ) where S and T are the sets of possible strategies for Player 1 and 2, respectively, and ρ : S × T → R is a pay-off function. It is played as follows. Independently and simultaneously, the first player chooses s ∈ S and the second player chooses t ∈ T . Player 1 receives ρ(s, t) and Player 2 receives -ρ(s, t). The zero-sum game (S, T, ρ) has a value whenever sup s∈S inf t∈T ρ(s, t) = inf t∈T sup s∈S ρ(s, t).

In this case, we denote this common quantity by val ρ.

Optimal strategies. Let (S, T, ρ) be a zero-sum game which has a value. An optimal strategy for Player 1 is an element s * ∈ S so that ρ(s * , t) ≥ val ρ for all t ∈ T . Similarly, t * ∈ T is an optimal strategy for Player 2 if ρ(s, t * ) ≤ val ρ for all s ∈ S.

The value operator. The following properties are well-known:

(i) Minmax theorem. Let (S, T, ρ) be a zero-sum game. Suppose that S and T are two compact subsets of some topological vector space, ρ is a continuous function, the map s → ρ(s, t) is concave for all t ∈ T , and the map t → ρ(s, t) is convex for all s ∈ S. Then (S, T, ρ) has a value and both players have optimal strategies.

(ii) Monotonicity. Suppose that (S, T, ρ) and (S, T, ν) have a value, and ρ(s, t) ≤ ν(s, t) holds for all (s, t) ∈ S × T . Then val ρ ≤ val ν.

Matrix games. In the sequel, we identify every real matrix M = (m a,b ) of size p × q with the zero-sum game (S M , T M , ρ M ) where S M = ∆({1, . . . , p}), T M = ∆({1, . . . , q}) and where

ρ M (s, t) = p a=1 q b=1 s(a) m a,b t(b) ∀(s, t) ∈ S M × T M .
The value of the matrix M , denoted by val M , is the value of (S M , T M , ρ M ) which exists by the minmax theorem. The following properties are well-known:

(iii) Continuity. Suppose that M (t) is a matrix with entries that depend continuously on some parameter t ∈ R. Then the map t → val M (t) is continuous.

(iv) A formula for the value. For any matrix M , there exists a square sub-matrix M of M so that val M = det M ϕ( M) , where ϕ( M ) denotes the sum of all the co-factors of M , with the convention that ϕ

( M ) = 1 if M is of size 1 × 1.
Comments. Property (i) is taken from Sion [START_REF] Sion | On general minimax theorems[END_REF], a generalization of von Neumann's [START_REF] Neumann | Zur Theorie der Gesellschaftsspiele[END_REF] minmax theorem, while Property (iv) was established by Shapley and Snow [START_REF] Shapley | Basic solutions of discrete games[END_REF]. The other two properties are straightforward.

Stochastic games

We present now the standard model of finite competitive stochastic games, henceforth stochastic games for simplicity. We refer the reader to Sorin's book [START_REF] Sorin | A First Course on Zero-Sum Repeated Games[END_REF]Chapter 5] and to Renault's notes [START_REF] Renault | A tutorial on zero-sum stochastic games[END_REF] for a more detailed presentation of stochastic games.

Definition.

A stochastic game is described by a tuple (K, I, J, g, q, k), where K = {1, . . . , n} is a finite set of states, for some n ∈ N, I and J are the finite action sets of Player 1 and 2, respectively, g : K × I × J → R is a reward function to Player 1, q : K × I × J → ∆(K) is a transition function, and 1 ≤ k ≤ n is an initial state.

The game proceeds in stages as follows. At each stage m ≥ 1, both players are informed of the current state k m ∈ K, where k 1 = k. Then, independently and simultaneously, Player 1 chooses an action i m ∈ I and Player 2 chooses an action j m ∈ J. The pair (i m , j m ) is then observed by both players, from which they can infer the stage reward g(k m , i m , j m ). A new state k m+1 is then chosen according to the probability distribution q(k m , i m , j m ), and the game proceeds to stage m + 1.

Discounted stochastic games.

For any discount rate λ ∈ (0, 1], we denote by (K, I, J, g, q, k, λ) the stochastic game (K, I, J, g, q, k) where Player 1 maximizes, in expectation, the normalized λ-discounted sum of rewards

m≥1 λ(1 -λ) m-1 g(k m , i m , j m ),
while Player 2 minimizes this amount.

In the following, the discount rate λ and the initial state k will be considered as parameters, while (K, I, J, g, q) is fixed.

Strategies. A behavioral strategy, henceforth a strategy, is a decision rule from the set of possible observations of a player to the set of probabilities over the set of his actions. Formally, a strategy for Player 1 is a sequence of mappings σ = (σ m ) m≥1 , where σ m : (K × I × J) m-1 × K → ∆(I). Similarly, a strategy for Player 2 is a sequence of mappings τ = (τ m ) m≥1 , where

τ m : (K × I × J) m-1 × K → ∆(J).
The sets of strategies are denoted, respectively, by Σ and T .

The expected pay-off. By the Kolmogorov extension theorem, together with an initial state k and the transition function q, any pair of strategies (σ, τ ) ∈ Σ × T induces a unique probability P k σ,τ over the sets of plays (K × I × J) N on the sigma-algebra generated by the cylinders. Hence, to any pair of strategies (σ, τ ) ∈ Σ × T corresponds a unique pay-off γ k λ (σ, τ ) in the discounted game (K, I, J, g, q, k, λ),

γ k λ (σ, τ ) := E k σ,τ m≥1 λ(1 -λ) m-1 g(k m , i m , j m )
where E k σ,τ denotes the expectation with respect to the probability P k σ,τ .

Stationary strategies.

A stationary strategy is a strategy that depends only on the current state. Thus, x : K → ∆(I) is a stationary strategy for Player 1 while y : K → ∆(J) is a stationary strategy for Player 2. The sets of stationary strategies are ∆(I) n and ∆(J) n , respectively. A pure stationary strategy is a stationary strategy that is deterministic. The sets of pure stationary strategies are I n and J n , respectively, and we will refer to pure stationary strategies with the bold signs i ∈ I n and j ∈ J n .

A useful expression. Suppose that both players use stationary strategies x and y in the discounted stochastic game (K, I, J, g, q, k, λ) for some λ ∈ (0, 1]. The evolution of the state then follows a Markov chain, and the stage rewards depend only on the current state. Let Q(x, y) ∈ R n×n and g(x, y) ∈ R n denote, respectively, the corresponding transition matrix and the vector of expected rewards. Formally, for all

1 ≤ ℓ, ℓ ′ ≤ n, Q ℓ,ℓ ′ (x, y) = (i,j)∈I×J
x ℓ (i)y ℓ (j)q(ℓ ′ | ℓ, i, j) (2.1)

g ℓ (x, y) = (i,j)∈I×J
x ℓ (i)y ℓ (j)g(ℓ, i, j) .

(2.2)

Let γ λ (x, y) = (γ 1 λ (x, y), . . . , γ n λ (x, y)) ∈ R n . Then Q(x, y), g(x, y) and γ λ (x, y) satisfy the relations

γ λ (x, y) = m≥1 λ(1 -λ) m-1 Q m-1 (x, y)g(x, y) = λg(x, y) + (1 -λ)Q(x, y)γ λ (x, y).
Let Id denote the identity matrix of size n. The matrix Id -(1-λ)Q(x, y) is invertible, as Q(x, y) is a stochastic matrix and λ ∈ (0, 1]. Consequently, γ λ (x, y) = λ(Id -(1 -λ)Q(x, y)) -1 g(x, y). Thus, by Cramer's rule,

γ k λ (x, y) = d k λ (x, y) d 0 λ (x, y) , (2.3) 
where The discounted values. The discounted stochastic game (K, I, J, g, q, k, λ) and the zerosum game (Σ, T , γ k λ ) are equal by construction. Thus, the discounted stochastic game has a value whenever sup

d 0 λ (x, y) = det(Id -(1 -λ)Q(x,
σ∈Σ inf τ ∈T γ k λ (σ, τ ) = inf τ ∈T sup σ∈Σ γ k λ (σ, τ ).
In this case, the value is denoted by v k λ , and is often referred to as the λ-discounted value of the stochastic game (K, I, J, g, q, k). The following result is due to Shapley [START_REF] Shapley | Stochastic games[END_REF]:

(v) Every discounted stochastic game (K, I, J, g, q, k, λ) has a value, and both players have optimal stationary strategies. For each 1 ≤ ℓ ≤ n and u ∈ R n , consider the following matrix of size |I| × |J|:

G ℓ λ,u := λg(ℓ, i, j) + (1 -λ) n ℓ ′ =1 q(ℓ ′ | ℓ, i, j)u ℓ ′ i,j
.

The vector of values v λ = (v 1 λ , . . . , v n λ ) is then the unique fixed point of the Shapley operator Φ(λ, • ) : R n → R n , which is defined by Φ ℓ (λ, u) := val G ℓ λ,u , for all 1 ≤ ℓ ≤ n and u ∈ R n .

Remark. In the model of stochastic games, the discount rate stands for the degree of impatience of the players, in the sense that future rewards are discounted. Alternatively, one can interpret λ as the probability that the game stops after every stage. The more general case of stopping probabilities that depend on the current state and on the players' actions can be handled in a similar way, as already noted by Shapley [START_REF] Shapley | Stochastic games[END_REF].

The value. The stochastic game (K, I, J, g, q, k) has a value if there exists v k ∈ R such that for any ε > 0 there exists M 0 such that Player 1 can guarantee that for any M 0 ≤ M ≤ +∞ the expectation of the average reward per stage in the first M stages of the game is at least v k -ε, and Player 2 can guarantee that this amount is at most v k -ε. It follows that if the game has a value v k , then for each ε > 0 there exists a pair of strategies (σ ε , τ ε ) ∈ Σ × T such that, for some λ 0 ∈ (0, 1], the following inequalities hold for all λ ∈ (0, λ 0 ):

γ k λ (σ ε , τ ) ≥ v k -ε ∀τ ∈ T γ k λ (σ, τ ε ) ≤ v k + ε ∀σ ∈ Σ .
The following result is due to Mertens and Neyman [START_REF] Mertens | Stochastic games[END_REF]:

(vi) Every stochastic game (K, I, J, g, q, k) has a value v k , and v k = lim λ→0 v k λ .

State of the art

Since its introduction by Shapley [START_REF] Shapley | Stochastic games[END_REF], the theory of stochastic games and its applications have been studied in several scientific disciplines. We restrict our brief literature survey to the theory of finite competitive stochastic games and related algorithms.

The discounted values. In 1953, Shapley [START_REF] Shapley | Stochastic games[END_REF] proved that every discounted stochastic game (K, I, J, g, q, k, λ) admits a value v k λ , and that both players have optimal stationary strategies. Furthermore, the vector of values v λ = (v 1 λ , . . . , v n λ ) is the unique fixed point of an explicit operator.

Existence of the value. Building on Shapley's characterization of the discounted values and on a deep result from real algebraic geometry, the so-called Tarski-Seidenberg elimination theorem, Bewley and Kohlberg [START_REF] Bewley | The asymptotic theory of stochastic games[END_REF] proved in 1976 that the discounted values converge as the discount rate tends to zero. Mertens and Neyman [START_REF] Mertens | Stochastic games[END_REF][START_REF] Mertens | Stochastic games[END_REF] strengthened this result in the early 1980s by establishing that every stochastic game (K, I, J, g, q, k) has a value v k , and that the value coincides with the limit of the discounted values. It is worth noting that, unlike discounted stochastic games, where the observation of the past actions is irrelevant, the existence of the value relies on the observation of the stage rewards.

Alternative proofs of convergence. In the late 1990s, Szczechla, Connell, Filar, and Vrieze [START_REF] Szczechla | On the Puiseux series expansion of the limit discount equation of stochastic games[END_REF] gave an alternative proof for the convergence of the discounted values as the discount rate goes to zero, using Shapley's characterization of the discounted values and the geometry of complex analytic varieties. Another proof was recently obtained by Oliu-Barton [START_REF] Oliu-Barton | The asymptotic value in stochastic games[END_REF], based on the theory of finite Markov chains and on Motzkin's alternative theorem for linear systems.

Robustness of the value. The years 2010s have brought many new results concerning the value of stochastic games. Neyman and Sorin [START_REF] Neyman | Repeated games with public uncertain duration process[END_REF] studied stochastic games with a random duration clock. That is, at each stage, the players receive an additional signal which carries information about the number of remaining stages. Assuming that the expected number of remaining stages decreases throughout the game, and that the expected number of stages converges to infinity, the values of the stochastic games with a random duration clock converge, and the limit is equal to the value of the stochastic game. Ziliotto [START_REF] Ziliotto | A Tauberian theorem for nonexpansive operators and applications to zero-sum stochastic games[END_REF] considered weighted-average stochastic games, that is, stochastic games where Player 1 maximizes in expectation a fixed weighted average of the sequence of rewards, namely m≥1 θ m g(k m , i m , j m ). If m≥1 |θ p m+1 -θ p m | converges to zero for some p > 0, then the values of the weighted-average stochastic games converge, and the limit is equal to the value of the stochastic game. Neyman [START_REF] Neyman | Stochastic games with short-stage duration[END_REF] considered discounted stochastic games in continuous time and proved that their value coincides with the value of the discrete model. Finally, Oliu-Barton and Ziliotto [START_REF] Oliu-Barton | Constant payoff in zero-sum stochastic games[END_REF] proved that stochastic games satisfy the constant pay-off property, as conjectured by Sorin, Venel and Vigeral [START_REF] Sorin | Asymptotic properties of optimal trajectories in dynamic programming[END_REF]. That is, for sufficiently small λ, any pair of optimal strategies of the discounted game (K, I, J, g, q, k, λ) has the property that, in expectation, the average of the cumulated λ-discounted sum of rewards on any set of consecutive stages of cardinality of order 1/λ is approximately equal to v k .

Characterization of the value. The first results on the value of stochastic games go back to the mid 1960s. By adapting the tools developed by Howard [START_REF] Howard | Dynamic Programming and Markov Processes[END_REF] for Markov decision problems, Hoffman and Karp [START_REF] Hoffman | On nonterminating stochastic games[END_REF] obtained a characterization for the limit of the λ-discounted values in the irreducible case (that is, when any pair of stationary strategies induces an irreducible Markov chain), in the spirit of an average cost optimality equation. Soon after, Blackwell and Ferguson [START_REF] Blackwell | The Big Match[END_REF] determined the value of the "Big Match", an example of a stochastic game whose value depends on the initial state. In the mid 1970s, Kolhberg [START_REF] Kohlberg | Repeated games with absorbing states[END_REF] introduced absorbing games, a class of stochastic games in which there is at most one transition between states, and which includes the Big Match as a particular case. Kohlberg proved that these games have a value, and provided a characterization using the derivative of Shapley's operator. Two additional characterizations for the value of absorbing games were obtained recently by Laraki [START_REF] Laraki | Explicit formulas for repeated games with absorbing states[END_REF] and by Sorin and Vigeral [START_REF] Sorin | Existence of the limit value of two person zero-sum discounted repeated games via comparison theorems[END_REF], respectively.

Algorithms. Whether the value of a finite stochastic game can be computed in polynomial time is a famous open problem in computer science. This problem is intriguing because the class of simple stochastic games is both NP and co-NP, and several important problems with this property have eventually been shown to be polynomial-time solvable, such as primality testing or linear programming. (A simple stochastic game is one where the transition function depends on one player's action at each state.) The known algorithms fall into two categories: decision procedures for the first order theory of the reals, such as [START_REF] Chatterjee | Stochastic limit-average games are in EXPTIME[END_REF][START_REF] Etessami | Recursive concurrent stochastic games[END_REF][START_REF] Solan | Computing uniformly optimal strategies in two-player stochastic games[END_REF], and value or strategy iteration methods, such as [START_REF] Henzinger | Strategy improvement for concurrent reachability games[END_REF][START_REF] Rao | Algorithms for discounted stochastic games[END_REF]. All of them are worst-case exponential in the number of states or in the number of actions. Recently, Hansen, Koucký, Lauritzen, Miltersen and Tsigaridas [START_REF] Hansen | Exact algorithms for solving stochastic games[END_REF] achieved a remarkable improvement by providing an algorithm which is polynomial in the number of actions, for any fixed number of states. However, the dependence on the number of states is both non-explicit and doubly exponential. Based on the characterization of the value obtained in the present paper, Oliu-Barton [START_REF] Oliu-Barton | New algorithms for solving stochastic games[END_REF] improved the algorithm of Hansen et al. [START_REF] Hansen | Exact algorithms for solving stochastic games[END_REF] by significantly reducing the dependence on the number of states to an explicit polynomial dependence on the number of pure stationary strategies. Although not polynomial in the number of states, this algorithm is the most efficient algorithm that is known today.

Main results

As already argued, the value is a very robust solution concept for stochastic games. Its existence was proved nearly 40 years ago, and an explicit characterization has been missing since then. The main contribution of the present paper is to provide a tractable formula for the value of stochastic games.

Our result relies on a new characterization of the discounted values, which is obtained by reducing a discounted stochastic game with n states to n independent parameterized matrix games, one for each initial state.

For the rest of the paper, 1 ≤ k ≤ n denotes a fixed initial state. The parameterized game that corresponds to k is simply obtained by linearizing the ratio in (2.3) for all pairs of pure stationary strategies, as follows.

Definition 2.1 For any z ∈ R, define the matrix W k λ (z) of size |I| n × |J| n by setting W k λ (z)[i, j] := d k λ (i, j) -zd 0 λ (i, j) ∀(i, j) ∈ I n × J n .
Theorem 1 (A formula for the discounted values). For any λ ∈ (0, 1], the value of the discounted stochastic game (K, I, J, g, q, k, λ) is the unique solution to

z ∈ R, val W k λ (z) = 0 .
Theorem 2 (A formula for the value). For any z ∈ R, the limit F k (z) := lim λ→0 val W k λ (z)/λ n exists in R ∪ {±∞}. The value of the stochastic game (K, I, J, g, q, k) is the unique solution to

w ∈ R, z > w ⇒ F k (z) < 0 z < w ⇒ F k (z) > 0 .
Comments 1. Theorem 1 provides an uncoupled characterization of the discounted values. That is, each initial state is considered separately. This property, which contrasts with Shapley's [START_REF] Shapley | Stochastic games[END_REF] characterization, provides the key to Theorem 2.

2. Theorem 1 can be extended to stochastic games with compact action spaces and continuous pay-off and transition functions, but Theorem 2 cannot because the discounted values may fail to converge in this case.

3. Theorem 2 provides a new and elementary proof of the convergence of the λ-discounted values as λ tends to 0.

4. Theorem 2 captures the characterization of the value for absorbing games obtained by Kohlberg [START_REF] Kohlberg | Repeated games with absorbing states[END_REF].

5. The sign of F k (z) can be easily computed using linear programming techniques. This is a crucial aspect of the formula of Theorem 2.

6. Theorems 1 and 2 suggest binary search algorithms for computing, respectively, the discounted values and the value, by successively evaluating the sign of val W k λ (z) and of F k (z) for well-chosen z. These algorithms are polynomial in the number of pure stationary strategies. The precise description and analysis of these algorithms is the object of a separate paper [START_REF] Oliu-Barton | New algorithms for solving stochastic games[END_REF]. For completeness, we provide a brief description in Section 5.

A formula for the discounted values

In this section we prove Theorem 1. In the sequel, we consider a fixed discounted stochastic game (K, I, J, g, q, k, λ). The proof is based on the following four properties:

1. d 0 λ (i, j) is positive for all (i, j) ∈ I n × J n . 2. (x, y, z) → d 0 λ (x, y) -zd k λ (x, y) is a multi-linear map. 3. z → val W k λ (z) is a strictly decreasing real map. 4. val W k λ (v k λ ) = 0.
Indeed, Theorem 1 clearly follows from the last two. The extension of this result to the more general framework of compact-continuous stochastic games (that is, stochastic games with compact metric action spaces and continuous pay-off and transition functions) proceeds along the same lines, and is postponed to Section 6.2.

Notation. We use the following notation:

• For any x = (x 1 , . . . , x n ) ∈ ∆(I) n we denote by x ∈ ∆(I n ) the element that corresponds to the direct product of the coordinates of x. Formally,

x(i) := n ℓ=1 x ℓ (i ℓ ) ∀ i = (i 1 , . . . , i n ) ∈ I n .
The map x → x is one-to-one, and defines the canonical inclusion ∆(I) n ⊂ ∆(I n ). The map y → ŷ is defined similarly, and gives the canonical inclusion ∆(J) n ⊂ ∆(J n ).

• The bold letters x and y refer to elements of ∆(I n ) and ∆(J n ), respectively.

• For all z ∈ R and all (x, y) ∈ ∆(I n ) × ∆(J n ) we set

W k λ (z)[x, y] := (i,j)∈I n ×J n x(i) W k λ (z)[i, j] y(j).
We now prove the four properties above. The first is due to Ostrovski [START_REF] Ostrowski | Sur la détermination des bornes inférieures pour une classe des determinants[END_REF], and for completeness we provide a short proof. Lemma 3.1 For any stochastic matrix P of size n × n and any λ ∈ (0, 1], det(Id -(1 -λ)P ) ≥ λ n .

Proof. Set M := Id -(1 -λ)P . Because P is a stochastic matrix, M ℓ,ℓℓ ′ =ℓ |M ℓ,ℓ ′ | ≥ λ for all 1 ≤ ℓ ≤ n. Hence, M is strictly diagonally dominant. For any µ ∈ R so that µ < λ, the matrix M -µ Id is still strictly diagonally dominant, so in particular it is invertible. Consequently, all real eigenvalues of M are larger than or equal to λ. Similarly, for any µ = a + bi ∈ C so that |µ| := √ a 2 + b 2 < λ, the matrix M -µ Id is strictly diagonally dominant, so that M -µ Id is invertible. Consequently, if a+bi is a complex eigenvalue of M , then λ ≤ |a+bi|, so that λ 2 ≤ |a+bi| 2 = a 2 +b 2 = (a+bi)(a-bi). Recall that det M = n ℓ=1 µ ℓ , where µ 1 , . . . , µ n are the eigenvalues of M counted with multiplicities. Because each real eigenvalue contributes at least λ in the product, and each pair of conjugate eigenvalues contributes at least λ 2 , it clearly follows that det M ≥ λ n . Lemma 3.2 For any (x, j) ∈ ∆(I) n × J n and z ∈ R,

(i) d 0 λ (x, j) = i∈I n x(i)d 0 λ (i, j). (ii) d k λ (x, j) = i∈I n x(i)d k λ (i, j). (iii) W k λ (z)[x, j] = d k λ (x, j) -zd 0 λ (x, j).
Proof. (i) Let j ∈ J n be fixed. For any x ∈ ∆(I n ) set M (x, j) := Id -(1 -λ)Q(x, j), so that det M (x, j) = d 0 λ (x, j) and, in particular, det M (i, j) = d 0 λ (x, j) for all i ∈ I n . By (2.1), the first row of M (x, j) depends on x only through x 1 , and the dependence is linear. Write x as a convex combination of the stationary strategies {(i, x 2 , . . . , x n ), i ∈ I}, and use the multi-linearity of the determinant to obtain det M (x, j) = det i∈I x 1 (i)M ((i, x 2 , . . . , x n ), j)

= i∈I x 1 (i) det M (i, x 2 , . . . , x n ), j .
Using the same argument for the remaining rows, one inductively obtains that det M (x, j) is equal to

i 1 ∈I x 1 (i 1 ) i 2 ∈I x 2 (i 2 ) • • • i n ∈I x n (i n ) det M (i 1 , i 2 , . . . , i n ), j ,
which is equal to i∈I n x(i) det M (i, j) by the definition of x.

(ii) The proof goes along the same lines as (i). Fix j ∈ J n . For any x ∈ ∆(J) n , let M k (x, j) be the matrix obtained by replacing the k-th column of M (x, j) by λg(x, j), so that det M k (x, j) = d k λ (x, j) and, in particular, det M k (i, j) = d k λ (i, j) for all i ∈ I n . By (2.1) and (2.2), the ℓ-th row of M k (x, j) depends on x only through x ℓ , and that the dependence is linear. Like in (i), these properties imply the desired result, namely det M k (x, j) = i∈I n x(i) det M k (i, j).

(iii) The result follows directly from (i), (ii), and the definition of

W k λ (z)[ x, j]. Indeed, W k λ (z)[ x, j] = i∈I n x(i)W k λ (z)[i, j] = i∈I n x(i)d k λ (i, j) -z i∈I n x(i)d 0 λ (i, j) = d k λ (x, j) -zd 0 λ (x, j).
Remark. Lemma 3.2 is stated for all (x, j) for convenience, but is also valid for all (x, y).

The last property, for instance, can be stated as follows. For all (x, y, z) ∈ ∆(I) n × ∆(J) n × R,

W k λ (z)[x, ŷ] = d k λ (x, y) -zd 0 λ (x, y). Lemma 3.3 For any (z 1 , z 2 ) ∈ R 2 so that z 1 < z 2 , val W k λ (z 1 ) -val W k λ (z 2 ) ≥ (z 2 -z 1 )λ n .
In particular, z → val W k λ (z) is a strictly decreasing real map.

Proof. By definition, Q(i, j) is a stochastic matrix of size n × n for each (i, j) ∈ I n × J n . Hence, by Lemma 3.1,

d 0 λ (i, j) = det(Id -(1 -λ)Q(i, j)) ≥ λ n ∀(i, j) ∈ I n × J n .
Therefore, for all z 1 < z 2 and (i, j),

W k λ (z 1 )[i, j] -W k λ (z 2 )[i, j] = (z 2 -z 1 )d 0 λ (i, j) ≥ (z 2 -z 1 )λ n .
The result follows then from the monotonicity of the value operator, stated in item (ii) of Section 2.1.

Lemma 3.4 val W k λ (v k λ ) = 0 .
Proof. By Lemma 3.2 (iii), the relation

W k λ (v k λ )[ x, j] = d k λ (x, j) -v k λ d 0 λ (x, j) (3.1)
holds for all (x, j) ∈ ∆(I) n × J n . Let x * ∈ ∆(I) n be an optimal stationary strategy of Player 1 in (K, I, J, g, q, k, λ), which exists by Shapley [START_REF] Shapley | Stochastic games[END_REF] as already noted in item (v) of Section 2.2, and let x * ∈ ∆(I n ) denote the direct product of its coordinates. The optimality of x * implies 

γ k λ (x * , j) = d k λ (x * , j) d 0 λ (x * , j) ≥ v k λ . The matrix Q(x * , j) is stochastic of size n × n so that d 0 λ (x * , j) = det(Id -(1 -λ)Q(x * , j)) ≥ λ n > 0 by Lemma 3.1. Consequently, the previous relation is equivalent to d k λ (x * , j) -v k λ d 0 λ (x * , j) ≥ 0. (3.2) Therefore, W k λ (v k λ )[ x * ,
val W k λ (v k λ ) ≥ min j∈J n W k λ (v k λ )[ x * , j] ≥ 0 .
By reversing the roles of the players one similarly obtains an analogue of Lemma 3.2 for all (i, y) ∈ I n × ∆(J) n , and then val W k λ (v k λ ) ≤ 0, which gives the desired result.

Proof of Theorem 1. By Lemma 3.3, z → val W k λ (z) is a strictly decreasing real function. Consequently, the set {z ∈ R, val W k λ (z) = 0} contains at most one element. By Lemma 3.4, this element is precisely v k λ .

A formula for the value

In this section we prove Theorem 2. Before we establish this result, we show that the limit F k (z) := lim λ→0 val W k λ (z)/λ n exists in R ∪ {-∞, +∞} for all z ∈ R, and that the equation

w ∈ R, z > w ⇒ F k (z) < 0 z < w ⇒ F k (z) > 0 (4.1)
admits a unique solution. This is shown in the following two lemmas.

Lemma 4.1 Let z ∈ R. Then, there exists a rational fraction R and λ 0 > 0 so that

val W k λ (z) = R(λ) ∀λ ∈ (0, λ 0 ) .
Proof. By construction, the entries of W k λ (z) are polynomials in λ. By Shapley and Snow [START_REF] Shapley | Basic solutions of discrete games[END_REF], the value of a matrix satisfies the formula stated in item (iv) of Section 2.1. Consequently, for any λ ∈ (0, 1], there exists a rational fraction R so that val W k λ (z) = R(λ). Because the choice of the square sub-matrix may vary with λ, the corresponding rational fraction may also vary. However, as the number of possible square sub-matrices is finite, so is the number of possible rational fractions that may satisfy this equality. Consequently, there exists a finite collection E = {R 1 , . . . , R L } of rational fractions so that for each λ ∈ (0, 1] there exists R ∈ E that satisfies val W k λ (z) = R(λ). Hence, for any λ, the point (λ, val W k λ (z)) belongs to the union of the graphs of the functions R 1 , . . . , R L . As already noted in item (iii) of Section 2.1, the map λ → val W k λ (z) is continuous on (0, 1]. Consequently, as λ varies on the interval (0, 1], the curve λ → (λ, val W k λ (z)) can "jump" from the graph of R to the graph of R ′ only at points where these two graphs intersect. Yet, for any two rational fractions, either they are congruent or they intersect finitely many times. Hence, there exists λ 0 so that, for any R, R ′ ∈ E, either R(λ) = R ′ (λ) for all (0, λ 0 ) or R(λ) = R ′ (λ) for all (0, λ 0 ). In particular, there exists R ∈ E so that val W k λ (z) = R(λ) for all (0, λ 0 ).

Lemma 4.2 Equation (4.1) admits a unique solution.

Proof. By Lemma 4.1, lim λ→0 val W k λ (z)/λ n exists for all z ∈ R. Suppose that (4.1) admits two solutions w < w ′ . Then, for any z ∈ (w, w ′ ) one has F k (z) < 0 and F k (z) > 0, which is impossible. Therefore, (4.1) admits at most one solution. Let (z 1 , z 2 ) ∈ R 2 satisfy z 1 < z 2 . Rearranging the terms in Lemma 3.3, dividing by λ n and taking λ to 0 yields

F k (z 1 ) ≥ F k (z 2 ) + z 2 -z 1 . (4.2) 
In particular, the following relations hold:

     F k (z) ≥ 0 ⇒ F k (z ′ ) ≥ 0, ∀z ′ ≤ z F k (z) ≤ 0 ⇒ F k (z ′ ) ≤ 0, ∀z ′ ≥ z F k (z) = 0 ⇒ F k (z ′ ) = 0, ∀z ′ = z . (4.3) 
We now show that F k is not constant, which is still compatible with (4.2) if F k ≡ +∞ or F k ≡ -∞. Let C -:= min k,i,j g(k, i, j) and C + := max k,i,j g(k, i, j). For any λ ∈ (0, 1], one clearly has

C -≤ v k λ ≤ C + . Consequently, by Lemma 3.3, val W k λ (C + ) ≤ val W k λ (v k λ ) ≤ val W k λ (C -) .
Dividing by λ n and taking λ to 0 one obtains

F k (C + ) ≤ 0 ≤ F k (C -) . (4.4) 
We now define recursively two real sequences (u - m ) m≥1 and (u + m ) m≥1 by setting u - 1 := C -, u + 1 := C + and, for all m ≥ 1,

u - m+1 := 1 2 (u - m + u + m ) if F k 1 2 (u - m + u + m ) ≥ 0 u - m otherwise, u + m+1 := 1 2 (u - m + u + m ) if F k 1 2 (u - m + u + m ) ≤ 0 u + m otherwise . By construction, F k (u - m ) ≥ 0 and F k (u + m ) ≤ 0 for all m ≥ 1. Moreover, (4.3) and (4.4) imply C -≤ u - m ≤ u + m ≤ C + for all m ≥ 1, so that (u - m ) m is non-decreasing and (u + m ) m is non- increasing. Furthermore, u + m+1 -u - m+1 ≤ 1 2 (u + m -u - m ) for all m ≥ 1.
Hence, the two sequences admit a common limit ū. For any ε > 0, let m ε be such that u - mε > ū -ε. By (4.2), this implies

F k (ū -ε) ≥ F k (u - mε ) + u - mε -(ū -ε) > 0 .
Similarly, F k (ū + ε) < 0 for any ε > 0. Together with (4.3), this shows that ū is a solution to (4.1).

We are now ready to prove our main result.

Proof of Theorem 2. Let w be the unique solution (4.1) and fix ε > 0. By the choice of w, F k (w -ε) > 0. Consequently, there exists λ 0 > 0 so that

val W k λ (w -ε) > 0 ∀λ ∈ (0, λ 0 ) . (4.5) 
By Lemma 3.3, the map z → val W k λ (z) is strictly decreasing. By Lemma 3.4, val W k λ (v k λ ) = 0. Therefore, (4.5) implies

v k λ > w -ε ∀λ ∈ (0, λ 0 ) . (4.6) 
Because ε is arbitrary, lim inf λ→0 v k λ ≥ w. By reversing the roles of the players, one obtains in a similar manner lim sup λ→0 v k λ ≤ w . Hence, the λ-discounted values converge as λ goes to 0, and lim λ→0 v k λ = w. The result follows then from item (vi) of Section 2.2, namely the existence of the value v k and the equality lim λ→0 v k λ = v k , due to Mertens and Neyman [START_REF] Mertens | Stochastic games[END_REF].

Algorithms

The formulas obtained in Theorems 1 and 2 suggest binary search methods for approximating the λ-discounted values and the value of a stochastic game (K, I, J, g, q, k), based on the evaluation of the sign of the real functions z → val W k λ (z) and z → F k (z), respectively. In this section we provide a brief description of these algorithms, and discuss their complexity using the logarithmic cost model (a model which accounts for the total number of bits which are involved). We refer the reader to [START_REF] Oliu-Barton | New algorithms for solving stochastic games[END_REF] for more technical details, and for two additional algorithms which provide exact expressions for v k λ and v k within the same complexity class.

Notation. For any

m ∈ N, let E m := {0, 1 m , 2 m , . . . , m m } and Z m := {0, 1 2 m , 2 2 m , . . . , 2 m 2 m }.
seem problematic due to the limiting nature of the function F k . However, this difficulty can be overcome thanks to the following result.

Proposition 5.1 (Proposition 3.6 of [START_REF] Oliu-Barton | New algorithms for solving stochastic games[END_REF]) For any r ∈ N, introduce λ r := 4nd(bit(n) + bit(d) + bit(N )) -rnd, where for each p ∈ N, bit(p) := ⌈log 2 (p + 1)⌉ is the number of bits of p.

Then, the sign of F k (z) is equal to the sign of val W k λr (z) for all z ∈ Z r . Indeed, Proposition 5.1 implies that the computation in Step 2.2 can be replaced with the computation of val W k λr (z). By the choice of λ r and z, the number of bits which are needed to encode W k λr (z) is polynomial in n, |I| n , |J| n , log N and r, so that the computation in Step 2.2 is polynomial in these variables, and the same is true for the entire algorithm.

Remarks and extensions

First, we provide an alternative definition of the parameterized games W k λ (z). Second, we extend Theorem 1 to the more general framework of stochastic games with compact metric action sets and continuous pay-off and transition function, and explain why the extension of Theorem 2 fails. Finally, we show that the formula obtained by Kohlberg [START_REF] Kohlberg | Repeated games with absorbing states[END_REF] for the value of absorbing games is captured by Theorem 2.

An alternative formulation of the parameterized games

The parameterized game W k λ (z) plays a crucial role both in Theorems 1 and 2. We provide an alternative construction of this game which is based on the Kronecker product of matrices. Let U denote a matrix of ones of size |I| × |J|. For each 1 ≤ ℓ, ℓ ′ ≤ n, consider the matrices Q ℓ,ℓ ′ = (q(ℓ ′ | ℓ, i, j)) i,j and G ℓ = (g(ℓ, i, j)) i,j , and use them to form the following n × (n + 1) array of matrices of size |I| × |J|:

D λ =    -λG 1 U -(1 -λ)Q 1,1 . . . -(1 -λ)Q 1,n . . . . . . . . . . . . -λG n -(1 -λ)Q n,1 . . . U -(1 -λ)Q n,n    .
For any 0 ≤ ℓ ≤ n, let D ℓ λ be the n × n array of matrices obtained by removing the (ℓ + 1)-th column of matrices from D. Denote by det ⊗ the determinant of a square array of matrices, developed along columns and where the products are replaced with the Kronecker product of matrices. By construction, det ⊗ D 0 λ = (d 0 λ (i, j)) i,j and (-1) k det ⊗ D k λ = (d k λ (i, j)) i,j , so that

W k λ (z) = (-1) k det ⊗ D k λ -z det ⊗ D 0 λ .
The linearity relations established in Lemma 3.2 can also be deduced from the properties of the Kronecker product. This alternative expression for W k λ (z) is reminiscent of (or, rather, inspired by) the theory of multi-parameter eigenvalue problems initiated by Atkinson in the 1960s, see Chapter 6 of [START_REF] Atkinson | Multiparameter Eigenvalue Problems[END_REF]. The interesting connection which exists between stochastic games and multi-parameter eigenvalue problems is developed by L.A. and M.O-B. in a forthcoming paper [START_REF] Attia | Shapley-Snow kernels, multiparameter eigenvalue problems and stochastic games[END_REF].

Compact-continuous stochastic games

Throughout this section we consider stochastic games (K, I, J, g, q), where K = {1, . . . , n} is a finite set of states, I and J are two compact metric sets, and g and q are continuous functions. These games are referred to as compact-continuous stochastic games, for short. We denote by ∆(I) and ∆(J), respectively, the sets of probability distributions over I and J. These sets are compact when endowed with the weak* topology. For any (α, β) ∈ ∆(I) × ∆(J), we denote its direct product by α ⊗ β ∈ ∆(I × J). For all 1 ≤ ℓ, ℓ ′ ≤ n and u ∈ R n , we set

g(ℓ, α, β) := I×J g(ℓ, i, j) d(α ⊗ β)(i, j) q(ℓ ′ |ℓ, α, β) := I×J q(ℓ ′ |ℓ, i, j) d(α ⊗ β)(i, j), ρ ℓ λ,u (α, β) := λg(ℓ, α, β) + (1 -λ) n ℓ ′ =1 q(ℓ ′ |ℓ, α, β).
By the minmax theorem stated in item (i) of Section 2.1, the zero-sum game (∆(I), ∆(J), ρ ℓ λ,u ) has a value, so one can define the Shapley operator Φ(λ, • ) : R n → R n like in the finite case. Furthermore, the compact-continuous stochastic game (K, I, J, g, q, k, λ) has a value v k λ , which is the unique fixed point of Φ(λ, • ), and both players have optimal stationary strategies. These results are well-known.

Extension of Theorem 1. Theorem 1 can be extended to compact-continuous stochastic games.

The proof goes along the same lines. Like in the finite case, any pair of stationary strategies (x, y) ∈ ∆(I) n × ∆(J) n induces a Markov chain with state-dependent rewards. Let Q(x, y) ∈ R n×n and g(x, y) ∈ R n denote the transition matrix of this chain and the vector of expected rewards. Formally, they are defined like in (2.1) and (2.2), but replacing, for 1 ≤ ℓ, ℓ ′ ≤ n, the sum (i,j)∈I×J x ℓ (i)y ℓ (j) with the corresponding integral I×J d(x ℓ ⊗ y ℓ )(i, j). Similarly, let γ λ (x, y) ∈ R n be the vector of expected normalized λ-discounted sum of rewards, which is well-defined because the state k, the pair (x, y), and the transition function q induce a unique probability measure over (K × I × J) N on the sigma-algebra generated by the cylinders, by the Kolmogorov extension theorem. Like in the finite case,

γ k λ (x, y) = d k λ (x, y) d 0 λ (x, y)
, where d 0 λ (x, y) := det(Id -(1-λ)Q(x, y)) = 0 and where d k λ (x, y) is the determinant of the n×nmatrix obtained by replacing the k-th column of Id -(1 -λ)Q(x, y) with λg(x, y). Lemma 3.2 can be extended word for word, by replacing sums with the corresponding integrals, and setting

x := x 1 ⊗ • • • ⊗ x n ∈ ∆(I n ).
For each z ∈ R, the auxiliary game W k λ (z) can be defined in a similar manner by setting

W k λ (z)[i, j] := d k λ (i, j) -zd 0 λ (i, j) ∀(i, j) ∈ I n × J n .
Note that W k λ (z) is no longer a matrix, but a mapping from the compact metric set I n × J n to R. Like in the finite case, consider the mixed extension of this game, that is: the zero-sum game with action sets ∆(I n ) and ∆(J n ) and pay-off function

W k λ (z)[x, y] := I n ×J n W k λ (z)[i, j] d(x ⊗ y)(i, j) .
By the minmax theorem stated in item (i) of Section 2.1, this game admits a value, denoted by val W k λ (z). Lemmas 3.3 and 3.4 can thus be extended word for word as well; it is enough to replace all sums with the corresponding integrals. The extension of Theorem 1 follows directly from these two lemmas.

Extension of Theorem 2. Theorem 2 cannot be extended to compact-continuous stochastic games. Indeed, Vigeral [START_REF] Vigeral | A zero-sum stochastic game with compact action sets and no asymptotic value[END_REF] provided an example of a stochastic games with compact action sets and continuous pay-off and transition functions for which the discounted values do not converge. In this sense, the extension of our result to this framework is not possible. However, we point out that only one point in our proof is problematic. Indeed, the failure occurs in the use of Lemma 4.1, which relies on the formula stated as Property (iv) in Section 2.1, which only holds in the finite case. For infinite action sets it is no longer true that λ → val W k λ (z) is a rational fraction in λ in a neighborhood of 0 for all z ∈ R, which was crucial to prove the existence of the limit F k (z) := lim λ→0 val W k λ (z)/λ n . Determining necessary and sufficient conditions on I, J, g, and q which ensure the convergence of the discounted values or the existence of the value is an open problem. Bolte, Gaubert and Vigeral [START_REF] Bolte | Definable zero-sum stochastic games[END_REF] provided sufficient conditions, namely that g and q are separable and definable. Without going into a precise definition of these two conditions, they hold in particular when the pay-off function g and the transition q are polynomials in the players' actions. However, the case where I, J, g, and q are semi-algebraic is still unsolved. (A subset E of R d is semi-algebraic if it is defined by finitely many polynomial inequalities; a function is semi-algebraic if its graph is semi-algebraic.)

Absorbing games

We now show that Kohlberg's result [START_REF] Kohlberg | Repeated games with absorbing states[END_REF] on absorbing games is captured in Theorem 2. An absorbing game is a stochastic game (K, I, J, g, q, k) so that, for some fixed state k 0 ∈ K, q(k | k, i, j) = 1 ∀(i, j) ∈ I × J , ∀ k = k 0 .

For any initial state k = k 0 , the state does not evolve during the game and, as a consequence, v k λ is equal to the value of the matrix (g(k, i, j)) (i,j)∈I×J for all λ ∈ (0, 1] and k = k 0 . We will use the notation v k to emphasize that v k λ does not depend on λ, for all k = k 0 .

Notation. We assume without loss of generality that k 0 = 1, and set u(z) := (z, v 2 , . . . , v n ) for all z ∈ R.

Kolhberg's result. Every absorbing game (K, I, J, g, q, 1) has a value, denoted by v 1 , which is the unique point where the function T : R → R ∪ {±∞} changes sign, where T is defined using the Shapley operator by

T (z) := lim λ→0 Φ 1 (λ, u(z)) -z λ ∀z ∈ R .
Comparison to our result. We claim that F 1 = T in the class of absorbing games. To see this, first of all note that for all (i, j) ∈ I n × J n ,

d 0 λ (i, j) = λ n-1 1 -(1 -λ)q(1 | 1, i 1 , j 1 ) d 1 λ (i, j) = λ n-1 λg(1, i 1 , j 1 ) + (1 -λ) n ℓ=2 q(ℓ | 1, i 1 , j 1 )v ℓ .
Thus, for any z ∈ R, W 1 λ (z) = λ n-1 λg(1, i 1 , j 1 ) + (1 -λ) n ℓ=1 q(ℓ |1, i 1 , j 1 )u ℓ (z) -z i,j

.

In particular, W 1 λ (z) depends on (i, j) ∈ I n × J n only through (i 1 , j 1 ) ∈ I × J. Eliminating the redundant rows and columns of W 1 λ (z) one thus obtains the matrix λ n-1 (G 1 λ,u -zU ), where G 1 λ,u is the |I| × |J|-matrix described in item (v) of Section 2.2, and U is a matrix of ones of the same size. The affine invariance of the value operator, namely val(cM + dU ) = c val M + d for any matrix M and any (c, d) ∈ (0, +∞) × R, gives then val W 1 λ (z) λ n = λ n-1 val (G 1 λ,u(z) -zU ) λ n = Φ 1 (λ, u(z)) -z λ .

Taking λ to 0 gives the desired equality, F 1 = T .

  y)) and where d k λ (x, y) is the determinant of the n × nmatrix obtained by replacing the k-th column of Id -(1 -λ)Q(x, y) with λg(x, y).

  j] ≥ 0 follows from (3.1) and (3.2). For any matrix M = (m a,b ) of size p × q and any s ∈ ∆({1, . . . , p}), the definition of the value implies that val M ≥ min 1≤b≤q 1≤a≤p s(a)m a,b . Consequently,
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Computing the discounted values

The following bisection algorithm, which is directly derived from Theorem 1, inputs a discounted stochastic game with rational data and outputs an arbitrarily close approximation of its value.

Input. A discounted stochastic game (K, I, J, g, q, k, λ) so that, for some (N, L) ∈ N 2 , the functions g and q take values in E N and λ ∈ E L , and a precision level r ∈ N.

, and the number of iterations of the "while" loop is bounded by r. Also, the complexity of each iteration depends crucially on the complexity of Step 2.2. First of all, one needs to determine the matrix W k λ (z) for some z ∈ Z r , and this requires the computation of two n × n determinants for each of its |I| n × |J| n entries. Algorithms for computing the determinant of a matrix exist which are polynomial in its size and in the number of bits that which are needed to encode this matrix. Second, the choice of z and Hadamard's inequality imply that the number of bits which are needed to encode W k λ (z) is polynomial in n, |I| n , |J| n , log N , log L and r. Third, computing the value of a matrix can be done with linear programming techniques, and algorithms exist (for example, Karmarkar [START_REF] Karmarkar | A new polynomial-time algorithm for linear programming[END_REF]) which are polynomial in its size and in the number of bits which are needed to encode this matrix. Consequently, the computation cost of Step 2.2 is polynomial in n, |I| n , |J| n , log N , log L and r, and the same is true for the entire algorithm.

Computing the value

The following bisection algorithm, which is directly derived from Theorem 2, inputs a stochastic game with rational data and outputs an arbitrarily close approximation of its value.

Input. A stochastic game (K, I, J, g, q, k) so that, for some N ∈ N, the functions g and q take values in E N , and a precision level r ∈ N.

Like before, the output u satisfies |u -v k | ≤ 2 -r , the number of iterations of the "while" loop is bounded by r, and the variable z always takes values in the set Z r . Unlike before, however, each iteration requires computing the sign of F k (z) at Step 2.2, a computation that might