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In this study we investigate conceptualization processes among university students in solving a 

problem involving concepts of eigenvalues and eigenvectors in a linear algebra course for 

engineering. In the pilot phase of the study, we examined a case study of two first-year linear 

algebra students and analyzed the data through the theory of instrumental genesis in a dynamic 

geometry paper-and-pencil environment. 
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Introduction 

Linear algebra is one of the first abstract mathematics courses engineering students take in their 

early years in college. According to Robert and Robinet (1989), when first encountering linear 

algebra, students express concern about the use of formalism, the overwhelming number of new 

definitions and the lack of connection between this new field and their existing knowledge of 

mathematics. Dorier and Sierpinska (2001) distinguish two inseparable sources of difficulty for 

students in learning processes: the nature of linear algebra itself (conceptual difficulties) and the 

kind of thinking necessary for the understanding of linear algebra (cognitive difficulties). 

After the Linear Algebra Curriculum Study Group (LACSG) recommended the use of technology in 

early linear algebra courses (Carlson, Johnson, Lay, & Porter, 1993), some teachers began to 

incorporate Computer Algebra Systems (CAS) into their classrooms. At the same time, several 

researchers studied the reflexive use of technological tools in classroom teaching/learning processes 

(involving both the tool and the mathematical content), which gave rise to the instrumental 

approach to didactics as a central theoretical framework (Artigue, 2002; Guin, Ruthven, & 

Trouche, 2005; Trgalová, Clark-Wilson, & Weigand, 2018). 

Eigenvalues and eigenvectors are important concepts in the study of linear algebra (Gol Tabaghi, 

2014; Meel & Hern, 2005), and they require an understanding of other concepts such as vector 

spaces, linear transformation, bases and dimension, among others. In this paper, we present the 

preliminary results of our doctoral research, whose objective is to orchestrate a teaching situation 

appropriate for introducing the concepts of eigenvalues and eigenvectors in a traditional course on 

linear algebra. For this part of our research, we pose the following question: what utilization 

schemes does the student experience / develop when faced with a geometry task involving the 

concepts of eigenvalues and eigenvectors? 

Theoretical framework 

The French mathematics education community (Artigue, 2002; Guin et al., 2005) has extended the 

instrumental approach (Rabardel, 2002) to the learning of mathematics through the reflexive use of 

technological tools. Rabardel thus defines an instrument as a “mixed entity made up of an artifact 
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and a scheme” (p. 37), retaining Vergnaud’s notion of scheme, as “the invariant organization of 

behavior for a certain class of situations” (Vergnaud, 1998, p. 167). To understand the function and 

dynamic of a scheme, we must take into account its components. These include one or several 

goals, each with its sub-goals and anticipations; rules to generate action, information seeking and 

control; its operational invariants (concepts-in-action and theorems-in-action); and the possibilities 

of inferences within the situation. Artifacts are associated with two kinds of utilization schemes: 

usage schemes and instrument-mediated action schemes. Two different users can approach the same 

artifact differently, develop different utilization schemes, and create two different activities and 

instruments (Alqahtani & Powell, 2017, p. 14). For a subject, the artifact becomes an instrument 

through a process, called instrumental genesis, “involving the construction of personal schemes or, 

more generally, the appropriation of social pre-existing schemes” (Artigue, 2002, p. 250). 

According to Trouche (2004), instrumental genesis is a complex process that requires time, and is 

related to artifact’s characteristics and the subject’s activity. In instrumental genesis, two processes 

coexist: instrumentalization and instrumentation. “The instrumentation process is the tracer of the 

artifact on the subject’s activity, while the instrumentalization process is the tracer of the subjects’ 

activity on the artifact” (Trouche, 2014, p. 311). In a technological environment, interactions 

between student and artifact must be organized with specific didactic intentions. The crucial role of 

teachers in this process was soon recognized. To characterize the teacher’s role in guiding students’ 

mastery of tools and their learning processes, Trouche (2004) introduced the notion of instrumental 

orchestration. An instrumental orchestration consists of two main elements: didactical 

configuration and exploitation modes. 

Methodology 

In this paper we present the results of a single task, part of a larger study whose objective is to 

design an orchestration of a situation to introduce the concepts of eigenvalues and eigenvectors in a 

first course on linear algebra for engineering students. The task was designed by the teacher, in 

conjunction with the researcher. The study was carried out in the spring of 2018 and included a case 

study. The research involved eight volunteer students averaging nineteen years old, all enrolled in a 

"Fondamentaux des Mathématiques II" class at a public university in France. The session lasted 120 

minutes. The students had experience in matrix calculation, vector spaces, and linear 

transformations, but they had not yet addressed eigenvalues and eigenvectors. They also mentioned 

having some previous experience with the Dynamic Geometry Environment (DGE), in this case 

GeoGebra. The students were told that we would be studying the way they solved the problem, or 

the techniques used, and that they would not be graded. Each student was given the paper 

assignment and each group (of 2 or 3) was provided with a laptop with GeoGebra and Internet 

access. The data was collected from observation and field notes by a researcher external to the 

experiment, and lasted about 120 minutes. For our analysis, we selected two students: Cécile and 

Henry. 

Mathematical context and task design. 

An eigenvector of an     matrix   is a nonzero vector    such that         for some scalar  . A 

scalar   is called an eigenvalue of A if there is a nontrivial solution    of        ; such an    is 

called an eigenvector corresponding to   (Lay, Lay, & McDonald, 2016). Here we consider    , 



 

 

by the availability of a DGE (GeoGebra), considering the potentiality of the dragging tool 

“wandering dragging” (Arzarello, Olivero, Paola, & Robutti, 2002). 

The task (see figure 1) was not designed to evaluate the student’s progress in the course. Rather, it 

was restricted to having the students to work on    in order to study their conceptualization of 

eigenvalues (real) and eigenvectors of 2x2 matrices, specifically in solving the first two points in a 

single class period of 30-50 minutes. 

Given the following two rectangles. 

 

1. Find a process to build a linear application   that sends the rectangle OABC to the 

rectangle ODEF. 

2. Apply this process when the points have the following canonical 

coordinates:      
 

 
        

 

 
                

 

 
 
 

 
     

  

 
 
 

 
          

And build the matrix   of   in this basis 

3. In GeoGebra, we code a matrix with the braces                . We can create a 

                then move its end and apply the matrix   by            . Model 

the previous situation and check the values. 

4. Can we find a vector      such that         for a certain real    ? What are the 

possible values of  ? What are the possible vectors for a given  ? 

5. Let             and            . Give the matrix of the linear application   in this database. 

Figure 1. The task discussed in this document 

The students are invited to develop intuitive notions of eigenvalues and eigenvectors associated 

with the matrix M, in the environment of GeoGebra, by means of a draggable vector    and its 

vector image    , as the vector    is dragged around the screen, the vector     moves accordingly. 

To find an eigenvalue of the matrix M geometrically, the student will have to drag a position where 

   and     are collinear, in order to explore the relationship involved in the equation        , and 

to recognize that there is an infinite number of eigenvectors associated with each eigenvalue. 

Instrumental orchestration of the class 

The main objective of the orchestration is to introduce and use the concepts of values and 

eigenvectors in a first course on linear algebra. The secondary objective is to analyze a geometric 

problem in a paper-pencil environment and in a DGE to explore the problem and validate the 

solutions proposed by the students. It is defined by a didactical configuration (students organized in 

heterogeneous working groups, with access to GeoGebra) and exploitation modes (each group 



 

 

analyzes the problem and proposes solutions using a combination of paper-and-pencil work and 

GeoGebra; the group is free to ask questions of the teacher and each participant’s role is identified). 

Data Analysis 

The students followed the steps given in the task. Question # 1 can be identified as the phase of data 

selection, solution strategies and operation to be performed to solve the task: 

 A transformation (matrix) that stretches the rectangle horizontally and another transformation 

(matrix) that stretches it vertically, then a composition of transformations; 

 Display a matrix   of     that                    and                     (matrix-vector); 

 Display a matrix   of     that                     and           
 

 
         (matrix-vector-scale), 

 Discover the matrix   by trial and error with the help of GeoGebra (trial-and-error). 

First Case: Cécile. 

The components of Cécile’s “matrix-vector” scheme were:  

Goal: find a linear 

transformation, such 

that 

T(OABC)=ODEF 

 

Sub goals:  

-Identify the possible relations of parallelism and collinearity 

-Recognize the proportionality constant k      , such that                     and 

                     

-Check that the result fulfills the conditions of the problem. 

Anticipations Know that you have more than one way to solve the problem--either DGE or paper-

and-pencil. 

Rules of action -If I find a matrix that when multiplied by         , gives         , then that same matrix must 

when multiplied by         , give          . 

-If I find a matrix and enter it into GeoGebra, I can test the solution. 

Operational 

invariants  

Concepts-in-action 

- Two vectors are collinear if they can be placed one on top of the other or they are 

on the same straight line 

Theorems-in-action 

- TA1 If when moving the vector     both clockwise and counterclockwise, the 

opening (angle) between the vector     and the vector    decreases so that the vector     
superimposes the vector   , then the matrix M has an eigenvector 

- TA2 If the opening (angle) between the vector     and the vector    does not decrease 

when the vector     moves both clockwise and counterclockwise, then the matrix M 

does not have an eigenvector. 

Possibilities of 

inference 
-If I find a matrix M that when multiplied by          gives          , there is a 3/2 relation. 

Table 1: Elements of Cécile’s utilization scheme 

Cécile began by using the paper-and-pencil technique. From the rectangle OABC, she identified        

and        as the vectors:          and         . In the rectangle ODEF, she also identified        y        as the 

vectors:           y         . She defined a 2x2 matrix which multiplied by the vector          must give the 

vector          , and which multiplied by          must give the vector          (see figure 2). From the two 

systems of linear equations obtained, Cécile grouped the equations with the same unknowns into 

two 2x2 systems and, after solving the two systems, built the matrix    
          

      
 . 



 

 

 

Figure 2. Cécile’s working to find the matrix M 

Cécile said she had rarely used GeoGebra in her previous courses, so she requested support from a 

partner to be able to input the matrix. Afterwards, she input the operations M*C, M*B and M*A, 

creating points G, H and I (names automatically assigned by GeoGebra). When entering the 

operations, she observed that the points obtained did not coincide with the points D, E and F. In 

fact, she observed that two of the three points did not coincide. She first checked her notes to see if 

she had made some arithmetic error but was still unable identify the problem, so she turned to the 

teacher for support. The teacher reviewed Cécile’s worksheet and pointed out an arithmetic-

algebraic error. Cécile then corrected the solutions to the equation system, obtaining the matrix 

   
        

      
 . Cécile entered this matrix in GeoGebra and performed the operations D'= 

M*A; E'=M*B and F'=M*C. This time the points coincided, so the matrix M obtained was 

considered acceptable. 

Proceeding on to question 3, Cécile focused her attention on the edges of the rectangles, mentioning 

that "while I drag the vector     towards the base of the rectangle, the vector     follows the vector    

and reaches it at the base" and "while I drag the vector     towards the height of the rectangle, the 

vector    pursues the vector     and reaches it exactly at the top." She continued, “when the vector     

is exactly the same as the base OC, the vector    is twice    , i.e. if           then         , but 

when     is approximately the base OC, there is a difference of hundredths, between    and twice    , 

i.e. if                 then                (indicated in the Algebraic View). Cécile is able to 

observe that         when          , and that only then is        ; with other values, she notes,     

fails to reach twice     , due to decimals. Cécile fails to calculate the other eigenvalue and fails to 

intuit the concepts of eigenvalue and eigenvector. 

At this point, we observe that in Cécile's instrumentation process, the tool guides her attention and 

the instrumentalization process is recognized by the “wandering dragging” functionality. Gol 

Tabaghi called this dragging modality “intentional dragging--which involves dragging a point with 

the intention of producing a certain configuration" (p. 234). 

Second Case: Henry. 

The components of Henry’s scheme are: 

Goal: find a linear 

transformation, such 

that T(A)=D, 

T(B)=E, T(C)=F. 

Sub goals:  

-Identify the possible relations of parallelism and collinearity 

-Verify that the result fulfills the conditions of the problem. 

Anticipations Know that you have more than one way to solve the problem--either DGE or paper-

and-pencil. 



 

 

Rules of action - If you succeed in matching point E' with point E, you will have found the matrix M. 

Operational 

invariants  

Concepts-in-action 

- Two vectors are collinear if they can be placed one on top of the other or they are 

on the same straight line 

Theorems-in-action 

- If the vectors    and     are linearly independent, then the matrix M does not have 

an eigenvector 

- If the vectors    and     re linearly dependent, then the matrix M has an 

eigenvector. 

Possibilities of 

inference 
- If the vectors    and     are dependent, then             . 

Table 2: Elements of Henry’s utilization scheme 

Henry used a trial-and-error scheme with DGE. Since Henry had experience with GeoGebra, he 

created four sliders--x1, x2, x3 and x4--and then, with the sliders, he created a 2x2 matrix M: 

                   . The interval that he defined for the four sliders was -5 to 5, increments of 

0.1; finally he introduced the three points E', D' and F' (see figure 3). 

Henry commented that if he could match point E' with point E, the other points (D' and F') would be 

superimposed as well. On his first attempt, Henry managed to match point E' with point E (see 

figure 3), but contrary to what the thought, the other two points (D' and F') did not overlap. 

Subsequently, through trial and error, by moving the sliders, he managed to obtain the matrix M. 

Henry mentions that the elements of the matrix are decimals, which could cause the points to 

"overlap, but they are not equal." At this point we believe that Henry saw points E and E’ 

overlapping, and noted that their values were the same in Algebraic View            , but the E 

and E’ do not overlap exactly, i.e., they show a slight offset. Henry then turned to the GeoGebra 

Relation
1
 tool to verify that they were in fact the same. He did not use paper-and-pencil. 

To resolve question 3, since Henry had already entered the matrix M in GeoGebra, he entered only 

the vector                 and              . Then he began to drag     clockwise. Henry 

used the “Algebraic View” in GeoGebra to observe the numerical values and relied on the Relation 

tool to explore the relationships between     and   . As the vector     was brought closer to the    

segment, he used the Zoom tool to make sure that they were able to overlap, and continued until the 

two vectors     and    lay one on top of the other. Henry said: "of course,          and          are collinear," 

and to avoid further approximation he modified the vector        . “When     is (2,1),” Henry 

continued, “the vector    is twice    .” He then wrote          , stating that 2 is  . With this same 

analysis he once again modified the value of            and said: "uff, they’re decimals, I think 

the value is....I’d better check it..." Henry then used the Distance or Length tool to calculate the 

norm of     and   . And after calculating the rules he said that in fact      . 

                                                 

1
 This command shows, in a message box, the relationship between two objects. It allows you to verify whether two 

lines are perpendicular/parallel, two (or more) objects are equal, or three points are collinear, among others. 

(https://wiki.geogebra.org/en/Relation_Command) 



 

 

 

Figure 3. Henry’s technique for finding the matrix M  

Once finished, Henry began working with the "matrix-vector-scalar" scheme using paper-and-

pencil. In obtaining the linear equation systems, Henry represented the systems as lines in the plane 

and obtained the values through their intersections, concluding satisfactorily with the matrix M. We 

conclude that Henry displays a good level of instrumentation and instrumentalization of the DGE. 

Preliminary conclusion 

Using the above tasks, we were able to observe the schemes that students develop, and the 

difficulties they may encounter, when using the concepts of eigenvalue and eigenvector before 

formally addressing them in class and when the problems arise outside the context in which they 

have been taught (given a matrix, obtain its eigenvalues and eigenvectors). The conceptualization of 

eigenvalues and eigenvectors is a long and continuous process, in which the teacher plays an 

important role by carefully choosing situations that allow the mathematical knowledge to be 

meaningful. We believe that the success of Henry’s scheme was possible because the elements of 

the matrix M are exact, and they lay within the interval that he had defined from the beginning (-5 

to 5). When dragging     and observing the change in   , the participants were prompted to look for 

relationships between these two objects and relate them to the matrix obtained. The use of 

GeoGebra helped Henry with his conceptual difficulties, while Cécile showed a better conceptual 

knowledge, relying on geometrical thinking. In this experience we were unable to determine 

whether the students recognized the existence of an infinity of eigenvectors associated with each 

eigenvalue. Our future research will study two questions: What orchestrations can help the teacher 

foster the students’ development of conceptual knowledge? And, how can students be helped to 

recognize how many different eigenvectors are associated with a given eigenvalue? 

Acknowledgment 

We are grateful to Prof. Christian Mercat and the students of the University Claude Bernard Lyon 1, 

for allowing us to conduct this research. 

References. 

Alqahtani, M. M., & Powell, A. B. (2017). Teachers’ Instrumental Genesis and Their Geometrical 

Understanding in a Dynamic Geometry Environment. Digital Experiences in Mathematics 

Education, 3(1), 9–38. https://doi.org/10.1007/s40751-016-0025-5 



 

 

Artigue, M. (2002). Learning Mathematics in a CAS Environment: The Genesis of a Reflection 

about Instrumentation and the Dialectics between Technical and Conceptual Work. 

International Journal of Computers for Mathematical Learning, 7(3), 245–274. 

Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging 

practises in Cabri environments. Zentralblatt Für Didaktik Der Mathematik, 34(3), 66-72.  

Carlson, D., Johnson, C. R., Lay, D. C., & Porter, A. D. (1993). The Linear Algebra Curriculum 

Study Group Recommendations for the First Course in Linear Algebra. The College 

Mathematics Journal, 24(1), 41-46. https://doi.org/10.2307/2686430 

Dorier, J.-L., & Sierpinska, A. (2001). Research into the Teaching and Learning of Linear Algebra. 

En D. Holton, M. Artigue, U. Kirchgräber, J. Hillel, M. Niss, & A. Schoenfeld (Eds.), The 

Teaching and Learning of Mathematics at University Level (Vol. 7, pp. 255–273). Dordrecht: 

Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47231-7_24 

Gol Tabaghi, S. (2014). How Dragging Changes Students’ Awareness: Developing Meanings for 

Eigenvector and Eigenvalue. Canadian Journal of Science, Mathematics and Technology 

Education, 14(3), 223-237. https://doi.org/10.1080/14926156.2014.935528 

Guin, D., Ruthven, K., & Trouche, L. (Eds.). (2005). The Didactical Challenge of Symbolic 

Calculators (Vol. 36). New York: Springer-Verlag. https://doi.org/10.1007/b101602 

Lay, D. C., Lay, S. R., & McDonald, J. (2016). Linear algebra and its applications (Fifth edition). 

Boston: Pearson. 

Meel, D. E., & Hern, T. A. (2005). Tool Building: Web-based Linear Algebra Modules. Journal of 

Online Mathematics and Its Applications, 5. Retrieved at https://www.maa.org/node/115792 

Rabardel, P. (2002). People and technology: a cognitive approach to contemporary instruments 

(translated by Heidi Wood). Paris 8 University. Retrieved at https://hal.archives-ouvertes.fr/hal-

01020705 

Robert, A., & Robinet, J. (1989). Quelques resultats sur l’apprentissage de l’algebre lineaire en 

premiere année de DEUG. Cahier de didactique des mathématiques, 53. 

Trgalová, J., Clark-Wilson, A., & Weigand, H.-G. (2018). Technology and resources in 

mathematics education. En T. Dreyfus, M. Artigue, D. Potari, & S. Prediger (Eds.), Developing 

research in mathematics education: twenty years of communication, cooperation, and 

collaboration in Europe (pp. 142–161). Oxon: Routledge. 

Trouche, L. (2004). Managing the Complexity of Human/Machine Interactions in Computerized 

Learning Environments: Guiding Students’ Command Process through Instrumental 

Orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281-307.  

Trouche, L. (2014). Instrumentation in Mathematics Education. In S. Lerman (Ed.), Encyclopedia 

of Mathematics Education (pp. 307–313). Dordrecht: Springer Netherlands. 

Vergnaud, G. (1998). A comprehensive theory of representation for mathematics education. The 

Journal of Mathematical Behavior, 17(2), 167–181. 

 


