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Introduction

Under compression stresses, free liquid filaments and/or jets develop some of the most fascinating instabilities in fluid mechanics: the buckling ones [START_REF] Barnes | Liquid rope-coil effect[END_REF]. Beyond a critical axial load, slender viscous fluid filaments tend to buckle, as the energy related to the buckling deformation becomes smaller than the cost of compression [START_REF] Taylor | Proceedings of the Twelfth International Congress of Applied Mechanics[END_REF][START_REF] Cruickshank | Low-Reynolds-number instabilities in stagnating jet flows[END_REF][START_REF] Yarin | Onset of folding in plane liquid films[END_REF][START_REF] Mahadevan | Fluid 'rope trick' investigated[END_REF][START_REF] Mahadevan | Correction: Fluid 'rope trick' investigated[END_REF]. For small Newtonian fluid filaments compressed at a very small Reynolds number (negligible inertial force), for instance, the folding deformation emerges from a competition between geometrical, surface tension and viscous effects (Le [START_REF] Merrer | Buckling of viscous filaments of a fluid under compression stresses[END_REF]. In addition, Newtonian viscous jet columns can bend, twist and stretch when hitting a surface or a substrate at higher Reynolds numbers, following the balance between viscous, gravitational, and inertial forces [START_REF] Ribe | Periodic folding of viscous sheets[END_REF][START_REF] Ribe | Multiple coexisting states of liquid rope coiling[END_REF][START_REF] Ribe | Liquid rope coiling[END_REF]. Such instabilities are observed in a variety of contexts, which includes glass plate fabrication [START_REF] Pilkington | Review lecture: The float glass process[END_REF], polymer processing [START_REF] Pearson | Mechanics of polymer processing[END_REF], and folding of geological structures [START_REF] Griffiths | Folding of viscous plumes impinging on a density or viscosity interface[END_REF][START_REF] Johnson | Folding of viscous layers: Mechanical analysis and interpretation of structures in deformed rock[END_REF].

Typically, in industry, the buckling instability represents a major source of irregularities for container-filling processes related to non-Newtonian fluids.

More specifically, during these processes, the superposition of several coils, consecutively formed as a result of the fluid filament compression, originates a helical fluid column, the centre of which is filled with air. Later on, this column eventually collapses, entraining a significant amount of air towards the fluid substrate and compromising the quality of the final product. Understanding and controlling the buckling instabilities when dealing with this kind of processes is then crucial. Despite some recent and significant works regarding these instabilities in Newtonian scenarios [START_REF] Merrer | Buckling of viscous filaments of a fluid under compression stresses[END_REF][START_REF] Habibi | Liquid supercoiling[END_REF][START_REF] Ribe | Liquid rope coiling: a synoptic view[END_REF], many aspects of the problem remain unclear, such as the effects of non-Newtonian signatures (pseudoplasticity, dilatancy, thixotropy, yield stress etc.) on them [START_REF] Tomé | Numerical solution of the giesekus model for incompressible free surface flows without solvent viscosity[END_REF].

In the present work, we study the buckling of pseudoplastic, Newtonian and dilatant fluid filaments, of which viscosity is given by a power-law constitutive equation [START_REF] Ostwald | Ueber die geschwindigkeitsfunktion der viskosität disperser systeme[END_REF][START_REF] Bird | Dynamics of polymeric liquids[END_REF]. The filaments are compressed at a constant velocity by two parallel pistons, under both low gravity and low inertia conditions. Following the compression process, the fluid deflection is carefully analysed thanks to an adaptive variational multi-scale method for three materials (air, non-Newtonian fluid, and pistons), with surface tension, combined with a level-set function to provide a precise position of the phase interfaces. Different deformation regimes are observed and explored in the light of scaling laws. As a result, buckling criteria based on geometrical, surface tension and non-Newtonian viscous effects are presented and discussed.

The organization of the paper is as follows. The description of the physical formulation and numerical method is presented in Sections 2 and 3. Our main results are discussed in Section 4, where the buckling of non-Newtonian fluid filaments is analysed and summarised in two-dimensional phase diagrams.

Finally, conclusions are drawn in the closing section.

Physical Formulation

Following the experimental steps described by [START_REF] Merrer | Buckling of viscous filaments of a fluid under compression stresses[END_REF], we first create numerically a vertical filament of length h and diameter d by stretching a Newtonian fluid of viscosity η located between two parallel pistons and surrounded by air, as illustrated in Fig. 1(a). The filament (yellow part) is then compressed by the pistons (silver parts) that move vertically with a constant velocity U/2, inducing fluid deformations (Fig. 1b).

The computational approach used to simulate the filament stretching/compression process is based on a general solver (CIMLIB-CFD, a parallel, finite element library; [START_REF] Coupez | Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing[END_REF] which takes into account the rheological behaviour of each fluid as well as surface tension effects. More precisely, the Cauchy stress tensor σ c is defined as

σ c = -pI + τ , (1) 
where, p is the pressure, I denotes the identity tensor and τ the extra stress tensor. The extra stress tensor is given by

τ = 2ηD(u) , (2) 
D(u) representing the strain rate tensor and u the velocity vector. The effective viscosity η is computed by using the power-law constitutive model. The latter includes the Papanastasiou regularization [START_REF] Papanastasiou | Flows of materials with yield[END_REF]:

η = k γ(m-1) 1 -e -n γ , ( 3 
)
where k is the flow consistency index, m denotes the flow behaviour index, γ represents the second invariant of the strain rate tensor [START_REF] Bird | Dynamics of polymeric liquids[END_REF] and n is the Papanastasiou coefficient that allows to bound the value of the effective viscosity for vanishing γ.

Our numerical methods are based on a Variational Multi-Scale (VMS) approach combined with anisotropic mesh adaptation with highly stretched elements (black lines in Fig. 1a), as presented by [START_REF] Riber | Adaptive variational multiscale method for Bingham flows[END_REF].

In order to capture the fluid/air, fluid/pistons and pistons/air interfaces as a function of time, t, a level-set method, which enables the localization and the capturing of interfaces has been used [START_REF] Hachem | Unified adaptive variational multiscale method for two phase compressible and incompressible flows[END_REF]. As described in details in the following section, a level-set function is a signed distance function from each interface that is advected with the computed velocity. Velocity and pressure fields are primitive unknowns that are computed using a unified framework, where all fluids occupy a single computational mesh, by simply mixing the different fluid properties (viscosity, density, etc.) using smoothed Heaviside functions (built from each level-set function) to take property discontinuities into consideration.

In the framework presented above, adding surface tension stresses required a specific treatment. The Continuum Surface Force (CSF) method [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF], which enables avoiding the computation of surface integrals by means of a regularized Dirac function, is used. The corresponding momentum equations reads:

ρ ∂u ∂t + u • ∇u -g = -∇p + ∇ • τ + f st , (4) 
in which ρ, ∇, g , ∇• and f st are, respectively, the fluid density, the gradient operator, the gravity vector, the divergence operator, and a capillary term related to the surface tension force, the latter being defined as:

f st = -σKΦ (Γ) n , (5) 
where σ, K, Φ (Γ) and n are the fluid surface tension with air, the curvature of its interface with air, the Dirac function locating the interface Γ, and its normal vector, respectively. Recall that the use of a CSF method induces a regularized Dirac function over a thickness of 2d mesh , where d mesh is the refined mesh size at the interface. Further details of the present method are given in Section 3 (see also [START_REF] Khalloufi | High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension[END_REF].

Finally, the solid body motion of the pistons is prescribed by directly assigning velocities to nodes of the grid located inside the pistons and by using a penalty mixing rule on viscosities, piston viscosity being set around to 10 6 times the fluid viscosity [START_REF] Valette | A direct 3D numerical simulation code for extrusion and mixing processes[END_REF][START_REF] Valette | The effect of viscosity, yield stress, and surface tension on the deformation and breakup profiles of fluid filaments stretched at very high velocities[END_REF]. In practical terms, the 3 Level-set method and implicit surface tension

Level-set method

The level-set method enables the localization of the interface between two phases. It consists of a signed distance function widely used in different scientific fields [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF], the definition of which follows. Let Ω denote the whole domain, Ω l the liquid part and Ω g the gas part. The levelset function, α, is a signed distance related to the interface Γ = Ω l ∩ Ω g and defined at each node X of Ω as:

α (X) =                    -dist (X, Γ) , if X ∈ Ω l 0, if X ∈ Γ dist (X, Γ) , if X ∈ Ω g . (6) 
The time-space evolution of the level-set function is described by the following transport equation [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF]:

∂α ∂t + u • ∇α = 0 . (7) 
As a distance function, the level-set verifies ∇α = 1. However, when the interface is convected by a given velocity, the level-set can lose this property and needs to be reinitialized to recover it. A common way to do so is to solve the following Hamilton-Jacobi equation [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF]:

∂α ∂t p + s (α) ( ∇α -1) = 0 , (8) 
where t p is a pseudo-time, and s (α) is the sign function of α. The steady state solution of this non-linear hyperbolic equation will be a distance function from the interface while keeping the zero iso-value unchanged. Following the lines detailed by [START_REF] Coupez | Implicit boundary and adaptive 16 anisotropic meshing[END_REF], we propose to filter the level-set function in the vicinity of the interface, and thus reducing the computational cost and ensuring mass conservation [START_REF] Bonito | Numerical simulations of bouncing jets[END_REF]. It consists first in truncating the level-set function using the following expression:

α = E tanh α E , (9) 
in which E is the thickness of the truncation. The truncated level-set now verifies:

∇α = 1 - α E 2 . ( 10 
)
In the following lines of this section, we simplify the notations by dropping the tilde and assuming that α denotes the truncated level-set function. Lastly, combining both Eqs. ( 7) and ( 8), we find the auto-reinitialization level-set equation (see also [START_REF] Bonito | Numerical simulations of bouncing jets[END_REF]:

∂α ∂t + u • ∇α + λ s (α) ∇α -1 - α E 2 = 0 , ( 11 
)
where λ is a constant proportional to a velocity (see [START_REF] Bonito | Numerical simulations of bouncing jets[END_REF] for more details). The classical Streamline Upwind Petrov-Galerkin (SUPG) method is used to solve Eq. ( 11) for its ability to control the spurious oscillations in the convection-dominated regime. Supplemental details are provided in [START_REF] Kallel | Stability analysis of a polymer film casting problem[END_REF]. Initial and boundary conditions for the fluid level-set equation are, respectively, the initial domain descriptions (as illustrated in figure 1a) and a constant value of E at the domain boundaries. Additionally, initial conditions for the pistons level-set equation are the initial domain descriptions (as show in figure 1a). The values at the domain boundaries are then kept constant in time.

Implicit surface tension

As presented in Section 2, a common way to introduce the surface tension as a volume source term in the momentum equations involves rewriting the surface force as f st = -σKΦ (Γ) n (Eq. 5). Moreover, the use of a level-set function enables the direct computation of the normal vector as n = ∇α/ ∇α and the mean curvature as K = -∇ • n. Consequently, the surface tension is expressed as a function of the level-set:

-σKΦ (Γ) n = σΦ (α) ∇ • ∇α ∇α , (12) 
where Φ (α) is a smoothed Dirac function [START_REF] Van Der Pijl | A mass-conserving level-set method for modelling of multi-phase flows[END_REF]. According to [START_REF] Hysing | A new implicit surface tension implementation for interfacial flows[END_REF], this implementation imposes a restriction on the time step that must respect the propagation of the capillary wave cσ∆t ∆x < 1 2 , in which c σ = σκ/2ρ is the capillary wave phase velocity, ρ is the average density at the interface and ∆x denotes the mesh size. Taking into account the maximum wave-number κ = π/∆x, the time step is restricted to ∆t < (∆x) 3/2 ρ 2πσ .

In addition, it is stated by [START_REF] Buscaglia | Variational formulations for surface tension, capillarity and wetting[END_REF] that the surface Laplacian of an identity mapping function can be expressed according to the curvature and the normal vector to this interface:

∆ s I Γ = ∇ s • ∇ s I Γ = Kn . ( 13 
)
Following [START_REF] Hysing | A new implicit surface tension implementation for interfacial flows[END_REF], we represent the evolution of the position of the interface in time:

I Γ o+1 = I Γ o + ∆tu o+1 , (14) 
where the index o + 1 is the current time and o the previous one. Applying the surface Laplacian operator ∆ s on Eq. ( 14) leads to:

-(Kn) o+1 = -(Kn) o + ∆t ∆ s u o+1 . (15) 
Multiplying Eq. ( 15) by the surface tension and dropping the exponent o in the following lines for simplicity:

-σ (Kn) o+1 = -σ (Kn) + σ∆t ∆ s u o+1 . (16) 
In Eq. ( 16), we find that the surface Laplacian ∆ s can be expressed in terms of the standard Laplacian as follows:

∆ s u = ∇ 2 s u = ∇ 2 u - ∂ 2 u ∂n 2 -K ∂u ∂n , (17) 
in which ∂u ∂n = ∇ • n. Therefore, the new surface tension force equation finally reads:

f st = -σKΦ (α) n -σΦ (α) ∆t ∂ 2 u ∂n 2 + K ∂u ∂n -∇ 2 u o+1 . ( 18 
)
The usual term -σKΦ (α) n is thus completed by additional terms proportional to the time step that act as an isotropic diffusion minus a diffusion in the normal direction of the interface [START_REF] Xu | An eulerian formulation for solving partial differential equations along a moving interface[END_REF]. It is also important to emphasise that when the time step tends to zero, the surface tension is defined only by the usual term -σKΦ (α) n and, therefore, we retrieve the explicit treatment.

Results and Discussion

As previously reported by Le [START_REF] Merrer | Buckling of viscous filaments of a fluid under compression stresses[END_REF], under both low gravity (the Laplace pressure, 2σ/d, exceeds the hydrostatic pressure, ρgh/2) and low inertia (Re << 1, where the Reynolds number is Re = ρU 2 k(U/h) m ) conditions, non-slender Newtonian fluid columns are geometrically stable. In consequence, no deflection, δ, is observed for d/h > 0.1 (the deflection condition being defined here as δ > d). This observation is also valid for power-law fluids, as it will be discuss later. Furthermore, two deformation regimes are identified for slender power-law filaments (d/h ≤ 0.1): a first one driven by the capillary force and during which there is no deflection; and a folding regime dominated by the compressive viscous force. Therefore, the transition between these two regimes can be analysed in the light of a capillary-viscous competition, i.e. the capillary number, Ca (where Ca = k(U/h) m σ/h ).

The two scenarios mentioned above are observed in Fig. 2 and2d ; dilatant or shear-thickening fluid). At Ca = 1.3, the shear-thinning filament (Fig. 2a) is dominated by the capillary force, which prevents the deflection during the compression. This stabilising effect vanishes at Ca = 13 (Fig. 2b) since the cost of compression becomes greater than the energy related to the folding deformation, which is in turn driven by the viscous force. It is worth noting, however, that no deflection is observed for the shear-thickening fluid at Ca = 13 (Fig. 2c). Comparisons between Figs. 2(b) and 2(c) reveal then that the introduction of dilatant effects can stabilise compressed fluid filaments. Nevertheless, once again, an increase of Ca favours the deflection and, consequently, at Ca = 47, the shear-thickening filament buckles (Fig. 2d ).

The time evolution of the off-z-axis deflection of the centreline for nine non-Newtonian filaments is displayed in Fig. 3. Three different flow behaviour indexes are considered: m = 0.6 (Fig. 3a), m = 0.8 (Fig. 3b), and m = 1.2 (Fig. 3c). For the first material, the buckling is only observed for capillary numbers greater than 0.7 (blue triangles and red diamonds). During the very first instants that follow the beginning of the compression, the thread remains antisymmetric (δ(t) ≈ 0). Nevertheless, after a certain delay, the deflection starts to increase, varying, initially, exponentially, (2012) for Newtonian fluids. In addition, as shown by the latter authors, the parabolic part of δ(t) is a direct geometrical consequence of the conservation of filament length after t 0 (or, when δ > d). Here, despite the non-Newtonian nature of material viscosity, both exponential and parabolic parts of δ(t) are observed, which is theoretically consistent.

Similar to Fig. 2, Fig. 3 also indicates that the critical capillary number from which δ(t) is greater than d, Ca c (transition from the capillary to the viscousdominated regime), is an increasing function of m. At m = 0.6 (Fig. 3a), for instance, the filaments are allowed to fold for Ca > 0.7, a picture that does not hold true at m = 0.8 (Fig. 3b), since these filaments are stable if Ca ≤ 1.3.

The stabilising effect of the flow behaviour index is even more pronounced at m = 1.2 (Fig. 3c), material whose Ca c ≈ 13. In fact, as shown in Fig.

4(b)

, Ca c appears as an increasing power-law function of m:

Ca c = k (3m-2) c ,
where k c = 5. This rheological effect on Ca c seems universal. However, further investigations concerning its physical interpretation are necessary.

It is worth noting that the equation that describes the exponential variation of δ(t) observed at the beginning of the folding process also represents a characteristic time scale t ch , δ δ ∝ d 2 hU = t ch . The exponential solution of this differential equation (δ(t)/δ ch ∼ e t t ch , with δ ch denoting the initial deflection at the very beginning exponential displacement) was used to construct the dotted lines in Fig. 3. It can be additionally used to estimate the instant from which bending is dominated by the stretching (for δ(t) ≥ d), since t/t ch ∼ ln (d(t)/δ ch ). In experimental scenarios, the deflection is trigged by thermal perturbations whose order of magnitude is δ ch ∼ 1 nm [START_REF] Merrer | Buckling of viscous filaments of a fluid under compression stresses[END_REF]. In our simulations, however, this process is started by numerical instabilities related to the mesh size. Taking the scale of our smaller mesh element for δ ch , d/δ ch ∼ (O)10 3 . Consequently, t/t ch ≈ 10 when δ(t) = d. Later on, for t > 10 d 2 hU and δ > d, the square root time-dependent growth of the deflection takes place, as exposed previously. In other words, t 0 > 10 d 2 hU (or, simply t 0 > 10t ch ).

The buckling time condition discussed above is confirmed by Fig. 4(a) in which t 0 is plotted against t ch = d 2 hU for 300 different cases (each point representing a numerical simulation) and four different flow behaviour indexes: m = 0.6 (grey circles; shear-thinning), m = 0.8 (blue triangles; shear-thinning), m = 1.0 (red diamonds; Newtonian), and m = 1.2 (green squares; shear-thickening). Our data collapse on a single linear curve of slope 61.7 (black solid line; t 0 = 61.7t ch ). Moreover, Fig. 4(a) indicates that, irrespective of the regime, slender bodies tend to buckle earlier (which is also shown in Fig. 3).

It is worth noting that, since buckling can only be observed if t 0 is smaller than the numeric experiment duration, h/U , a deflection criterion for the folding regimes can be developed as follows:

t 0 = k 0 t ch < h U , (19) 
where k 0 indicates a constant equal to 61.7. Then,

k 0 d 2 hU < h U , (20) 
and, in consequence,

d h < 1 √ k 0 . ( 21 
)
This leads to a geometrical criterion according to which the maximum value of d/h related to the folding regime is on the order of (O)10 For each m, the results are summarised in a two-dimensional phase diagram, whose axes are the slenderness parameter (d/h) and the capillary number (Ca). Within the grey region, the fluid filaments are not allowed to buckle due to their morphology (d/h > 0.1). Regarding the slender filaments (d/h < 0.1), however, the folding regime driven by the compressive viscous force is reached when Ca > 5 (3m-2) . Below this value, the compressed filament is dominated by the capillary force and, consequently, the folding does not develop. Finally, it is important to emphasise that the Newtonian diagram displayed by Fig.

5(c

) is perfectly in line with the experimental results previously reported by [START_REF] Merrer | Buckling of viscous filaments of a fluid under compression stresses[END_REF].

Concluding Remarks

Following the development of an adaptive variational multi-scale method for three materials (air, non-Newtonian fluid, and pistons) with surface tension, we analysed through direct numerical simulations and scaling laws the buckling of filaments of power-law fluids compressed at constant velocity by two parallel pistons. A level-set function was used to provide a precise position of the interfaces.

In short, under both low gravity ( 2σ d > ρgh 2 ) and low inertia (Re << 1) conditions , two compression regimes were observed for slender filaments (d/h < 0.1): a first one driven by the capillary force and during which there is no deflection; and a second folding regime that is dominated by the compressive viscous force. Noticeably, there is a strong analogy between viscous and elastic buckling, since both phenomena are observed when rapidly compressing enough slender filaments. In addition, interestingly, the critical capillary number related to the transition between the deformation regimes mentioned above appears as an increasing function of the flow behaviour index, Ca c = 5 (3m-2) .

It would be interesting to consider in future works the gravity and inertial effects on the buckling of slender fluid filaments, as well as those related to other non-Newtonian entities (such as the yield-stress). 

  pistons are considered as a highly viscous Newtonian fluid (= 10 9 Pa•s). Initial and boundary conditions for the flow equations are, respectively, initial rest and zero normal stress in the air domain and prescribed velocity on pistons domains. The global method used in this work is illustrated in Fig. 1, where the mesh (composed of approximately 10 6 elements) is depicted, adapted around each interface. The corresponding zero-isovalues for each level-set function are also shown. A wide range of filament fluid properties, filament diameter and length, and compression velocity is considered: (O)10 1 < ρ < (O)10 3 kg/m 3 ; 0.6 ≤ m ≤ 1.6; (O)10 0 < η < (O)10 3 Pa•s (which is a spatio-temporal function of γ, as denoted by Eq. 3); (O)10 -3 < σ < (O)10 -1 N/m; (O)10 -5 < d < (O)10 -3 m; h ∼ (O)10 -3 m; and (O)10 -4 < U < (O)10 -1 m/s. Lastly, both the air viscosity and the air density are constant and respectively equal to 10 -5 Pa•s and 1 kg/m 3 .

  that illustrates the compression of non-Newtonian filaments (blue parts) at a constant velocity, U , by two parallel pistons (silver part) for two flow behaviour indexes: m = 0.8 (Figs. 2a and 2b; pseudoplastic or shear-thinning fluid) and m = 1.2 (Figs. 2c

  -1 . Hence, only slender enough filaments are likely to buckle. Effectively, our results indicate that the folding regime is observed only when d/h is smaller than 0.1. Both the force ratio (Ca > k (3m-2) c ) and the geometrical (d/h < 0.1) criteria for the folding regime found along the present work are in excellent agreement with the almost 500 numerical results displayed by Fig. 5. In this figure composed of four sub-figures (5a, 5b, 5c, and 5d ), each point corresponds to a simulation. Additionally, each sub-figure is related to a specific flow behaviour index: m = 0.6 (5a; shear-thinning); m = 0.8 (5b; shear-thinning); m = 1.0(5c; Newtonian); m = 1.2 (5d ; shear-thickening). In these sub-figures, we report whether there is folding (blue triangles) or no deflection (grey circles).

Fig. 1 .

 1 Fig. 1. (a/b) Stretching/compression of a fluid filament. Left in (a): adapted mesh (≈ 10 6 elements) of the computational domain. Right in (a), and (b): zero iso-values of pistons and fluid level-set functions.
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Fig. 2 .

 2 Fig. 2. Compression of power-law fluid filaments (blue part) at a constant velocity, U , by two parallel pistons (silver parts). Capillary-dominated (a and c) and viscousdominated (b and d ) compression cases are displayed at eight different instants (0 ms ≤ t ≤ 28 ms) for two flow behaviour indexes: m = 0.8 (a and b) and m = 1.2 (c and d ).
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Fig. 3 .

 3 Fig. 3. Time evolution of the off-axis deflection, δ(t), of the centreline of nine non-Newtonian filaments. The deflections curves related to the folding regime are divided into two parts: exponential (dotted line; δ(t) ∝ e

Fig. 4 .

 4 Fig. 4. (a) Starting time of the viscous buckling, t 0 , against the buckling characteristic time, t ch , for 300 different cases (each point representing a numerical simulation). (b) Critical capillary number, Ca c , as a function of the flow behaviour index, m.

Fig. 5 .

 5 Fig. 5. Ca-d/h diagram for four different m: 0.6 (a, shear-thinning), 0.8 (b, shear-thinning), 1.0 (c, Newtonian), and 1.2 (d, shear-thickening). In these four sub--figures, we report whether there is folding (blue triangles) or no deflection (grey circles). Each point corresponds to a simulation. Almost 500 numerical results are taken into account. Both the grey and the white regions represent deformation regimes for which no deflection is observed do to the stabilising effects of d/h and σ, respectively. The blue hatched region indicates the folding regime.
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