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Abstract

We introduce a numerical method for the 2D and 3D simulation of dense granular

column collapses using the µ(I) inertial rheology. A sensitivity analysis of column

deformation to the µ(I) model parameters is performed, showing that the inverse

static friction parameter mostly controls the final deformation. Our computations

show that the µ(I) inertial rheology is able to predict the different regimes of relative

spreading as a function of aspect ratio a previously observed experimentally: a1,

a'0.66 and a'0.5 scalings for, respectively, slumping for low aspect ratio, 2D and 3D

spreading regimes for high aspect ratio. We show that the sublinear scalings for high

aspect ratio spreadings are due to an extra dissipation at the impact of the falling
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granular column. Finally we introduce the relative grain diameter as an additional

dimensionless parameter that, for a fixed aspect ratio, increases the inertial number

and then decreases the relative spreading.

Key words: finite element method, granular media, free surface

1 Introduction

Column collapses appear as a classical benchmark for studying granular flows.

An initially cylindrical granular column of height hi and radius ri is released

resulting in a flow driven by gravity. In this case, the aspect ratio a is defined

as a = hi/ri.

For the last past years, several works focused on the dynamics of dry granular

collapses. Lajeunesse et al. (2004) investigated initially axisymetric granular

collapses using glass beads and studied the influence of the aspect ratio a

and the type of substrate (smooth or rough, rigid or erodible) on the final

deposit radius rf . They observed two different regimes of collapse depending

on a: a slumping regime, where the column spreads through an avalanche of

its flanks, for a lower than a critical aspect ratio ac, and a spreading regime,

where the whole column descends, for large a. They also observed that the sub-
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strate does not affect significantly the granular dynamics and concluded that

the aspect ratio is the main parameter driving granular collapses. Lube et al.

(2004) also performed axisymetric granular collapses using different granular

materials (sand, sugar, salt, couscous, rice). They showed that the relative

spreading (rf − ri)/ri scales as a1 below a critical value of a close to 1.7

and scales as a0.5 beyond. These two regimes (linear and sublinear) are con-

sistent with, respectively, the slumping and spreading reagimes observed by

Lajeunesse et al. (2004). Lube et al. (2004) also showed a negligible influ-

ence of the type of grains on the collapse dynamics (i.e. relative spreading

and time for emplacement), whereas Lajeunesse et al. (2004) demonstrated

by geometrical arguments that the relative spreading should scale as ' a/µ, µ

being a macroscopic friction coefficient. Additionally, Balmforth and Kerswell

(2005) showed a similar experimental trend. Lube et al. (2005) also performed

two-dimensional granular collapses along a horizontal channel for different ma-

terials and concluded rf/ri− 1 scales as a1 below a critical value of a close to

1.8, and scales as a0.66 beyond, with no dependence on the type of material.

Moreover all studies showed that the total time of motion scales as (hi/g)0.5,

g being the gravitational acceleration.

Mangeney-Castelnau et al. (2004) and Larrieu et al. (2006) then proposed

shallow-water models that allowed to retrieve the a1, a'0.66 and a'0.5 scalings

for, respectively slumping, 2D and 3D spreading regimes, using a Coulombic

friction model and adjustable parameters for basal friction. Recent progress

(Andreotti et al., 2013) shows that dry granular flows dynamics is governed

by a local dimensionless inertial number I =|| γ̇ || d/(
√
p/ρf ), as shown by

Da Cruz et al. (2005) and then Jop et al. (2006), where || γ̇ ||, d, p and ρf

are, respectively, the norm of the strain rate tensor, the grains diameter, the
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pressure and the grain material density.

The relevance of the local inertial approach has been proven using discrete

granular collapse simulations by Lacaze and Kerswell (2009). Then, the so-

called continuum µ(I) rheology model was first implemented in a numerical

code for 2D collapses flows by Lagree et al. (2011). They compared with both

analytical and discrete simulations, providing a conclusive validation of the im-

plementation of this rheology for such flows. They also showed sensitivity plots

for two µ(I) parameters. Furthermore, Ionescu et al. (2015) and Dunatunga

and Kamrin (2015) performed additional validations of 2D flows for the µ(I)

rheology, sensitivity analyses for 2D flows were also provided in Gesenhues

et al. (2017) and 3D flows were computed by Gesenhues et al. (2018).

In this paper, 2D and 3D numerical simulations are presented for granular

collapses using the µ(I) rheology, in order to provide a complete parameter

sensitivity analysis and also check the relevance of this model in the 3D case.

In the next section, the definition of the µ(I) rheology model is recalled as well

as the present numerical strategy. Then, µ(I) parameter sensitivity analysis

is performed for 2D and 3D granular collapses, followed by a discussion on

energy partition during collapse, the role of grain diameter as an additional

lengthscale, and the relevance of experimental mastercurves.
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2 Constitutive equations and numerical strategy

2.1 The µ(I) rheology

The tensorial constitutive model of the µ(I) rheology is formulated such as in

Jop et al. (2006):

τ = 2µ(I)p
γ̇

|| γ̇ ||
, (1)

where τ is the deviatoric part of the stress tensor, and µ(I) is the effective

friction defined as:

µ(I) = µS +
µF − µS
I0
I

+ 1
, (2)

where µS, µF and I0 represent respectively static friction coefficient, dynamic

friction coefficient and a material constant that separates dense and collisional

regimes.

Following Ionescu et al. (2015), the constitutive equations describing the µ(I)

rheology may also be formulated as Bingham constitutive equations:


τ = 2

(
ηf (p, || γ̇ ||) + τ0(p)

||γ̇||

)
γ̇ || τ ||> τ0(p),

|| γ̇ ||= 0 || τ ||≤ τ0(p),

(3)

where τ0(p) and ηf (p, || γ̇ ||) represent the yield stress (pressure dependent)

and the plastic viscosity (pressure and shear rate dependent) of the granular

material. These quantities are defined as follows:

τ0(p) = µsp, (4)
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ηf (p, || γ̇ ||) =
(µF − µs)p√
p
ρf

I0
d

+ || γ̇ ||
. (5)

By analogy with Bingham flows, unyielded (quasi-static) regions correspond

to a shear stress lower than µSp.

2.2 Regularization method for µ(I) rheology flows

In this paper, granular flows are solved using a continuum approach, leading

to the resolution of the following momentum and continuity equations:


ρ (∂tv + v · ∇v) +∇p−∇ · τ = f ,

∇ · v = 0,

(6)

where v is the velocity field, ∂t is the time derivative, ∇ and ∇· are gradient

and divergence operators and f is the gravity force ρg.

In the literature, two methods exist for coupling the µ(I) rheology with equa-

tions (6), namely (i) regularization methods, which consist in expressing the

constitutive equations in terms of an effective viscosity; and (ii) exact meth-

ods, which consist in solving a minimization problem of the system energy

using the Augmented Lagrangian method, leading to the exact computation

of the stress field in unyielded regions. Chauchat and Medale (2013) intro-

duced different regularization methods for µ(I) confined flows, while Lagree

et al. (2011) used the simple regularization method for collapse flows. Alter-

natively, Ionescu et al. (2015) used an exact method for collapse flows and

Lusso et al. (2017) showed recently that equivalent results are obtained with
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the two methods. In this paper, a regularization method is chosen, owing to

its algorithmic simplicity. More precisely, a Bercovier-Engelman regularization

method was used, which consists in using a minimum shear rate || γ̇ ||min as

the regularization parameter. Moreover, the yield stress and plastic viscosity

vanish as the pressure tends to zero, which may lead to unbounded values of

the inertial number or vanishing viscosity. Thus, an additional regularization

parameter is added, which corresponds to a minimum viscosity, taken as the

air viscosity. The effective viscosity for the µ(I) formulation is finally:

ηeff = max

ηair, ηf (p, || γ̇ ||) +
τ0(p)√

|| γ̇ ||2 + || γ̇ ||2min

 , (7)

2.3 Numerical tools for the flow resolution

The numerical resolution of µ(I) rheology flows requires the resolution of mass

and momentum equations 6, where the shear stress tensor τ is defined as τ =

2ηeff γ̇, similarly to Riber et al. (2016). The momentum and mass equations are

solved by using the Finite Element Method, and specifically using a Variational

MultiScale method coupled with anisotropic mesh adaptation. Within a simple

fixed point method, the viscosity term is computed using the final result of

the VMS-Navier-Stokes solver (which means vh + v′ and ph + p′). For more

details about the method, one can refer to Hachem et al. (2010) and Coupez

and Hachem (2013).

This problem is described in an Eulerian framework, and considers both gran-

ular material and ambient fluid (air). Thus, a linear mixing law is used to

consider properties of both fluids. A convective self-reinitializing Level-Set
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Fig. 1. Problem statement of the granular collapse problem

method (Khalloufi et al., 2016) was used to capture the interface position as

a function of time. The resulting numerical framework allows to solve various

free surface flow problems involving Bingham viscoplastic fluids (Valette et al.,

2019a,b) and has been extended to the µ(I) rheology in this paper.

3 Two-dimensional numerical granular collapses

3.1 Problem statement

First, two-dimensional granular collapses were investigated. The geometry of

the problem is illustrated in figure 1: a rectangular domain of length L and

height H was filled with air, apart from a rectangular region set onto the

bottom surface and filled with the granular material.

No-slip boundary conditions were applied at the bottom surface. However, the

dynamic wetting of this surface by the granular material had to be be ensured.

To do so, perfect slip was imposed on the bottom surface in contact with air

as well as in a small region downstream the front flow, which length was set

to a few grains diameters (see figure 2). This length was also chosen for the
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Fig. 2. Boundary conditions applied onto the bottom surface for two-dimensional

granular collapses

minimum mesh size hmin in the computations.

3.2 Validation of the model

Validation of the present method was carried out by comparing results to those

of Lagree et al. (2011), who performed two-dimensional granular collapses us-

ing the finite volume method and validated the model by comparing the ob-

tained results with discrete simulations. These discrete simulations were set

using grains of average diameter d, aspect ratio a and a total number of grains

Nbgrains. To deduce an estimate for the height hi and width ri, we assumed a

simple cubic volume and get hi = d
√
aNbgrains and ri = d

√
Nbgrains/a. The

continuous problem turns then into a dimensionless formulation as performed

in Lagree et al. (2011): the characteristic length, velocity, time and density

are taken respectively as hi,
√
ghi,

√
hi/g and ρf . In this new dimensionless

problem, five dimensionless numbers control the system: the number of grains

Nbgrains, the initial aspect ratio of the column a, and the dimensionless rheo-

logical parameters µS, ∆µ and I0.

Consequently, the inertial number computation involves the dimensionless

grain diameter d̄ = 1/
√
aNbgrains and granular density ρ̄f = 1. The dimension-

9



less geometries become: initial column radius r̄i = 1/a, initial column height

h̄i = 1.

By considering dimensionless shear rate and pressure fields, the inertial num-

ber can be rewritten as:

I =
|| ¯̇γ ||√

p̄aNbgrains
, (8)

where p̄ = p/ρghi.

Three granular collapses with different aspect ratios a = 0.5, 1.42 and 6.26 were

tested, respectively with Nbgrains = 3407, 6041 and 6036. The same rheological

parameters as Lagree et al. (2011) were considered: µS = 0.32, ∆µ = 0.28 and

I0 = 0.4. The regularization parameters were taken as || ¯̇γ ||min= 10−3 and

η̄air = 10−4. The mesh was dynamically adapted according to the effective

viscosity, velocity norm and Level-Set fields, as described in Riber et al. (2016),

and the number of elements was constrained to ' 4 · 104.

Figures 3.(a), 3.(b) and 3.(c) illustrate the height profiles at different instants,

t̄ = 0, 1, 2 and 4 respectively. For a = 0.5 (figure 3.(a)), we observed that

the granular deposit corresponds to a truncated cone, leading to a maximum

height on the left wall (equal to 1). For a = 1.42 (figure 3.(b)), a larger

spreading was observed, leading to the granular collapse on the left side. Thus,

the run-out distance was larger as a increased, leading to a wide final deposit

(figure 3.(c) for a = 6.26).

Figures 4.(a), 4.(b) and 4.(c) illustrate the dimensionless front position ac-

cording to the dimensionless time, and compare the obtained results with the
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Fig. 3. Height profiles after granular collapses with different aspect ratios (for (a)

a = 0.5 ; (b) a = 1.42 ; (c) a = 6.26) at several instants t̄ = 0, 1, 2 and 4

ones of Lagree et al. (2011). It is observed that our simulations got closer to

the discrete simulations, than the continuum method of Lagree et al. (2011),

probably due to improved accuracy with mesh adaptation.

3.3 Flow sensitivity to the µ(I) parameters

In this section, the influence of µ(I) parameters (µS, ∆µ, I0) is analyzed.

Different numerical collapses were performed by using materials with different

rheologies. Two different column geometries were studied: one column collapse

corresponding to the linear regime (a = 1.42), and one corresponding to the
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(b) a = 1.42
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Fig. 4. Dimensionless position of the front according to dimensionless time for gran-

ular collapses with different aspect ratios (a = 0.5, 1.42 and 6.26)

power-law regime (a = 10).

3.3.1 Sensitivity to the static friction coefficient

First, the influence of µS was studied. Four collapses with different µS were

performed: µS = 0.32, 0.42, 0.52 and 0.62. Figure 5 illustrates the final deposit.

It was observed that static friction coefficient changes drastically the final

shape of the flow. Indeed, from µS = 0.52 to 0.62, the run-out distance is 20%

larger.

The same analysis have been performed with a granular collapse with larger a
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ȳ

µS = 0.32
µS = 0.42
µS = 0.52
µS = 0.62

Fig. 5. Final profiles after granular collapses (a = 1.42) with different µS
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ȳ
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µS = 0.42
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µS = 0.62

Fig. 6. Final profiles after a granular column (a = 10) with different µS

(a = 10), illustrated in figure 6, leading to the same conclusion that the static

friction coefficient has a strong influence on the run-out distance.

Figure 7 illustrates the run-out distance dependance to µS for the two columns

geometries. It is observed that the run-out distance follows a power-law curve

with respect to µS. The exponent is found close to −1.2 for both flows, which

is consistent with the scaling obtained by Lajeunesse et al. (2004).
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Fig. 7. Run-out distance of the flow with respect to the static friction coefficient

3.3.2 Sensitivity to the dynamic friction coefficient

Then, the influence of µF was analyzed. Granular collapses with different ∆µ

(∆µ = µF − µS) were performed and run-out distances were compared. In

these simulations, µS was fixed to 0.32. Figure 8 illustrates the final granular

profiles after the collapse. It was observed that the final height measured on

the symmetry plane was independent of µF and remained constant. However,

a difference was noticed on the run-out distance, which increased as µF de-

creased. Such a behavior was expected, as the inertial number is large in the

vicinity of the front flow.

The evolution of the front position during the simulation (figure 9) shows that

only the deceleration stage depends on µF . By analyzing curves 8 and 9, µF

acts at the end of the flow, by elongating (low µF ) the final granular profile,

while keeping the maximum height constant.

Then, the same analysis were performed for a granular collapse with higher a

(a = 10, figure 10). The same conclusion as for lower a, was established.
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Fig. 8. Final profiles after granular collapses with a = 1.42 and ∆µ = 0.18, 0.28, 0.38

and 0.48
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Fig. 9. Dimensionless position of the front with respect to dimensionless time after

granular collapses with a = 1.42 and ∆µ = 0.18, 0.28, 0.38 and 0.48

Finally, figure 11 illustrates dimensionless run-out of the granular flow with

respect to ∆µ, for two granular collapses with a = 1.42 and 10. It was observed

that the dimensionless run-out distance also follows a power-law curve in the

vicinity of the choosen set of parameters and that ∆µ had a stronger relative

impact on the run-out distance for low a. However, the influence of ∆µ on the

run-out distance remains lower than the one for µS.
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Fig. 10. Final profiles after a granular collapse (a = 10) for different ∆µ
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Fig. 11. Dimensionless run-out distance with respect to ∆µ

3.3.3 Sensitivity to I0

Finally, the influence of I0 was analyzed. Three granular collapses with dif-

ferent I0 (0.04, 0.4 and 4) were performed. Figure 12 shows the evolution of

the dimensionless front position during the collapse. It was observed that the

flow spreads further for large I0 granular collapses, which is an expected be-

haviour. Indeed, low I0 leads to a fast transition between quasi-static and

dense regimes, which induces smaller unyielded regions.

Figure 13 illustrates the dimensionless run-out distance with respect to I0,
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Fig. 12. Dimensionless front position with respect to the dimensionless time after

granular collapses with a = 1.42 and I0 = 0.04, 0.4 and 4
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Fig. 13. Dimensionless run-out distance according to I0

which follows a power-law curve of exponent 0.11, meaning that I0 has a

small influence on the granular dynamics for the chosen set of parameters. Let

us notice that the influence of I0 should be high for large aspect ratios flows

as such flows would become more inertial, this point is discussed in a later

paragraph.

In conclusion, two-dimensional granular collapses with granular materials hav-

ing different µ(I) parameters were performed. The analysis of each parameter

shows that the predominant physical parameter impacting the final run-out
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distance is µS. It was observed that µF has also a small influence (approx-

imately four times less than µS), particularly during the deceleration stage.

Finally, I0 has a small influence compared to µS, for low hi.

3.4 Flow sensitivity to the geometry

3.4.1 Granular regimes according to the aspect ratio

The flow sensitivity to the initial column geometry was also investigated. Fig-

ure 14 shows the normalized flow front position according to the aspect ratio

a. As obtained in Lube et al. (2005), a linear curve was found for low a (lower

than ac ≈ 7). Moreover, a power-law curve with exponent 0.7 was found for

large a (larger than ac ≈ 7):

rf − ri
ri

≈


1.72 a0.97 a ≤ 7

2.96 a0.69 a ≥ 7

(9)

These results are consitent with the ones obtained by Lagree et al. (2011),

namely a limit between linear and power-law regimes ac ≈ 7, and a power-law

exponent of 0.7. In the experimental work conducted by Lube et al. (2005),

the same type of curves were found. They determined, however, a power-law

exponent of 2/3 and a much lower critical aspect ratio. This difference could be

explained by the choice of the numerical rheological parameters (µS typically)

and maybe by additional physics missing in the present model, typically thin

layer/non-local effects as indicated by GDR MiDi (2004).
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Fig. 14. Dimensionless run-out distance with respect to a after two-dimensional

granular collapses

3.4.2 Energy analysis

In order to explain the two observed power-law regimes, we propose to confirm

the theory proposed by Larrieu et al. (2006), who suggested that, for large

enough a, some more of the (vertical) kinetic energy of the fall is dissipated

when the grains impact on the base, therefore not converted into horizontal

kinetic energy.

Figures 15, 16 and 17 show relative (with respect to initial potential energy)

energy partition (kinetic, potential, mechanical and dissipated energies) during

granular collapse for, respectively, aspect ratio a = 1.42, a = 10 and a = 50.

As expected, both the kinetic energy and final dissipated energy increase with

aspect ratio. For low aspect ratio, one notices that the maximum kinetic energy

was reached at a time t '
√

2hi/g, which is the impact time for a free fall from

hi, but most of exchange of energy comes from potential to dissipated energies.

For large aspect ratios, the maximum kinetic energy is much larger, is reached

earlier, then decreases quickly until t '
√

2hi/g, while the dissipated energy

jumps suddenly.
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This result suggests that the extra-dissipation for large aspect ratio indeed

occurs during the impact, which is confirmed on figures 18, 19 and 20, which

show the volume fraction of flowing regions (non-zero velocity) during a col-

lapse for, respectively, a = 1.42, a = 10 and a = 50. Indeed, the graphs show

that for large a, nearly the whole volume was flowing, including the bottom

center region, confirming the measured extra dissipation. Figure 21 shows the

height profiles formed during a granular column collapse with a = 50, plotted

for different times. At the free fall time t ' 1.5
√
hi/g, a crater and a crest were

formed, creating a wave that was advected away for the subsequent times, and

then spread away at late times, the crest being damped in the inner direction.

This complex flow is divided in dense and inertial regions, forming respectively

the top and bottom of the advected wave, as shown on figure 22.

3.5 Flow features close to arrest

3.5.1 Time of flow arrest

It is well known that regularization methods do not ensure a strict flow stop

at long times, but rather a slow creep. Consequently a method to measure

precisely the flow arrest time was introduced. One expects to find the time

for the flow stop when the stress is smaller than µSp everywhere in the flow

domain. However, as the pressure depends on the flow geometry, there exist

some regions (typically close to the free surface) where µSp is arbitrary small.

Consequently, in these regions, the effective viscosity tends to the regularized
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Fig. 15. Relative energy partition during a granular collapse with a = 1.42

value ηmin, whereas stress close to the surface could occur from potential (for

slow flows) or kinetic (for fast flows) energy. For example, we noticed that

the front flow did not satisfy the stress criterion in the two last elements, due

to the present numerical treatment of triple point/line movement. However,

when plotting the mean shear rate
∫

Ωf
|| ¯̇γ || Ωf at different instants (see

figure 23) we noticed that it increased at early times, corresponding to the

flow start, then reached a maximum, followed by a plateau. Finally, the mean

shear rate decreased suddenly down to a finite plateau value, scaling inversely

with ηmin. We then chose the corresponding time as the flow stop time.
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Fig. 16. Relative energy partition during a granular collapse with a = 10

3.5.2 Sensitivity to µ(I) parameters

For the same collapse, it was observed that the arrest time of the flow depends

strongly on µS: the higher µS, the earlier the flow arrest, and the lower the

run-out distance (see figure 24.a). Moreover, it was observed that ∆µ had a

smaller influence: the larger ∆µ, the sooner the flow arrest, and the lower the

run-out distance (see figure 24.b). For larger aspect ratios, the arrest time was

much less dependent on rheology, as the global flow duration scaled as the free

fall time.
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Fig. 17. Relative energy partition during a granular collapse with a = 50
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Fig. 18. Volume fraction of flowing regions (non zero velocity) during a collapse with

a = 1.42
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Fig. 19. Volume fraction of flowing regions (non zero velocity) during a collapse with

a = 10
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Fig. 20. Volume fraction of flowing regions (non-zero velocity) during a collapse with

a = 50

3.5.3 Sensitivity to the aspect ratio

When varying the aspect ratio from small to large, according to the transition

value ac, we observed two types of flow arrests. First, for small aspect ratio, the

flow consisted of a first expansion of the edges, that stopped before the global

arrest, followed by a rearrangement of the surface, close to the symmetry plane

(see shear rates plots on figure 25). For large aspect ratio, the flow spreaded

from the edges until the arrest (see figure 26), because the kinetic energy was
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Fig. 21. Height profiles during a granular column collapse with a = 50, plotted for

different non-dimensional times t̄ = t/
√
hi/g
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Fig. 22. Dense vs. inertial regions for different non-dimensional times t̄ = t/
√
hi/g,

plotted as I/I0 for a granular collapse with a = 50. Color bar is the shear rate field

¯̇γ.
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Fig. 25. Shear rate for a granular collapse with a = 1.42 plotted at several instants
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(a) t̄ = 0.25 (b) t̄ = 1

(c) t̄ = 3 (d) t̄ = 5

Fig. 26. Shear rate during a granular collapse with a = 10, plotted at several instants

concentrated in the front flow.

3.6 Master curves for granular collapses

As introduced at the beginning of this paper, Lube et al. (2005) pointed that

for any rheology and geometrical features, the flow follows a same curve, repre-

senting the relative run-out distance (r−ri)/(rf−ri) according to the relative

time t̄/tf , where rf is the total spreading time.

Figure 27 illustrates this curve for granular collapses (a = 10) computed with

the present method, for different values of µS. It was observed that the run-out

distance follows a curve nearly independent of µS, where only slight differences

were observed, particularly, a slower acceleration phase for larger µS.

Figure 28 illustrates the same curve for granular collapses computed for dif-

ferent ∆µ. This analysis showed that ∆µ had an even smaller influence on the
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Fig. 27. Run-out distance according to dimensionless time for granular collapses for

a = 10 with different µS
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Fig. 28. Run-out distance with respect to dimensionless time for granular collapses

for a = 10 with different ∆µ

relative granular dynamics.

Lube et al. (2005) outlined that reduced granular dynamics is independent

of geometrical and rheological flow features, by demonstrating that granular

materials follow a same curve (relative run-out distance according to relative

time). Several granular collapses computations were tested using different µS
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and ∆µ, as illustrated in curves 27 and 28. The present results suggest, ac-

cording to the µ(I) theory, that rheological constants have a weak influence on

the reduced granular dynamics, confirming Lube et al. (2005) results. Alterna-

tively, it could be concluded that the materials used in Lube et al. (2005) were

not rheologically different, as suggested by Balmforth and Kerswell (2005).

3.7 Conclusion

In this section, two-dimensional granular collapses computations were per-

formed with materials exhibiting different rheological features, and also for

different aspect ratios a. First, multiphase µ(I) rheology flows have been val-

idated with results of Lagree et al. (2011) obtained with discrete methods

(DEM). Then, the influence of rheological features has been analyzed. It has

been shown that µS is the dominant rheological parameter that drives the

spreading.

Then, the influence of a has been studied. The two regimes observed in Lube

et al. (2005) have been found: a linear regime for low a, and a power-law one

for high a. Moreover, it was found that the µ(I) model can predict a quasi

universal relative time-distance curve.
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Fig. 29. Initial granular column and adaptive mesh of a three-dimensional granular

collapse simulation

4 Three-dimensional granular collapses

4.1 Problem statement

The present model was extended to three-dimensional granular collapses. The

geometry of the problem is illustrated in figure 29. A cylindrical granular

column with initial height hi and radius ri was considered. The computations

were performed in a rectangular domain (with two symmetry planes) of height

H in z direction and length L in both x and y directions.

Symmetry conditions were applied on the two lateral surfaces. The pressure

was set to zero on the other surfaces except at the bottom surface, where no-

slip conditions were applied. As detailed in the previous section, one needed

to set slip zones downstream the flow front, fixed to a few grains diameter.
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Fig. 30. Dimensionless final run-out distance square according to µS for three-di-

mensional collapses

4.2 Flow sensitivity to µ(I) parameters

In this part, the influence of µ(I) parameters on the final run-out distance was

analyzed. Figure 30 illustrates the dimensionless final run-out squared distance

according to µS. The obtained curve follows a power-law regime with exponent

≈ −1 according to µS. Indeed, (r2
f − r2

i )/r
2
i is a global measure of deformation

which, at first order, is expected to scale as 1/µS. Let us notice that, in 2D, the

equivalent global measure of deformation is the run-out distance (rf − ri)/ri.

Figure 31 illustrates dimensionless final run-out distance square according to

∆µ. As observed for two-dimensional granular collapses, the granular material

spreads further when ∆µ is lower. Moreover, it is observed that the curve fol-

lows a power-law with exponent ≈ −1. Thus, as for two-dimensional granular

collapses, µS has a stronger influence (three times more) than µF .

Finally, figure 32 illustrates dimensionless run-out distance square according to

I0. As observed for two-dimensional granular collapses, the granular material
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spreads further when I0 is lower. Moreover, it is observed that the curve follows

a power-law with exponent 0.1 on I0. As for the 2D case, influence of I0 is

small compared to the one of µS (ten times smaller), at least for for the chosen

set of parameters.

Consequently, three-dimensional simulations of the µ(I) rheology show that

material constant sensitivities are similar to the two-dimensional cases when

considering global measures of deformation.
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4.3 Influence of the aspect ratio

Three-dimensional granular collapses with different a were then performed,

using µ(I) parameters from Jop et al. (2006): µS = 0.38, ∆µ = 0.28, I0 =

0.279, ρf = 2500 kg · m−3 and d = 0.54 mm.

Figure 33 illustrates the dimensionless position of the final front according to

a. It was observed that for large aspect ratios (a > 2.7), the granular dynamics

followed a power-law curve with exponent 0.54. For low aspect ratios (a < 2.7),

a linear regime was found, similarly to two-dimensional granular collapses.

Thus, the critical aspect ratio has been found equal to ac ≈ 2.7:

rf − ri
ri

=


1.2a a < 2.7

1.93a0.54 a > 2.7

(10)

Consequently, three-dimensional simulations show that the µ(I) rheology is

able to retreive experimental exponents measured by Lube et al. (2004) and

Lajeunesse et al. (2004).

4.4 Grain diameter as an additional lengthscale

With the inertial number being defined as I =|| γ̇ || d/(
√
p/ρf ), the grain

diameter d acts as an additional lengthscale for fixed aspect ratio a. The global

velocity, strain rate and pressure scaling as, respectively,
√

(hi), 1/
√

(hi) and

hi, the inertial number then scales as d/hi = d/(ari). One then expects, for

fixed d and a, a larger effective friction for low ri, and consequently a less
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efficient spreading.

Figure 33 illustrates this statement, by comparing granular collapses at various

a for ri = 0.2m and ri = 0.02m, with the grain diameter being fixed to

d = 0.54mm. The relative spreading was indeed lower for large values of

d/ri. This behaviour is consistent with the dimensional analysis perfomed by

Lagree et al. (2011), who pointed out that the total number of grains (here,

the number of grains per unit height) is a control dimensionless parameter for

the flow.

5 Conclusion

In this paper, two and three-dimensional numerical simulations of granular

collapses have been performed, using the µ(I) inertial rheology. In the ex-

perimental literature of Lube et al. (2004), it was observed that the granular

rheology does not influence the flow dynamics, which was in contradiction

with Balmforth and Kerswell (2005), which asserted that the friction coef-
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ficient plays an important role in the flow dynamics (better spreading for

low frictional materials). The numerical simulations performed in this paper

showed that the inverse static friction coefficient µS mostly controls the rel-

ative deformation of the column. The role of dynamic friction coefficient and

characteristic inertial number I0 are of second order.

Our computations show that the µ(I) inertial rheology is able to predict the

different regimes of relative spreading as a function of aspect ratio a previously

observed for 2D and 3D experimental collapses: a1, a'0.66 and a'0.5 scalings

for, respectively, slumping for low aspect ratio, 2D and 3D spreading regimes

for large aspect ratio. We have also shown that the sublinear scalings for high

aspect ratio spreadings are due to an extra dissipation at the impact of the

falling granular column. Finally we have introduced the relative grain diam-

eter as an additional dimensionless parameter that, for a fixed aspect ratio,

increases the inertial number and then decreases the relative spreading. This

influence of grain diameter vs. initial radius will be experimentally investigated

in a future work.
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