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Abstract

Thanks to an adaptive variational multi-scale method for multiphase flows with

surface tension, we investigate through direct numerical simulations and scaling laws

the buckling of filaments of power-law fluids compressed at a constant velocity by

two parallel pistons. Under low gravity (the Laplace pressure exceeds the hydrostatic

pressure) and inertial conditions (very small Reynolds numbers), two regimes are

observed for slender filaments: a first one driven by the capillary force and during

which there is no deflection; and a second folding regime that is dominated by the

compressive viscous force. The transition between these two scenarios is given by

a critical capillary number, which in turn appears as an increasing function of the

flow behaviour index. Our main results are summarised in two-dimensional phase

diagrams whose axes are a slenderness parameter and the capillary number.
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1 Introduction

Under compression stresses, free liquid filaments and/or jets develop some of

the most fascinating instabilities in fluid mechanics: the buckling ones (Barnes

and Woodcock, 1958). Beyond a critical axial load, slender viscous fluid fil-

aments tend to buckle, as the energy related to the buckling deformation

becomes smaller than the cost of compression (Taylor, 1969; Cruickshank,

1988; Yarin and Tchavdarov, 1996; Mahadevan et al., 1998, 2000). For small

Newtonian fluid filaments compressed at a very small Reynolds number (neg-

ligible inertial force), for instance, the folding deformation emerges from a

competition between geometrical, surface tension and viscous effects (Le Mer-

rer et al., 2012). In addition, Newtonian viscous jet columns can bend, twist

and stretch when hitting a surface or a substrate at higher Reynolds numbers,

following the balance between viscous, gravitational, and inertial forces (Ribe,

2003; Ribe et al., 2006, 2012). Such instabilities are observed in a variety of

contexts, which includes glass plate fabrication (Pilkington, 1969), polymer

processing (Pearson, 1985), and folding of geological structures (Griffiths and

Turner, 1988; Johnson and Fletcher, 1994).

Typically, in industry, the buckling instability represents a major source of

irregularities for container-filling processes related to non-Newtonian fluids.

More specifically, during these processes, the superposition of several coils,

consecutively formed as a result of the fluid filament compression, originates
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a helical fluid column, the centre of which is filled with air. Later on, this

column eventually collapses, entraining a significant amount of air towards

the fluid substrate and compromising the quality of the final product. Un-

derstanding and controlling the buckling instabilities when dealing with this

kind of processes is then crucial. Despite some recent and significant works

regarding these instabilities in Newtonian scenarios (Le Merrer et al., 2012;

Habibi et al., 2014; Ribe, 2017), many aspects of the problem remain unclear,

such as the effects of non-Newtonian signatures (pseudoplasticity, dilatancy,

thixotropy, yield stress etc.) on them (Tomé et al., 2019).

In the present work, we study the buckling of pseudoplastic, Newtonian and

dilatant fluid filaments, of which viscosity is given by a power-law constitutive

equation (Ostwald, 1925; Bird et al., 1987). The filaments are compressed at

a constant velocity by two parallel pistons, under both low gravity and low

inertia conditions. Following the compression process, the fluid deflection is

carefully analysed thanks to an adaptive variational multi-scale method for

three materials (air, non-Newtonian fluid, and pistons), with surface tension,

combined with a level-set function to provide a precise position of the phase

interfaces. Different deformation regimes are observed and explored in the light

of scaling laws. As a result, buckling criteria based on geometrical, surface

tension and non-Newtonian viscous effects are presented and discussed.

The organization of the paper is as follows. The description of the physical

formulation and numerical method is presented in Sections 2 and 3. Our main

results are discussed in Section 4, where the buckling of non-Newtonian fluid

filaments is analysed and summarised in two-dimensional phase diagrams.

Finally, conclusions are drawn in the closing section.
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2 Physical Formulation

Following the experimental steps described by Le Merrer et al. (2012), we first

create numerically a vertical filament of length h and diameter d by stretching

a Newtonian fluid of viscosity η located between two parallel pistons and

surrounded by air, as illustrated in Fig. 1(a). The filament (yellow part) is

then compressed by the pistons (silver parts) that move vertically with a

constant velocity U/2, inducing fluid deformations (Fig. 1b).

The computational approach used to simulate the filament stretching/compres-

sion process is based on a general solver (CIMLIB-CFD, a parallel, finite ele-

ment library; Coupez and Hachem, 2013) which takes into account the rheo-

logical behaviour of each fluid as well as surface tension effects. More precisely,

the Cauchy stress tensor σc is defined as

σc = −pI + τ , (1)

where, p is the pressure, I denotes the identity tensor and τ the extra stress

tensor. The extra stress tensor is given by

τ = 2ηD(u) , (2)

D(u) representing the strain rate tensor and u the velocity vector. The effec-

tive viscosity η is computed by using the power-law constitutive model. The

latter includes the Papanastasiou regularization (Papanastasiou, 1987):

η = kγ̇(m−1)
(
1− e−nγ̇

)
, (3)

where k is the flow consistency index, m denotes the flow behaviour index,

γ̇ represents the second invariant of the strain rate tensor (Bird et al., 1987)

4



and n is the Papanastasiou coefficient that allows to bound the value of the

effective viscosity for vanishing γ̇.

Our numerical methods are based on a Variational Multi-Scale (VMS) ap-

proach combined with anisotropic mesh adaptation with highly stretched ele-

ments (black lines in Fig. 1a), as presented by (Riber et al., 2016).

In order to capture the fluid/air, fluid/pistons and pistons/air interfaces as a

function of time, t, a level-set method, which enables the localization and the

capturing of interfaces has been used (Hachem et al., 2016). As described in

details in the following section, a level-set function is a signed distance func-

tion from each interface that is advected with the computed velocity. Velocity

and pressure fields are primitive unknowns that are computed using a unified

framework, where all fluids occupy a single computational mesh, by simply

mixing the different fluid properties (viscosity, density, etc.) using smoothed

Heaviside functions (built from each level-set function) to take property dis-

continuities into consideration.

In the framework presented above, adding surface tension stresses required a

specific treatment. The Continuum Surface Force (CSF) method (Brackbill

et al., 1992), which enables avoiding the computation of surface integrals by

means of a regularized Dirac function, is used. The corresponding momentum

equations reads:

ρ

(
∂u

∂t
+ u · ∇u− g

)
= −∇p+∇ · τ + fst , (4)

in which ρ, ∇, g , ∇· and fst are, respectively, the fluid density, the gradient

operator, the gravity vector, the divergence operator, and a capillary term
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related to the surface tension force, the latter being defined as:

fst = −σKΦ (Γ)n , (5)

where σ, K, Φ (Γ) and n are the fluid surface tension with air, the curvature

of its interface with air, the Dirac function locating the interface Γ, and its

normal vector, respectively. Recall that the use of a CSF method induces a

regularized Dirac function over a thickness of 2dmesh, where dmesh is the refined

mesh size at the interface. Further details of the present method are given in

Section 3 (see also Khalloufi et al., 2016).

Finally, the solid body motion of the pistons is prescribed by directly assign-

ing velocities to nodes of the grid located inside the pistons and by using a

penalty mixing rule on viscosities, piston viscosity being set around to 106

times the fluid viscosity (Valette et al., 2009, 2019). In practical terms, the

pistons are considered as a highly viscous Newtonian fluid (= 109 Pa·s). Initial

and boundary conditions for the flow equations are, respectively, initial rest

and zero normal stress in the air domain and prescribed velocity on pistons

domains.

The global method used in this work is illustrated in Fig. 1, where the mesh

(composed of approximately 106 elements) is depicted, adapted around each

interface. The corresponding zero-isovalues for each level-set function are also

shown. A wide range of filament fluid properties, filament diameter and length,

and compression velocity is considered: (O)101 < ρ < (O)103 kg/m3; 0.6 ≤

m ≤ 1.6; (O)100 < η < (O)103 Pa·s (which is a spatio-temporal function of γ̇,

as denoted by Eq. 3); (O)10−3 < σ < (O)10−1 N/m; (O)10−5 < d < (O)10−3

m; h ∼ (O)10−3 m; and (O)10−4 < U < (O)10−1 m/s. Lastly, both the air

viscosity and the air density are constant and respectively equal to 10−5 Pa·s
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and 1 kg/m3.

3 Level-set method and implicit surface tension

3.1 Level-set method

The level-set method enables the localization of the interface between two

phases. It consists of a signed distance function widely used in different sci-

entific fields (Osher and Fedkiw, 2003), the definition of which follows. Let Ω

denote the whole domain, Ωl the liquid part and Ωg the gas part. The level-

set function, α, is a signed distance related to the interface Γ = Ωl ∩ Ωg and

defined at each node X of Ω as:

α (X) =



−dist (X,Γ) , if X ∈ Ωl

0, if X ∈ Γ

dist (X,Γ) , if X ∈ Ωg .

(6)

The time-space evolution of the level-set function is described by the following

transport equation (Sussman et al., 1994):

∂α

∂t
+ u · ∇α = 0 . (7)

As a distance function, the level-set verifies ‖ ∇α ‖= 1. However, when the

interface is convected by a given velocity, the level-set can lose this property

and needs to be reinitialized to recover it. A common way to do so is to solve

the following Hamilton–Jacobi equation (Sussman et al., 1994):

∂α

∂tp
+ s (α) (‖ ∇α ‖ −1) = 0 , (8)
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where tp is a pseudo-time, and s (α) is the sign function of α. The steady state

solution of this non-linear hyperbolic equation will be a distance function from

the interface while keeping the zero iso-value unchanged. Following the lines

detailed by Coupez et al. (2015), we propose to filter the level-set function

in the vicinity of the interface, and thus reducing the computational cost and

ensuring mass conservation (Bonito et al., 2016). It consists first in truncating

the level-set function using the following expression:

α̃ = E tanh
(
α

E

)
, (9)

in which E is the thickness of the truncation. The truncated level-set now

verifies:

‖ ∇α̃ ‖= 1−
(
α̃

E

)2

. (10)

In the following lines of this section, we simplify the notations by dropping

the tilde and assuming that α denotes the truncated level-set function. Lastly,

combining both Eqs. (7) and (8), we find the auto-reinitialization level-set

equation (see also Bonito et al., 2016):

∂α

∂t
+ u · ∇α + λ s (α)

[
‖ ∇α ‖ −

(
1−

(
α

E

)2
)]

= 0 , (11)

where λ is a constant proportional to a velocity (see Bonito et al., 2016,

for more details). The classical Streamline Upwind Petrov–Galerkin (SUPG)

method is used to solve Eq. (11) for its ability to control the spurious oscilla-

tions in the convection-dominated regime. Supplemental details are provided

in Kallel et al. (2015). Initial and boundary conditions for the fluid level-set

equation are, respectively, the initial domain descriptions (as illustrated in

figure 1a) and a constant value of E at the domain boundaries. Additionally,

initial conditions for the pistons level-set equation are the initial domain de-

scriptions (as show in figure 1a). The values at the domain boundaries are
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then kept constant in time.

3.2 Implicit surface tension

As presented in Section 2, a common way to introduce the surface tension as a

volume source term in the momentum equations involves rewriting the surface

force as fst = −σKΦ (Γ)n (Eq. 5). Moreover, the use of a level-set function

enables the direct computation of the normal vector as n = ∇α/ ‖ ∇α ‖

and the mean curvature as K = −∇ · n. Consequently, the surface tension is

expressed as a function of the level-set:

−σKΦ (Γ)n = σΦε (α)

[
∇ · ∇α
‖ ∇α ‖

]
, (12)

where Φε (α) is a smoothed Dirac function (van der Pijl et al., 2005). According

to Hysing (2006), this implementation imposes a restriction on the time step

that must respect the propagation of the capillary wave cσ∆t
∆x

< 1
2
, in which

cσ =
√
σκ/2ρ̄ is the capillary wave phase velocity, ρ̄ is the average density at

the interface and ∆x denotes the mesh size. Taking into account the maximum

wave-number κ = π/∆x, the time step is restricted to ∆t < (∆x)3/2
√

ρ̄
2πσ

.

In addition, it is stated by Buscaglia and Ausas (2011) that the surface Lapla-

cian of an identity mapping function can be expressed according to the cur-

vature and the normal vector to this interface:

∆sIΓ = ∇s · ∇sIΓ = Kn . (13)

Following Hysing (2006), we represent the evolution of the position of the

interface in time:

IΓ
o+1 = IΓ

o + ∆tuo+1 , (14)
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where the index o + 1 is the current time and o the previous one. Applying

the surface Laplacian operator ∆s on Eq. (14) leads to:

− (Kn)o+1 = − (Kn)o + ∆t
(
∆su

o+1
)
. (15)

Multiplying Eq. (15) by the surface tension and dropping the exponent o in

the following lines for simplicity:

−σ (Kn)o+1 = −σ (Kn) + σ∆t
(
∆su

o+1
)
. (16)

In Eq. (16), we find that the surface Laplacian ∆s can be expressed in terms

of the standard Laplacian as follows:

∆su = ∇2
su = ∇2u− ∂2u

∂n2
−K∂u

∂n
, (17)

in which ∂u
∂n

= ∇ ·n. Therefore, the new surface tension force equation finally

reads:

fst = −σKΦ (α)n− σΦ (α) ∆t

(
∂2u

∂n2
+K

∂u

∂n
−∇2uo+1

)
. (18)

The usual term −σKΦ (α)n is thus completed by additional terms propor-

tional to the time step that act as an isotropic diffusion minus a diffusion in

the normal direction of the interface (Xu and Zhao, 2003). It is also important

to emphasise that when the time step tends to zero, the surface tension is

defined only by the usual term −σKΦ (α)n and, therefore, we retrieve the

explicit treatment.

4 Results and Discussion

As previously reported by Le Merrer et al. (2012), under both low gravity

(the Laplace pressure, 2σ/d, exceeds the hydrostatic pressure, ρgh/2) and low
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inertia (Re << 1, where the Reynolds number is Re = ρU2

k(U/h)m
) conditions,

non-slender Newtonian fluid columns are geometrically stable. In consequence,

no deflection, δ, is observed for d/h > 0.1 (the deflection condition being

defined here as δ > d). This observation is also valid for power-law fluids, as

it will be discuss later. Furthermore, two deformation regimes are identified

for slender power-law filaments (d/h ≤ 0.1): a first one driven by the capillary

force and during which there is no deflection; and a folding regime dominated

by the compressive viscous force. Therefore, the transition between these two

regimes can be analysed in the light of a capillary–viscous competition, i.e.

the capillary number, Ca (where Ca = k(U/h)m

σ/h
).

The two scenarios mentioned above are observed in Fig. 2 that illustrates the

compression of non-Newtonian filaments (blue parts) at a constant velocity,

U , by two parallel pistons (silver part) for two flow behaviour indexes: m = 0.8

(Figs. 2a and 2b; pseudoplastic or shear-thinning fluid) and m = 1.2 (Figs. 2c

and 2d ; dilatant or shear-thickening fluid). At Ca = 1.3, the shear-thinning

filament (Fig. 2a) is dominated by the capillary force, which prevents the

deflection during the compression. This stabilising effect vanishes at Ca = 13

(Fig. 2b) since the cost of compression becomes greater than the energy related

to the folding deformation, which is in turn driven by the viscous force. It is

worth noting, however, that no deflection is observed for the shear-thickening

fluid at Ca = 13 (Fig. 2c). Comparisons between Figs. 2(b) and 2(c) reveal

then that the introduction of dilatant effects can stabilise compressed fluid

filaments. Nevertheless, once again, an increase of Ca favours the deflection

and, consequently, at Ca = 47, the shear-thickening filament buckles (Fig.

2d).
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The time evolution of the off-z-axis deflection of the centreline for nine non-

Newtonian filaments is displayed in Fig. 3. Three different flow behaviour in-

dexes are considered: m = 0.6 (Fig. 3a), m = 0.8 (Fig. 3b), and m = 1.2 (Fig.

3c). For the first material, the buckling is only observed for capillary num-

bers greater than 0.7 (blue triangles and red diamonds). During the very first

instants that follow the beginning of the compression, the thread remains anti-

symmetric (δ(t) ≈ 0). Nevertheless, after a certain delay, the deflection starts

to increase, varying, initially, exponentially, δ
δ̇
∝ d2

hU
(or, simply δ(t) ∝ e

t
d2/Uh ),

and then with the square root of time, δ(t) ∝
√
t− t0 (where t represents

time and t0 denotes the instant from which the deflection develops following

a square root time dependence; solid lines). The initial exponential growth of

δ(t) for small deflections (δ < d) can be deduced from the internal–external

moment balance described by Euler’s Buckling Theory for elastic solids (Eu-

ler, 1744; Timoshenko and Gere, 1963), and later revisited by Le Merrer et al.

(2012) for Newtonian fluids. In addition, as shown by the latter authors, the

parabolic part of δ(t) is a direct geometrical consequence of the conservation

of filament length after t0 (or, when δ > d). Here, despite the non-Newtonian

nature of material viscosity, both exponential and parabolic parts of δ(t) are

observed, which is theoretically consistent.

Similar to Fig. 2, Fig. 3 also indicates that the critical capillary number from

which δ(t) is greater than d, Cac (transition from the capillary to the viscous-

dominated regime), is an increasing function of m. At m = 0.6 (Fig. 3a), for

instance, the filaments are allowed to fold for Ca > 0.7, a picture that does not

hold true at m = 0.8 (Fig. 3b), since these filaments are stable if Ca ≤ 1.3.

The stabilising effect of the flow behaviour index is even more pronounced

at m = 1.2 (Fig. 3c), material whose Cac ≈ 13. In fact, as shown in Fig.
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4(b), Cac appears as an increasing power-law function of m: Cac = k(3m−2)
c ,

where kc = 5. This rheological effect on Cac seems universal. However, further

investigations concerning its physical interpretation are necessary.

It is worth noting that the equation that describes the exponential varia-

tion of δ(t) observed at the beginning of the folding process also represents

a characteristic time scale tch,
δ
δ̇
∝ d2

hU
= tch. The exponential solution of

this differential equation (δ(t)/δch ∼ e
t
tch , with δch denoting the initial deflec-

tion at the very beginning exponential displacement) was used to construct

the dotted lines in Fig. 3. It can be additionally used to estimate the in-

stant from which bending is dominated by the stretching (for δ(t) ≥ d), since

t/tch ∼ ln (d(t)/δch). In experimental scenarios, the deflection is trigged by

thermal perturbations whose order of magnitude is δch ∼ 1 nm (Le Merrer

et al., 2012). In our simulations, however, this process is started by numerical

instabilities related to the mesh size. Taking the scale of our smaller mesh el-

ement for δch, d/δch ∼ (O)103. Consequently, t/tch ≈ 10 when δ(t) = d. Later

on, for t > 10 d2

hU
and δ > d, the square root time-dependent growth of the

deflection takes place, as exposed previously. In other words, t0 > 10 d2

hU
(or,

simply t0 > 10tch).

The buckling time condition discussed above is confirmed by Fig. 4(a) in which

t0 is plotted against tch = d2

hU
for 300 different cases (each point representing a

numerical simulation) and four different flow behaviour indexes: m = 0.6 (grey

circles; shear-thinning), m = 0.8 (blue triangles; shear-thinning), m = 1.0 (red

diamonds; Newtonian), and m = 1.2 (green squares; shear-thickening). Our

data collapse on a single linear curve of slope 61.7 (black solid line; t0 =

61.7tch). Moreover, Fig. 4(a) indicates that, irrespective of the regime, slender

bodies tend to buckle earlier (which is also shown in Fig. 3).
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It is worth noting that, since buckling can only be observed if t0 is smaller than

the numeric experiment duration, h/U , a deflection criterion for the folding

regimes can be developed as follows:

t0 = k0tch <
h

U
, (19)

where k0 indicates a constant equal to 61.7. Then,

k0
d2

hU
<
h

U
, (20)

and, in consequence,

d

h
<

1√
k0

. (21)

This leads to a geometrical criterion according to which the maximum value

of d/h related to the folding regime is on the order of (O)10−1. Hence, only

slender enough filaments are likely to buckle. Effectively, our results indicate

that the folding regime is observed only when d/h is smaller than 0.1.

Both the force ratio (Ca > k(3m−2)
c ) and the geometrical (d/h < 0.1) criteria

for the folding regime found along the present work are in excellent agree-

ment with the almost 500 numerical results displayed by Fig. 5. In this figure

composed of four sub-figures (5a, 5b, 5c, and 5d), each point corresponds to a

simulation. Additionally, each sub-figure is related to a specific flow behaviour

index: m = 0.6 (5a; shear-thinning); m = 0.8 (5b; shear-thinning); m = 1.0

(5c; Newtonian); m = 1.2 (5d ; shear-thickening). In these sub-figures, we re-

port whether there is folding (blue triangles) or no deflection (grey circles).

For each m, the results are summarised in a two-dimensional phase diagram,

whose axes are the slenderness parameter (d/h) and the capillary number

(Ca). Within the grey region, the fluid filaments are not allowed to buckle due

to their morphology (d/h > 0.1). Regarding the slender filaments (d/h < 0.1),
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however, the folding regime driven by the compressive viscous force is reached

when Ca > 5(3m−2). Below this value, the compressed filament is dominated

by the capillary force and, consequently, the folding does not develop. Finally,

it is important to emphasise that the Newtonian diagram displayed by Fig.

5(c) is perfectly in line with the experimental results previously reported by

Le Merrer et al. (2012).

5 Concluding Remarks

Following the development of an adaptive variational multi-scale method for

three materials (air, non-Newtonian fluid, and pistons) with surface tension,

we analysed through direct numerical simulations and scaling laws the buck-

ling of filaments of power-law fluids compressed at constant velocity by two

parallel pistons. A level-set function was used to provide a precise position of

the interfaces.

In short, under both low gravity (2σ
d
> ρgh

2
) and low inertia (Re << 1) con-

ditions , two compression regimes were observed for slender filaments (d/h <

0.1): a first one driven by the capillary force and during which there is no

deflection; and a second folding regime that is dominated by the compressive

viscous force. Noticeably, there is a strong analogy between viscous and elas-

tic buckling, since both phenomena are observed when rapidly compressing

enough slender filaments. In addition, interestingly, the critical capillary num-

ber related to the transition between the deformation regimes mentioned above

appears as an increasing function of the flow behaviour index, Cac = 5(3m−2).

It would be interesting to consider in future works the gravity and inertial

effects on the buckling of slender fluid filaments, as well as those related to
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other non-Newtonian entities (such as the yield-stress).
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Fig. 1. (a/b) Stretching/compression of a fluid filament. Left in (a): adapted mesh

(≈ 106 elements) of the computational domain. Right in (a), and (b): zero iso-values

of pistons and fluid level-set functions.
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Fig. 2. Compression of power-law fluid filaments (blue part) at a constant velocity,

U , by two parallel pistons (silver parts). Capillary-dominated (a and c) and viscous–

dominated (b and d) compression cases are displayed at eight different instants (0

ms ≤ t ≤ 28 ms) for two flow behaviour indexes: m = 0.8 (a and b) and m = 1.2 (c

and d).
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Fig. 3. Time evolution of the off-axis deflection, δ(t), of the centreline of nine

non-Newtonian filaments. The deflections curves related to the folding regime are

divided into two parts: exponential (dotted line; δ(t) ∝ e
t

d2/Uh ) and parabolic (solid

line; δ(t) ∝
√
t− t0 (solid lines). Three different flow behaviour indexes are taken

into account: m = 0.6 (a), m = 0.8 (b), and m = 1.2 (c).

Fig. 4. (a) Starting time of the viscous buckling, t0, against the buckling characteris-

tic time, tch, for 300 different cases (each point representing a numerical simulation).

(b) Critical capillary number, Cac, as a function of the flow behaviour index, m.
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Fig. 5. Ca-d/h diagram for four different m: 0.6 (a, shear-thinning), 0.8 (b,

shear-thinning), 1.0 (c, Newtonian), and 1.2 (d, shear-thickening). In these four sub-

-figures, we report whether there is folding (blue triangles) or no deflection (grey

circles). Each point corresponds to a simulation. Almost 500 numerical results are

taken into account. Both the grey and the white regions represent deformation

regimes for which no deflection is observed do to the stabilising effects of d/h and

σ, respectively. The blue hatched region indicates the folding regime.
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