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Sensitivity to the rheology and geometry of granular collapses by using the µ(I) rheology
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We introduce a numerical method for the 2D and 3D simulation of dense granular column collapses using the µ(I) inertial rheology. A sensitivity analysis of column deformation to the µ(I) model parameters is performed, showing that the inverse static friction parameter mostly controls the final deformation. Our computations show that the µ(I) inertial rheology is able to predict the different regimes of relative spreading as a function of aspect ratio a previously observed experimentally: a 1 , a 0.66 and a 0.5 scalings for, respectively, slumping for low aspect ratio, 2D and 3D spreading regimes for high aspect ratio. We show that the sublinear scalings for high aspect ratio spreadings are due to an extra dissipation at the impact of the falling

Introduction

Column collapses appear as a classical benchmark for studying granular flows.

An initially cylindrical granular column of height h i and radius r i is released resulting in a flow driven by gravity. In this case, the aspect ratio a is defined as a = h i /r i .

For the last past years, several works focused on the dynamics of dry granular collapses. [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF] investigated initially axisymetric granular collapses using glass beads and studied the influence of the aspect ratio a and the type of substrate (smooth or rough, rigid or erodible) on the final deposit radius r f . They observed two different regimes of collapse depending on a: a slumping regime, where the column spreads through an avalanche of its flanks, for a lower than a critical aspect ratio a c , and a spreading regime, where the whole column descends, for large a. They also observed that the sub-strate does not affect significantly the granular dynamics and concluded that the aspect ratio is the main parameter driving granular collapses. [START_REF] Lube | Axisymmetric collapses of granular columns[END_REF] also performed axisymetric granular collapses using different granular materials (sand, sugar, salt, couscous, rice). They showed that the relative spreading (r f -r i )/r i scales as a 1 below a critical value of a close to 1.7 and scales as a 0.5 beyond. These two regimes (linear and sublinear) are consistent with, respectively, the slumping and spreading reagimes observed by [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF]. [START_REF] Lube | Axisymmetric collapses of granular columns[END_REF] also showed a negligible influence of the type of grains on the collapse dynamics (i.e. relative spreading and time for emplacement), whereas [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF] demonstrated by geometrical arguments that the relative spreading should scale as a/µ, µ being a macroscopic friction coefficient. Additionally, [START_REF] Balmforth | Granular collapse in two dimensions[END_REF] showed a similar experimental trend. [START_REF] Lube | Collapses of twodimensional granular columns[END_REF] also performed two-dimensional granular collapses along a horizontal channel for different materials and concluded r f /r i -1 scales as a 1 below a critical value of a close to 1.8, and scales as a 0.66 beyond, with no dependence on the type of material.

Moreover all studies showed that the total time of motion scales as (h i /g) 0.5 , g being the gravitational acceleration. [START_REF] Mangeney-Castelnau | On the use of saint-venant equations for simulating the spreading of granular mass[END_REF] and [START_REF] Larrieu | Raining into shallow water as a description of the collapse of a column of grains[END_REF] then proposed shallow-water models that allowed to retrieve the a 1 , a 0.66 and a 0.5 scalings for, respectively slumping, 2D and 3D spreading regimes, using a Coulombic friction model and adjustable parameters for basal friction. Recent progress [START_REF] Andreotti | Granular media: from liquid to solid[END_REF] shows that dry granular flows dynamics is governed by a local dimensionless inertial number I =|| γ || d/( p/ρ f ), as shown by Da [START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF] and then [START_REF] Jop | A constitutive law for dense granular flows[END_REF], where || γ ||, d, p and ρ f are, respectively, the norm of the strain rate tensor, the grains diameter, the pressure and the grain material density.

The relevance of the local inertial approach has been proven using discrete granular collapse simulations by [START_REF] Lacaze | Axisymmetric granular collapse : a transient 3d flow test of visco-plasticity[END_REF]. Then, the socalled continuum µ(I) rheology model was first implemented in a numerical code for 2D collapses flows by [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a mu(i) rheology[END_REF]. They compared with both analytical and discrete simulations, providing a conclusive validation of the implementation of this rheology for such flows. They also showed sensitivity plots for two µ(I) parameters. Furthermore, [START_REF] Ionescu | Viscoplastic modeling of granular column collapse with pressure-dependent rheology[END_REF] and [START_REF] Dunatunga | Continuum modeling and simulation of granular flows through their many phases[END_REF] performed additional validations of 2D flows for the µ(I) rheology, sensitivity analyses for 2D flows were also provided in [START_REF] Gesenhues | Simulation of a column collapse for dense granular flows[END_REF] and 3D flows were computed by [START_REF] Gesenhues | Finite element simulation of complex dense granular flows using a wellposed regularization of the µ(i)-rheology[END_REF].

In this paper, 2D and 3D numerical simulations are presented for granular collapses using the µ(I) rheology, in order to provide a complete parameter sensitivity analysis and also check the relevance of this model in the 3D case.

In the next section, the definition of the µ(I) rheology model is recalled as well as the present numerical strategy. Then, µ(I) parameter sensitivity analysis is performed for 2D and 3D granular collapses, followed by a discussion on energy partition during collapse, the role of grain diameter as an additional lengthscale, and the relevance of experimental mastercurves.

Constitutive equations and numerical strategy

The µ(I) rheology

The tensorial constitutive model of the µ(I) rheology is formulated such as in [START_REF] Jop | A constitutive law for dense granular flows[END_REF]:

τ = 2µ(I)p γ || γ || , ( 1 
)
where τ is the deviatoric part of the stress tensor, and µ(I) is the effective friction defined as:

µ(I) = µ S + µ F -µ S I 0 I + 1 , (2) 
where µ S , µ F and I 0 represent respectively static friction coefficient, dynamic friction coefficient and a material constant that separates dense and collisional regimes.

Following [START_REF] Ionescu | Viscoplastic modeling of granular column collapse with pressure-dependent rheology[END_REF], the constitutive equations describing the µ(I) rheology may also be formulated as Bingham constitutive equations:

               τ = 2 η f (p, || γ ||) + τ 0 (p) || γ|| γ || τ ||> τ 0 (p), || γ ||= 0 || τ ||≤ τ 0 (p), (3) 
where τ 0 (p) and η f (p, || γ ||) represent the yield stress (pressure dependent)

and the plastic viscosity (pressure and shear rate dependent) of the granular material. These quantities are defined as follows:

τ 0 (p) = µ s p, (4) 
η f (p, || γ ||) = (µ F -µ s )p p ρ f I 0 d + || γ || . ( 5 
)
By analogy with Bingham flows, unyielded (quasi-static) regions correspond to a shear stress lower than µ S p.

Regularization method for µ(I) rheology flows

In this paper, granular flows are solved using a continuum approach, leading to the resolution of the following momentum and continuity equations:

               ρ (∂ t v + v • ∇v) + ∇p -∇ • τ = f , ∇ • v = 0, (6) 
where v is the velocity field, ∂ t is the time derivative, ∇ and ∇• are gradient and divergence operators and f is the gravity force ρg.

In the literature, two methods exist for coupling the µ(I) rheology with equations (6), namely (i) regularization methods, which consist in expressing the constitutive equations in terms of an effective viscosity; and (ii) exact methods, which consist in solving a minimization problem of the system energy using the Augmented Lagrangian method, leading to the exact computation of the stress field in unyielded regions. [START_REF] Chauchat | A three-dimensional numerical model for dense granular flows based on the µ(i) rheology[END_REF] introduced different regularization methods for µ(I) confined flows, while Lagree et al. (2011) used the simple regularization method for collapse flows. Alternatively, [START_REF] Ionescu | Viscoplastic modeling of granular column collapse with pressure-dependent rheology[END_REF] used an exact method for collapse flows and [START_REF] Lusso | Two-dimensional simulation by regularization of free surface viscoplastic flows with drucker-parger yield stress and application to granular collapse[END_REF] showed recently that equivalent results are obtained with the two methods. In this paper, a regularization method is chosen, owing to its algorithmic simplicity. More precisely, a Bercovier-Engelman regularization method was used, which consists in using a minimum shear rate || γ || min as the regularization parameter. Moreover, the yield stress and plastic viscosity vanish as the pressure tends to zero, which may lead to unbounded values of the inertial number or vanishing viscosity. Thus, an additional regularization parameter is added, which corresponds to a minimum viscosity, taken as the air viscosity. The effective viscosity for the µ(I) formulation is finally:

η ef f = max   η air , η f (p, || γ ||) + τ 0 (p) || γ || 2 + || γ || 2 min   , (7) 

Numerical tools for the flow resolution

The numerical resolution of µ(I) rheology flows requires the resolution of mass and momentum equations 6, where the shear stress tensor τ is defined as τ = 2η ef f γ, similarly to [START_REF] Riber | Adaptive variational multiscale method for bingham flows[END_REF]. The momentum and mass equations are solved by using the Finite Element Method, and specifically using a Variational MultiScale method coupled with anisotropic mesh adaptation. Within a simple fixed point method, the viscosity term is computed using the final result of the VMS-Navier-Stokes solver (which means v h + v and p h + p ). For more details about the method, one can refer to [START_REF] Hachem | Stabilized finite element method for incompressible flows with high reynolds number[END_REF] and [START_REF] Coupez | Solution of high-reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing[END_REF].

This problem is described in an Eulerian framework, and considers both granular material and ambient fluid (air). Thus, a linear mixing law is used to consider properties of both fluids. A convective self-reinitializing Level-Set method [START_REF] Khalloufi | High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension[END_REF] was used to capture the interface position as a function of time. The resulting numerical framework allows to solve various free surface flow problems involving Bingham viscoplastic fluids (Valette et al., 2019a,b) and has been extended to the µ(I) rheology in this paper.
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3 Two-dimensional numerical granular collapses

Problem statement

First, two-dimensional granular collapses were investigated. The geometry of the problem is illustrated in figure 1: a rectangular domain of length L and height H was filled with air, apart from a rectangular region set onto the bottom surface and filled with the granular material.

No-slip boundary conditions were applied at the bottom surface. However, the dynamic wetting of this surface by the granular material had to be be ensured.

To do so, perfect slip was imposed on the bottom surface in contact with air as well as in a small region downstream the front flow, which length was set to a few grains diameters (see figure 2). This length was also chosen for the By considering dimensionless shear rate and pressure fields, the inertial number can be rewritten as:

I = || γ || paN b grains , (8) 
where p = p/ρgh i .

Three granular collapses with different aspect ratios a = 0.5, 1.42 and 6. ones of [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a mu(i) rheology[END_REF]. It is observed that our simulations got closer to the discrete simulations, than the continuum method of [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a mu(i) rheology[END_REF], probably due to improved accuracy with mesh adaptation.

Flow sensitivity to the µ(I) parameters

In this section, the influence of µ(I) parameters (µ S , ∆µ, I 0 ) is analyzed.

Different numerical collapses were performed by using materials with different rheologies. Two different column geometries were studied: one column collapse corresponding to the linear regime (a = 1.42), and one corresponding to the power-law regime (a = 10).

Sensitivity to the static friction coefficient

First, the influence of µ S was studied. Four collapses with different µ S were performed: µ S = 0.32, 0.42, 0.52 and 0.62. Figure 5 illustrates the final deposit.

It was observed that static friction coefficient changes drastically the final shape of the flow. Indeed, from µ S = 0.52 to 0.62, the run-out distance is 20% larger.

The same analysis have been performed with a granular collapse with larger a Figure 7 illustrates the run-out distance dependance to µ S for the two columns geometries. It is observed that the run-out distance follows a power-law curve with respect to µ S . The exponent is found close to -1.2 for both flows, which is consistent with the scaling obtained by [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF]. 

Sensitivity to the dynamic friction coefficient

Then, the influence of µ F was analyzed. Granular collapses with different ∆µ (∆µ = µ F -µ S ) were performed and run-out distances were compared. In these simulations, µ S was fixed to 0.32. Figure 8 illustrates the final granular profiles after the collapse. It was observed that the final height measured on the symmetry plane was independent of µ F and remained constant. However, a difference was noticed on the run-out distance, which increased as µ F decreased. Such a behavior was expected, as the inertial number is large in the vicinity of the front flow.

The evolution of the front position during the simulation (figure 9) shows that only the deceleration stage depends on µ F . By analyzing curves 8 and 9, µ F acts at the end of the flow, by elongating (low µ F ) the final granular profile, while keeping the maximum height constant.

Then, the same analysis were performed for a granular collapse with higher a (a = 10, figure 10). The same conclusion as for lower a, was established. Finally, figure 11 illustrates dimensionless run-out of the granular flow with respect to ∆µ, for two granular collapses with a = 1.42 and 10. It was observed that the dimensionless run-out distance also follows a power-law curve in the vicinity of the choosen set of parameters and that ∆µ had a stronger relative impact on the run-out distance for low a. However, the influence of ∆µ on the run-out distance remains lower than the one for µ S . Finally, the influence of I 0 was analyzed. Three granular collapses with different I 0 (0.04, 0.4 and 4) were performed. Figure 12 shows the evolution of the dimensionless front position during the collapse. It was observed that the flow spreads further for large I 0 granular collapses, which is an expected behaviour. Indeed, low I 0 leads to a fast transition between quasi-static and dense regimes, which induces smaller unyielded regions. In conclusion, two-dimensional granular collapses with granular materials having different µ(I) parameters were performed. The analysis of each parameter shows that the predominant physical parameter impacting the final run-out distance is µ S . It was observed that µ F has also a small influence (approximately four times less than µ S ), particularly during the deceleration stage.

Finally, I 0 has a small influence compared to µ S , for low h i .

Flow sensitivity to the geometry

Granular regimes according to the aspect ratio

The flow sensitivity to the initial column geometry was also investigated. Figure 14 shows the normalized flow front position according to the aspect ratio a. As obtained in [START_REF] Lube | Collapses of twodimensional granular columns[END_REF], a linear curve was found for low a (lower than a c ≈ 7). Moreover, a power-law curve with exponent 0.7 was found for large a (larger than a c ≈ 7):

r f -r i r i ≈               
1.72 a 0.97 a ≤ 7 2.96 a 0.69 a ≥ 7 (9)

These results are consitent with the ones obtained by [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a mu(i) rheology[END_REF], namely a limit between linear and power-law regimes a c ≈ 7, and a power-law exponent of 0.7. In the experimental work conducted by [START_REF] Lube | Collapses of twodimensional granular columns[END_REF], the same type of curves were found. They determined, however, a power-law exponent of 2/3 and a much lower critical aspect ratio. This difference could be explained by the choice of the numerical rheological parameters (µ S typically) and maybe by additional physics missing in the present model, typically thin layer/non-local effects as indicated by GDR MiDi (2004). 

Energy analysis

In order to explain the two observed power-law regimes, we propose to confirm the theory proposed by [START_REF] Larrieu | Raining into shallow water as a description of the collapse of a column of grains[END_REF], who suggested that, for large enough a, some more of the (vertical) kinetic energy of the fall is dissipated when the grains impact on the base, therefore not converted into horizontal kinetic energy.

Figures 15, 16 and 17 show relative (with respect to initial potential energy)

energy partition (kinetic, potential, mechanical and dissipated energies) during granular collapse for, respectively, aspect ratio a = 1.42, a = 10 and a = 50.

As expected, both the kinetic energy and final dissipated energy increase with aspect ratio. For low aspect ratio, one notices that the maximum kinetic energy was reached at a time t 2h i /g, which is the impact time for a free fall from h i , but most of exchange of energy comes from potential to dissipated energies.

For large aspect ratios, the maximum kinetic energy is much larger, is reached earlier, then decreases quickly until t 2h i /g, while the dissipated energy jumps suddenly.

This result suggests that the extra-dissipation for large aspect ratio indeed occurs during the impact, which is confirmed on figures 18, 19 and 20, which

show the volume fraction of flowing regions (non-zero velocity) during a collapse for, respectively, a = 1.42, a = 10 and a = 50. Indeed, the graphs show that for large a, nearly the whole volume was flowing, including the bottom center region, confirming the measured extra dissipation. Figure 21 shows the height profiles formed during a granular column collapse with a = 50, plotted for different times. At the free fall time t 1.5 h i /g, a crater and a crest were formed, creating a wave that was advected away for the subsequent times, and then spread away at late times, the crest being damped in the inner direction.

This complex flow is divided in dense and inertial regions, forming respectively the top and bottom of the advected wave, as shown on figure 22.

Flow features close to arrest

Time of flow arrest

It is well known that regularization methods do not ensure a strict flow stop at long times, but rather a slow creep. Consequently a method to measure precisely the flow arrest time was introduced. One expects to find the time for the flow stop when the stress is smaller than µ S p everywhere in the flow domain. However, as the pressure depends on the flow geometry, there exist some regions (typically close to the free surface) where µ S p is arbitrary small.

Consequently, in these regions, the effective viscosity tends to the regularized value η min , whereas stress close to the surface could occur from potential (for slow flows) or kinetic (for fast flows) energy. For example, we noticed that the front flow did not satisfy the stress criterion in the two last elements, due to the present numerical treatment of triple point/line movement. However, when plotting the mean shear rate Ω f || γ || Ω f at different instants (see figure 23) we noticed that it increased at early times, corresponding to the flow start, then reached a maximum, followed by a plateau. Finally, the mean shear rate decreased suddenly down to a finite plateau value, scaling inversely with η min . We then chose the corresponding time as the flow stop time. 

Sensitivity to µ(I) parameters

For the same collapse, it was observed that the arrest time of the flow depends strongly on µ S : the higher µ S , the earlier the flow arrest, and the lower the run-out distance (see figure 24.a). Moreover, it was observed that ∆µ had a smaller influence: the larger ∆µ, the sooner the flow arrest, and the lower the run-out distance (see figure 24.b). For larger aspect ratios, the arrest time was much less dependent on rheology, as the global flow duration scaled as the free fall time. 
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Sensitivity to the aspect ratio

When varying the aspect ratio from small to large, according to the transition value a c , we observed two types of flow arrests. First, for small aspect ratio, the flow consisted of a first expansion of the edges, that stopped before the global arrest, followed by a rearrangement of the surface, close to the symmetry plane (see shear rates plots on figure 25). For large aspect ratio, the flow spreaded from the edges until the arrest (see figure 26), because the kinetic energy was 0 0.2 0.4 0.6 0.8 0 
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Master curves for granular collapses

As introduced at the beginning of this paper, [START_REF] Lube | Collapses of twodimensional granular columns[END_REF] pointed that for any rheology and geometrical features, the flow follows a same curve, representing the relative run-out distance (r -r i )/(r f -r i ) according to the relative time t/t f , where r f is the total spreading time.

Figure 27 illustrates this curve for granular collapses (a = 10) computed with the present method, for different values of µ S . It was observed that the run-out distance follows a curve nearly independent of µ S , where only slight differences were observed, particularly, a slower acceleration phase for larger µ S .

Figure 28 illustrates the same curve for granular collapses computed for different ∆µ. This analysis showed that ∆µ had an even smaller influence on the [START_REF] Lube | Collapses of twodimensional granular columns[END_REF] outlined that reduced granular dynamics is independent of geometrical and rheological flow features, by demonstrating that granular materials follow a same curve (relative run-out distance according to relative time). Several granular collapses computations were tested using different µ S and ∆µ, as illustrated in curves 27 and 28. The present results suggest, according to the µ(I) theory, that rheological constants have a weak influence on the reduced granular dynamics, confirming [START_REF] Lube | Collapses of twodimensional granular columns[END_REF] results. Alternatively, it could be concluded that the materials used in [START_REF] Lube | Collapses of twodimensional granular columns[END_REF] were not rheologically different, as suggested by [START_REF] Balmforth | Granular collapse in two dimensions[END_REF].

Conclusion

In this section, two-dimensional granular collapses computations were performed with materials exhibiting different rheological features, and also for different aspect ratios a. First, multiphase µ(I) rheology flows have been validated with results of [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a mu(i) rheology[END_REF] obtained with discrete methods (DEM). Then, the influence of rheological features has been analyzed. It has been shown that µ S is the dominant rheological parameter that drives the spreading.

Then, the influence of a has been studied. The two regimes observed in [START_REF] Lube | Collapses of twodimensional granular columns[END_REF] have been found: a linear regime for low a, and a power-law one for high a. Moreover, it was found that the µ(I) model can predict a quasi universal relative time-distance curve. The present model was extended to three-dimensional granular collapses. The geometry of the problem is illustrated in figure 29. A cylindrical granular column with initial height h i and radius r i was considered. The computations were performed in a rectangular domain (with two symmetry planes) of height H in z direction and length L in both x and y directions. Symmetry conditions were applied on the two lateral surfaces. The pressure was set to zero on the other surfaces except at the bottom surface, where noslip conditions were applied. As detailed in the previous section, one needed to set slip zones downstream the flow front, fixed to a few grains diameter. 

Flow sensitivity to µ(I) parameters

In this part, the influence of µ(I) parameters on the final run-out distance was analyzed. Figure 30 illustrates the dimensionless final run-out squared distance according to µ S . The obtained curve follows a power-law regime with exponent ≈ -1 according to µ S . Indeed, (r 2 f -r 2 i )/r 2 i is a global measure of deformation which, at first order, is expected to scale as 1/µ S . Let us notice that, in 2D, the equivalent global measure of deformation is the run-out distance (r f -r i )/r i .

Figure 31 illustrates dimensionless final run-out distance square according to ∆µ. As observed for two-dimensional granular collapses, the granular material spreads further when ∆µ is lower. Moreover, it is observed that the curve follows a power-law with exponent ≈ -1. Thus, as for two-dimensional granular collapses, µ S has a stronger influence (three times more) than µ F .

Finally, figure 32 illustrates dimensionless run-out distance square according to I 0 . As observed for two-dimensional granular collapses, the granular material 10 -1 10 -0.8 10 -0.6 10 -0.4 10 -0.2 10 0 spreads further when I 0 is lower. Moreover, it is observed that the curve follows a power-law with exponent 0.1 on I 0 . As for the 2D case, influence of I 0 is small compared to the one of µ S (ten times smaller), at least for for the chosen set of parameters.

Consequently, three-dimensional simulations of the µ(I) rheology show that material constant sensitivities are similar to the two-dimensional cases when considering global measures of deformation.

Influence of the aspect ratio

Three-dimensional granular collapses with different a were then performed, using µ(I) parameters from [START_REF] Jop | A constitutive law for dense granular flows[END_REF]: µ S = 0.38, ∆µ = 0.28, I 0 = 0.279, ρ f = 2500 kg • m -3 and d = 0.54 mm.

Figure 33 illustrates the dimensionless position of the final front according to a. It was observed that for large aspect ratios (a > 2.7), the granular dynamics followed a power-law curve with exponent 0.54. For low aspect ratios (a < 2.7), a linear regime was found, similarly to two-dimensional granular collapses.

Thus, the critical aspect ratio has been found equal to a c ≈ 2.7:

r f -r i r i =               
1.2a a < 2.7

1.93a 0.54 a > 2.7

(10)

Consequently, three-dimensional simulations show that the µ(I) rheology is able to retreive experimental exponents measured by [START_REF] Lube | Axisymmetric collapses of granular columns[END_REF] and [START_REF] Lajeunesse | Spreading of a granular mass on a horizontal plane[END_REF].

Grain diameter as an additional lengthscale

With the inertial number being defined as I =|| γ || d/( p/ρ f ), the grain diameter d acts as an additional lengthscale for fixed aspect ratio a. The global velocity, strain rate and pressure scaling as, respectively, (h i ), 1/ (h i ) and h i , the inertial number then scales as d/h i = d/(ar i ). One then expects, for fixed d and a, a larger effective friction for low r i , and consequently a less Figure 33 illustrates this statement, by comparing granular collapses at various a for r i = 0.2m and r i = 0.02m, with the grain diameter being fixed to d = 0.54mm. The relative spreading was indeed lower for large values of d/r i . This behaviour is consistent with the dimensional analysis perfomed by [START_REF] Lagree | The granular column collapse as a continuum : validity of a two-dimensional navier-stokes model with a mu(i) rheology[END_REF], who pointed out that the total number of grains (here, the number of grains per unit height) is a control dimensionless parameter for the flow.

Conclusion

In this paper, two and three-dimensional numerical simulations of granular collapses have been performed, using the µ(I) inertial rheology. In the experimental literature of [START_REF] Lube | Axisymmetric collapses of granular columns[END_REF], it was observed that the granular rheology does not influence the flow dynamics, which was in contradiction with [START_REF] Balmforth | Granular collapse in two dimensions[END_REF], which asserted that the friction coef-ficient plays an important role in the flow dynamics (better spreading for low frictional materials). The numerical simulations performed in this paper showed that the inverse static friction coefficient µ S mostly controls the relative deformation of the column. The role of dynamic friction coefficient and characteristic inertial number I 0 are of second order.

Our computations show that the µ(I) inertial rheology is able to predict the different regimes of relative spreading as a function of aspect ratio a previously observed for 2D and 3D experimental collapses: a 1 , a 0.66 and a 0.5 scalings for, respectively, slumping for low aspect ratio, 2D and 3D spreading regimes for large aspect ratio. We have also shown that the sublinear scalings for high aspect ratio spreadings are due to an extra dissipation at the impact of the falling granular column. Finally we have introduced the relative grain diameter as an additional dimensionless parameter that, for a fixed aspect ratio, increases the inertial number and then decreases the relative spreading. This influence of grain diameter vs. initial radius will be experimentally investigated in a future work.
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 2 Fig. 2. Boundary conditions applied onto the bottom surface for two-dimensional granular collapses

  Figures 3.(a), 3.(b) and 3.(c) illustrate the height profiles at different instants, t = 0, 1, 2 and 4 respectively. For a = 0.5 (figure 3.(a)), we observed that the granular deposit corresponds to a truncated cone, leading to a maximum height on the left wall (equal to 1). For a = 1.42 (figure 3.(b)), a larger spreading was observed, leading to the granular collapse on the left side. Thus, the run-out distance was larger as a increased, leading to a wide final deposit (figure 3.(c) for a = 6.26).
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 43 Figures 4.(a), 4.(b) and 4.(c) illustrate the dimensionless front position according to the dimensionless time, and compare the obtained results with the

  Fig. 4. Dimensionless position of the front according to dimensionless time for granular collapses with different aspect ratios (a = 0.5, 1.42 and 6.26)

  Fig. 5. Final profiles after granular collapses (a = 1.42) with different µ S

  Fig. 7. Run-out distance of the flow with respect to the static friction coefficient
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 89 Fig. 8. Final profiles after granular collapses with a = 1.42 and ∆µ = 0.18, 0.28, 0.38 and 0.48

  Fig. 10. Final profiles after a granular collapse (a = 10) for different ∆µ
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 131213 Figure13illustrates the dimensionless run-out distance with respect to I 0 ,
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 14 Fig. 14. Dimensionless run-out distance with respect to a after two-dimensional granular collapses

  Fig. 15. Relative energy partition during a granular collapse with a = 1.42

  Fig. 16. Relative energy partition during a granular collapse with a = 10
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 17181920 Fig. 17. Relative energy partition during a granular collapse with a = 50
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 2122232526 Fig. 21. Height profiles during a granular column collapse with a = 50, plotted for different non-dimensional times t = t/ h i /g

  Fig. 27. Run-out distance according to dimensionless time for granular collapses for a = 10 with different S
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 29 Fig. 29. Initial granular column and adaptive mesh of a three-dimensional granular collapse simulation
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 30 Fig. 30. Dimensionless final run-out distance square according to µ S for three-dimensional collapses

Fig. 31 .Fig. 32 .

 3132 Fig. 31. Dimensionless run-out distance square according to ∆µ for three-dimensional granular collapses

Fig. 33 .

 33 Fig. 33. Dimensionless final run-out distance according to a after three-dimensional granular collapses and influence of h i
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