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Perspective

Brain-computer interfaces (BCIs) have been developed to translate brain activity into informative signals that can be used by external devices. BCIs allow a direct interaction between humans and machines, and are increasingly used for control and communication, as well as for the treatment of neurological disorders [START_REF] Wolpaw | Braincomputer interfaces for communication and control[END_REF][START_REF] Daly | Braincomputer interfaces in neurological rehabilitation[END_REF]. Since the first proof-of-concept studies demonstrating the possibility to move a graphical object on a computer screen by means of electroencephalography (EEG) [START_REF] Vidal | Toward Direct Brain-Computer Communication[END_REF], research developments in this area have increased exponentially [START_REF] Schalk | BCI2000: A general-purpose brain-computer interface (BCI) system[END_REF][START_REF] Mller-Putz | EEG-based neuroprosthesis control: a step towards clinical practice[END_REF][START_REF] Schwartz | Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics[END_REF][START_REF] Cincotti | High-resolution EEG techniques for braincomputer interface applications[END_REF][START_REF] Carlson | Brain-Controlled Wheelchairs: A Robotic Architecture[END_REF][START_REF] Lafleur | Quadcopter control in threedimensional space using a noninvasive motor imagery-based braincomputer interface[END_REF][START_REF] Pichiorri | Braincomputer interface boosts motor imagery practice during stroke recovery[END_REF].

BCIs hold tremendous potential for open-loop (control) and closed-loop (biofeedback) applications, particularly via their ability to exploit subjects' voluntary control over their brain activity through mental imagery (MI). Despite this potential, the societal and clinical impact of BCIs has so far been rather limited due to their poor reliability in the users daily life [START_REF] Clerc | Brain-Computer Interfaces 2: Technology and Applications[END_REF]. Indeed, BCI performance as measured by accurate classification of the user's intent, is still relatively variable and does not provide the guarantees of functioning that are necessary in most clinical scenarios. One of the greatest challenges is to understand and solve the problem of "BCI illiteracy", which refers to a phenomenon that occurs in a non-negligible portion of users (estimated to be around 15-30%) who are not able to properly use a BCI [START_REF] Vidaurre | Towards a Cure for BCI Illiteracy[END_REF].

While many solutions have been proposed -from the identification of the best mental strategy to code the users intent, to the optimization of brain features, type of sensory feedback, and classification algorithm -the results are still not satisfactory and more research is needed [START_REF] Bougrain | Brain-Computer Interfaces 1: Methods and Perspectives[END_REF]. Here, we focus on the fundamental role of brain features as the substrate for the BCI algorithm. There are basically two antithetic approaches widely adopted in the literature. The first one extracts features from the activity of specific brain sites that are related to the mental strategy. This approach is, for example, the one used in motor imagery-based BCIs, where power spectra in the primary motor areas is the chosen feature [START_REF] Pfurtscheller | Event-related EEG/MEG synchronization and desynchronization: basic principles[END_REF]. The second approach instead takes into account all of the available information by computing, for example, the covariance matrix of all sensor signals. While the latter approach is particularly suitable for advanced classification algorithms [START_REF] Barachant | Multiclass Brain Computer Interface Classification by Riemannian Geometry[END_REF], it hampers the simple identification of underlying neurophysiological mechanisms.

Here we offer a complementary perspective that ideally combines the advantages of the previous approaches. We begin by acknowledging that one cannot infer neural mechanisms from a collection of disconnected parts, but instead must obtain an understanding of the system's collective behavior. Examining the activity of one specific region -while neglecting its interactions with other regions -oversimplifies the true phenomenon. To embrace the substratal complexity, we consider the human brain as a complex network where regions are both anatomically and functionally wired together with one another. Network science provides a natural language to describe such networks by modeling them as mathematical objects called graphs [START_REF] Albert | Statistical mechanics of complex networks[END_REF][START_REF] Newman | The Structure and Function of Complex Networks[END_REF][START_REF] Boccaletti | Complex networks: Structure and dynamics[END_REF].

One of the advantages of the network approach is the ability to extract summary statistics or metrics that quantitatively measure specific organizational characteristics across a variety of topological scales. Network metrics have been used to demonstrate, for example, that brain networks exhibit modular structure, where groups of brain regions display highly clustered connectivity at the mesoscale. Regions within modules tend to interact preferentially through short-distance links [START_REF] Betzel | The modular organization of human anatomical brain networks: Accounting for the cost of wiring[END_REF], while regions across modules tend to interact through highly connected nodes known as hubs [START_REF] Bertolero | The modular and integrative functional architecture of the human brain[END_REF]. While these organizational properties support basic cognitive functions, such as a balance between integration and segregation of information, they are nevertheless sensitive to pathological and physiological alterations of the mental state [START_REF] Bullmore | Complex brain networks: graph theoretical analysis of structural and functional systems[END_REF][START_REF] Park | Structural and Functional Brain Networks: From Connections to Cognition[END_REF][START_REF] Stam | Modern network science of neurological disorders[END_REF]. The connection between network topology and function underscores the potential for using network science as an effective tool for improving BCI performance.

Network metrics can be used as complementary brain features in BCIs (Fig. 1a). Recent studies have demonstrated their potential in discriminating between different mental states related to BCI tasks [START_REF] Demuru | Brain network analysis of EEG functional connectivity during imagery hand movements[END_REF][START_REF] Xu | Motor execution and motor imagery: a comparison of functional connectivity patterns based on graph theory[END_REF]. During BCI experiments, metrics must be computed from time-varying brain networks in order to give real-time feedback to the user [START_REF] Khambhati | Modeling and interpreting mesoscale network dynamics[END_REF][START_REF] Sizemore | Dynamic graph metrics: Tutorial, toolbox, and tale[END_REF]. The feasibility of tracking network metrics in real-time has already been demonstrated by using dynamic functional connectivity (dFC) measures from EEG [START_REF] Vico Fallani | Persistent patterns of interconnection in time-varying cortical networks estimated from high-resolution EEG recordings in humans during a simple motor act[END_REF], MEG [START_REF] Valencia | Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach[END_REF], and fMRI [START_REF] Calhoun | Time-Varying Brain Connectivity in fMRI Data: Whole-brain data-driven approaches for capturing and characterizing dynamic states[END_REF] signals. However, the time required to compute some metrics (e.g., shortest path length) can become intractable when the number of nodes N is large, i.e. N > 100. Furthermore, the statistical reliability of the estimated functional connections significantly decreases with the length of the time window considered [START_REF] Vico Fallani | Graph analysis of functional brain networks: practical issues in translational neuroscience[END_REF][START_REF] Preti | The dynamic functional connectome: State-of-the-art and perspectives[END_REF]. While possible solutions are available based on efficient sparse-coding algorithms [START_REF] Valdes-Sosa | Estimating brain functional connectivity with sparse multivariate autoregression[END_REF][START_REF] Lee | Sparse Brain Network Recovery Under Compressed Sensing[END_REF], the statistical reliability of the estimates remains the main challenge for the effective use of network metrics online. Eventually, having reliable temporally dynamic brain networks will allow researchers to exploit the nascent formulation of (i) multilayer networks to extract temporal metrics, which can be used to quantify higher-order properties such as persistence or flexibility [START_REF] Tang | Small-world behavior in time-varying graphs[END_REF][START_REF] Bassett | Dynamic reconfiguration of human brain networks during learning[END_REF], as well as (ii) multiplex networks to extract metrics quantifying cross-frequency functional interactions [START_REF] De Domenico | Mapping Multiplex Hubs in Human Functional Brain Networks[END_REF][START_REF] Guillon | Loss of brain inter-frequency hubs in Alzheimer's disease[END_REF].

Once extracted, the different network metrics constitute the feature vector for the classification of the user's mental state. This inference of the mental state from the feature vector can then be used to transmit the correct command to the computer (Fig. 1a). Interestingly, brain networks are a particular case of graphs where nodes correspond to specific spatial sites (i.e. the brain areas) and only their connections are allowed to change [START_REF] Vico Fallani | Graph analysis of functional brain networks: practical issues in translational neuroscience[END_REF][START_REF] Bassett | Efficient physical embedding of topologically complex information processing networks in brains and computer circuits[END_REF]. This fact implies that the size of the feature vectors including nodal metrics -such as the degree -will not change across mental conditions and can be directly input to statistical machine-learning algorithms or to the mass-univariate tests in order to optimally perform the classification [START_REF] Zanin | Optimizing Functional Network Representation of Multivariate Time Series[END_REF][START_REF] Richiardi | Machine Learning with Brain Graphs: Predictive Modeling Approaches for Functional Imaging in Systems Neuroscience[END_REF]. Notably, this same spatially-embedded property of the brain can further exploited to fine-tune statistical null models of the brain networks involved: both for the purposes of comparing the observed features to those anticipated in the null, and for the purposes of incorporating null expectations into the estimated features themselves [START_REF] Betzel | The modular organization of human anatomical brain networks: Accounting for the cost of wiring[END_REF][START_REF] Samu | Influence of wiring cost on the large-scale architecture of human cortical connectivity[END_REF][START_REF] Roberts | The contribution of geometry to the human connectome[END_REF].

Controlling a BCI is a learned skill based on the feedback presented to the user. In general, several weeks or even months are needed to obtain high performance, and in some cases adequate control is never reached [START_REF] Vidaurre | Towards a Cure for BCI Illiteracy[END_REF][START_REF] Jeunet | Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study[END_REF]. This gap in the ease with which different individuals learn to effectively use a BCI has motivated scientists to consider adaptive BCI architectures that can dynamically accommodate the transient nature of brain features [START_REF] Shenoy | Towards adaptive classification for BCI[END_REF][START_REF] Vidaurre | Co-adaptive calibration to improve BCI efficiency[END_REF]. In fact, during BCI skill acquisition, users often report transitioning from a deliberate cognitive strategy (e.g., motor imagery) to a nearly automatic goal-directed approach focused directly on effector control [START_REF] Wander | Distributed cortical adaptation during learning of a braincomputer interface task[END_REF]. This evidence is indicative of a network reconfiguration process that is consistent with procedural motor learning. Efforts to better understand the neural dynamics underlying BCI training have capitalized on a range of neuroimaging techniques in both humans and non-human primates [START_REF] Wander | Distributed cortical adaptation during learning of a braincomputer interface task[END_REF][START_REF] Carmena | Learning to Control a BrainMachine Interface for Reaching and Grasping by Primates[END_REF][START_REF] Jarosiewicz | Functional network reorganization during learning in a brain-computer interface paradigm[END_REF][START_REF] Toppi | Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery[END_REF][START_REF] Kaiser | Cortical effects of user training in a motor imagery based braincomputer interface measured by fNIRS and EEG[END_REF].

Results have shown that even if BCIs typically receive inputs from a few brain regions, a distributed network of remote cortical areas is actually involved throughout BCI skill acquisition.

Network neuroscience approaches have recently been adopted to quantify brain network reorganization underlying diverse types of human learning (Fig. 1b). For example, network flexibility of association areas in fMRI-based functional brain networks, measured as the fraction of times that a node changed its allegiance to a functional module throughout training [START_REF] Bassett | Dynamic reconfiguration of human brain networks during learning[END_REF], has been showed to positively predict individual differences in motor learning, cognitive control, and executive function [START_REF] Braun | Dynamic reconfiguration of frontal brain networks during executive cognition in humans[END_REF]. The same statistic, when calculated from the ventral striatum has also been shown to positively predict individual differences in accuracy on a reinforcement learning task, as well as on reinforcement learning rate parameters estimated from mathematical models of the individual's behavior [START_REF] Gerraty | Dynamic flexibility in striatal-cortical circuits supports reinforcement learning[END_REF]. Resting state markers of this flexible module architecture have noted capacity to predict future learning over 6 weeks of motor skill training [START_REF] Mattar | Predicting future learning from baseline network architecture[END_REF]. Similarly, a decreased functional integration, measured by shortest paths between nodes in EEG-derived functional brain networks, has been reported after motor imagery training, and was interpreted as a putative marker of an underlying automaticity process [START_REF] Pichiorri | Sensorimotor rhythm-based brain-computer interface training: The impact on motor cortical responsiveness[END_REF]. These results suggest that network science holds the potential to unveil the neural basis of BCI learning and predict future performance, thereby informing the optimization of adaptive BCI architectures.

It is important to admit that while richer brain features and an enhanced understanding of the process of learning itself may enhance BCI performance on average, challenges may still remain for single individuals. Indeed, for some users, it may be impossible to rapidly generate an appropriate activity pattern that is accurately detected by the machine. An alternative approach is to draw on recent advances in neurostimulation technology, such as transcranial magnetic (TMS) or direct current (tCDS) stimulation, which can directly influence brain state by altering network dynamics [START_REF] Chen | Causal interactions between fronto-parietal central executive and defaultmode networks in humans[END_REF]. Such technology has notable potential, but immediate applications have been hampered by the lack of an understanding of how and where to stimulate to generate a desired mental state [START_REF] Johnson | Neuromodulation for brain disorders: Challenges and opportunities[END_REF]. Gaining this understanding will require informed models that can a priori produce predictions about where and how to deliver stimulation to induce a specific pattern of brain activity. One recently proposed model builds on notions of network controllability [START_REF] Gu | Controllability of structural brain networks[END_REF], where stimulation is stipulated to pass along white matter tracts and therefore where stimulation-induced change in brain state is constrained by the structural connectome [START_REF] Muldoon | Stimulation-based control of dynamic brain networks[END_REF].

Initial applications of the theory of network control to neural systems has spanned a wide range of species, including C. elegans, mouse, Drosophila, macaque, and human, and has ranged from data through models to pure theory [60][START_REF] Gu | Controllability of structural brain networks[END_REF][START_REF] Kim | Role of graph architecture in controlling dynamical networks with applications to neural systems[END_REF][START_REF] Yan | Network control principles predict neuron function in the Caenorhabditis elegans connectome[END_REF]. Applications to the clinic have largely focused on questions of predicting and altering seizure dynamics, although recent work has demonstrated utility in the understanding of psychiatric disorders such as bipolar [START_REF] Taylor | Optimal control based seizure abatement using patient derived connectivity[END_REF][START_REF] Ching | Distributed control in a mean-field cortical network model: Implications for seizure suppression[END_REF][START_REF] Ehrens | Closed-loop control of a fragile network: Application to seizure-like dynamics of an epilepsy model[END_REF][START_REF] Jeganathan | Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk[END_REF][START_REF] Braun | From maps to multi-dimensional network mechanisms of mental disorders[END_REF]. Network control has been suggested to have utility in neurofeedback specifically and BCIs more generally [START_REF] Bassett | A network engineering perspective on probing and perturbing cognition with neurofeedback[END_REF][START_REF] Murphy | A network neuroscience of neurofeedback for clinical translation[END_REF], in part due to the marked correspondence between theoretically-predicted control points in the brain and the cognitive functions they support across development and in healthy adulthood [START_REF] Gu | Controllability of structural brain networks[END_REF][START_REF] Tang | Developmental increases in white matter network controllability support a growing diversity of brain dynamics[END_REF]. Future efforts further validating or extending the network control model may serve as an important complement to efforts in BCI feature selection and optimization.

To conclude, here we have provided our perspective on why and how network science has the potential to improve the performance of brain-machine interactions. By offering this perspective, we hope to stimulate a global and interdisciplinary discussion to collec-tively identify the elements of BCI learning that should be reconsidered, in an effort to boost their societal and clinical impact. 
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 1 Figure 1: A network neuroscience approach to brain-computer interfaces (BCIs). Panel a) Network-based brain-computer interfaces. The user modulates her or his brain activity to control the BCI. Brain signals are recorded through sensors such as electro/magnetoencephalography (E/MEG).Functional connectivity is used to infer the corresponding interaction network or graph. Different network metrics are extracted to constitute the feature vector (i.e., a point in the scatter plot). Machine learning algorithms use this feature vector to classify the user's mental states (i.e., the red squares and green triangles in the scatter plot) generated during the experiment. At each time point, the final result is sent to the external device that executes the command and gives the feedback to the user. Panel b) Quantification of neural plasticity during BCI training. Temporal network metrics, which describe higher-order time-varying connectivity changes, can be used to model dynamic brain networks obtained longitudinally from neuroimaging signals such as functional magnetic resonance imaging (fMRI). These metrics, reflecting transient organizational mechanisms, are suitable candidates to predict future BCI performance. Panel c) Principles of brain network controllability for modulating function. Network control theory is used to identify the driver nodes in the structural connectome obtained from diffusion tensor imaging data (DTI), and also to derive the theoretically predicted signals needed to change the brain activity. Noninvasive functional brain stimulation, such as transcranial magnetic stimulation (TMS), can be then used to experimentally favor detectable brain activity patterns.
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