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This paper proposes a Computational Fluid Dynamics (CFD) framework with the aim of combining consistency and eciency for the numerical simulation of high Reynolds number ows encountered in engineering applications for aerodynamics. The novelty of the framework is the combination of a Reynolds-Averaged NavierStokes (RANS) model with an anisotropic mesh adaptation strategy handling arbitrary immersed geometries by building the corresponding boundary layer meshes. The numerical algorithm consists of robust and accurate solution of the unsteady incompressible NavierStokes equations supplemented with a SpalartAllmaras turbulence model and boundary layer remeshing relying on a specically designed metric. The ow solver is formulated as a Variational Multiscale (VMS) nite element method for the momentum balance and the incompressibility constraint, and as an upwind PetrovGalerkin method for the nonlinear turbulent equation. The boundary layer remeshing strategy is exible as it allows the adaptation of arbitrary coarse meshes by modifying the size and the orientation of elements along the immersed boundary to ensure a smooth gradation along the curvature of the body's geometry. The solver is capable of handling highly stretched anisotropic elements and is shown to successfully predict both mean and uctuating drag/lift coecients. Laminar and turbulent test cases in 2D and 3D are presented to assess the performance of this framework against experimental results relevant to external aerodynamics, including an airship and a ying drone.

Introduction

While the modelling of turbulent ows has not improved signicantly over the past decade, rapid headway has been made from the numerical standpoint with the rise of adaptive methods now allowing an accurate description of complex ows at a reasonable cost. Computational Fluid Dynamics (CFD) combined with meshing capabilities is expected to accelerate this progress in terms of accuracy and reliability of the description of physical phenomena. The aerospace industry has recognized the importance of research and development in this eld to improve aerodynamic performance. In particular the capability of numerical simulation tools to determine the aerodynamic forces and moments for a given conguration is fundamental in the process of aircraft design [START_REF] Jameson | A perspective on computational algorithms for aerodynamic analysis and design[END_REF].

The high accuracy requirement for the prediction of integral coecients in aerodynamic simulations often implies the necessity to correctly resolve local ow features such as ow separation, or boundary layers, where the uid velocity exhibits strong gradients in the wall-normal direction, and skin-friction usually plays a dening role [START_REF] Homan | Ecient computation of mean drag for the subcritical ow past a circular cylinder using general Galerkin G2[END_REF][START_REF] Homan | Towards a parameter-free method for high Reynolds number turbulent ow simulation based on adaptive nite element approximation[END_REF]. It is generally acknowledged that extremely rened meshes are widely required in order to capture global as well as local ow features past simplied and complex geometries, Email address: aurelien.larcher@mines-paristech.fr (A. Larcher) which can often be time and budget consuming. A large variety of methods have thus been proposed to optimize the trade-o between numerical accuracy and computational cost in CFD. In the literature, those approaches are classied into two main categories, namely block-structured strategies [START_REF] Cedar | Engine/Airframe Installation CFD for Commercial Transports: An Engine Manufacturer's Perspective[END_REF][START_REF] Meakin | Moving body overset grid methods for complete aircraft tiltrotor simulations[END_REF][START_REF] Nordanger | Simulation of airow past a 2D NACA0015 airfoil using an isogeometric incompressible NavierStokes solver with the SpalartAllmaras turbulence model[END_REF] and unstructured meshes [START_REF] Borouchaki | Delaunay mesh generation governed by metric specications[END_REF][START_REF] Baker | Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation[END_REF][START_REF] Löhner | Generation of three-dimensional unstructured grids by the advancing-front method[END_REF][START_REF] Möller | On advancing front mesh generation in three dimensions[END_REF]. The structured approach, has been widely used to mesh a variety of 3D geometries, but the specication of the initial block topology is generally considered a dicult task. In the unstructured approach, meshes are automatically generated starting from an arbitrary mesh domain, but because of the high gradients prevailing in the boundary layer regions, anisotropic meshes are very desirable [START_REF] Kim | A hybrid mesh deformation algorithm using anisotropic PDEs and multiobjective mesh optimization[END_REF][START_REF] Aubry | Boundary layer mesh generation on arbitrary geometries[END_REF]. Dierent computational methods have thus been established to generate unstructured anisotropic meshes [START_REF] Dervieux | About theoretical and practical impact of mesh adaptation on approximation of functions and PDE solutions[END_REF][START_REF] Castro | New Progress in Anisotropic Grid Adaptation for Inviscid and Viscous Flows Simulations[END_REF][START_REF] Sahni | Adaptive boundary layer meshing for viscous ow simulations[END_REF][START_REF] Bottasso | A procedure for tetrahedral boundary layer mesh generation[END_REF].

This paper addresses these issues of boundary layer anisotropic mesh generation for unsteady incompressible turbulent ows. The use of adaptive methods to accurately predict aerodynamic coecients or ow features is not a new practice, but is still an area in full bloom where numerous questions remains unanswered or very challenging. We propose here a new anisotropic boundary layer mesh adaptation procedure meant for generic geometries immersed in an arbitrary coarse unstructured mesh. A multi-levelset method is then used to locate the boundary layer, to control the mesh size distribution, and orientation ensuring a smooth gradation along the immersed geometry [START_REF] Billon | Boundary-volume mesh generation and adaptation for turbulent ows around complex geometries[END_REF]. The level set function dened as a signed distance function implicitly represents and localizes the interface of the object, but is also used as a geometric tool to specify some properties of the surface such as smoothness and gradients [START_REF] Bruchon | Using a signed distance function for the simulation of metal forming processes: Formulation of the contact condition and mesh adaptation. From a Lagrangian approach to an Eulerian approach[END_REF][START_REF] Fedkiw | Level set methods and dynamic implicit surfaces[END_REF]. In order to take into account the physical parameters of the simulation and the curvature of the geometry, a new metric map is obtained, that satises the required mesh sizes in the needed directions at the solid interface and within the entire computational domain.

Another issued addressed in this work concerns the anisotropic behavior for fully turbulent ows, as it is also well known that most classical numerical schemes tend to fail when highly stretched elements are used. In this paper the incompressible unsteady NavierStokes equations are solved using a Variational Multiscale (VMS) method [START_REF] Hughes | Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods[END_REF][START_REF] Hughes | The variational multiscale method a paradigm for computational mechanics[END_REF][START_REF] Hachem | Stabilized nite element method for incompressible ows with high Reynolds number[END_REF], that decomposes both the velocity and the pressure elds into resolvable/coarse and unresolved/ne scales, to cope with convection-dominated problems and velocitypressure compatibility. A stabilized nite element method is then described to solve the convectiondiusionreaction equation related to the SpalartAllmaras turbulence model [START_REF] Spalart | A one-equation turbulence model for aerodynamic ows[END_REF].

First, governing equations for the Reynolds-Averaged NavierStokes (RANS) model are introduced in Section 2 as well as the discretization by stabilized nite element method; in particular the Variational Multiscale formulation of the NavierStokes equations is described. The anisotropic boundary layer mesh adaptation technique is then presented in Section 3. In Section 4, the results obtained for the widely benchmarked turbulent ow past a 2D square cylinder are presented and compared to reference data from the literature. Several 3D test cases of increasing diculty are then considered to validate the numerical framework, e.g., the laminar and turbulent ows past a sphere, an airship and a drone. New experimental results and comparisons are also provided for both the airship and the drone congurations. Finally, Section 5 is dedicated to the conclusions and perspectives.

A Variational Multiscale solver for RANS SpalartAllmaras

This section introduces the RANS model consisting of the incompressible NavierStokes equations for a Newtonian uid, coupled with the SpalartAllmaras transport equation for a turbulent scale as well as their discretization by means of Finite Element methods. Solving the set of equations is performed using a fractional step approach such that NavierStokes equations are rst solved using the eddy viscosity obtained at the previous time step, then the SpalartAllmaras eddy viscosity is computed using the updated velocity. This second stage involves the solution of a nonlinear convectiondiusionreaction equation.

Firstly, a variational multiscale method for the NavierStokes equations is derived where both the velocity and the pressure spaces are enriched to deal with the pressure instability and prevent spurious oscillations that develop in convection-dominated regimes. Secondly, the SpalartAllmaras transport equation is solved using a Streamline Upwind PetrovGalerkin (SUPG) method. In both schemes particular attention is paid to the computation of stabilization parameters in the presence of mesh anisotropy through the use of a directional element size.

The NavierStokes equations

Let Ω be the uid domain, an open bounded subset of R d with d the space dimension, and ∂Ω its boundary. The evolution of the velocity u and the pressure p in an incompressible uid ow with given positive constant density is governed by the NavierStokes equations,

(∂ t u + u • ∇u) -∇ • σ = f ∇ • u = 0 (1)
where the Cauchy stress tensor for a Newtonian uid is given by

σ = 2µ ε(u) -p I d , (2) 
with µ the dynamic viscosity, ε(u) the strain-rate tensor, and I d the d-dimensional identity tensor. Moreover Equations ( 1) are supplemented with boundary and initial conditions to be specied. Reynolds-Averaged NavierStokes (RANS) equations are obtained by applying the Reynolds decomposition to the NavierStokes equations, such that velocity and pressure are expressed as the sum of a mean eld and a uctuation. Applying an averaging operator to the resulting expressions gives rise to a forcing term under the form of the divergence of the so-called Reynolds stress tensor; this latter consists of correlations of velocity uctuations and takes account of the eect of the turbulent uctuations on the averaged ow. In the Boussinesq approximation, rst-order closure of the system of averaged equations amounts to a mean gradient hypothesis: turbulence is therefore modeled as an additional diusivity called eddy viscosity µ t .

The eddy viscosity µ t itself proceeds from a model involving one or more turbulent scales, each of which is solution to a nonlinear convectiondiusionreaction equation. In this paper the SpalartAllmaras model consists of one equation for the turbulent viscosity described in Section 2.2. Hereafter, the same notation is used for the NavierStokes and RANS equations and the total viscosity is denoted as µ for the sake of simplicity.

The weak formulation of Problem (1)(2) with velocity space V ⊂ H 1 (Ω)

d and pressure space Q = q ∈ L 2 (Ω) : Ω q = 0 reads, under the assumption of homogeneous Dirichlet boundary conditions:

Find (u, p) ∈ V × Q such that:

( ∂ t u + u • ∇u , w ) + ( 2µ ε(u) , ε(w) ) -( p , ∇ • w ) = ( f , w ) , ∀ w ∈ V ( ∇ • u , q ) = 0 , ∀ q ∈ Q (3) 
with ( • , • ) the L 2 inner product over the computational domain Ω.

Let T h be an admissible mesh constructed as a triangulation of Ω. Function spaces for the velocity V and for the pressure Q are approximated by nite dimensional spaces V h and Q h respectively. It is well known that the stability of the semi-discrete formulation of (3) requires an appropriate choice of the nite element spaces V h and Q h , that must fulll a compatibility condition [START_REF] Ern | Theory and Practice of Finite Elements[END_REF]. Accordingly, the standard Galerkin method with the P 1 /P 1 element, using the same piecewise linear space for V h and Q h , is not stable. Moreover, convection-dominated problems also lead to a loss of coercivity in formulation (3), hence numerical oscillations that end up polluting the whole solution. In this work, a Variational Multiscale method [START_REF] Hughes | Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods[END_REF] is implemented to circumvent both problems through a PetrovGalerkin approach. The basic idea is to split all unknowns into two components, a coarse one and a ne one, that correspond to dierent scales or levels of resolution. In practice, ne scales are solved in an approximate manner and their eect is imbedded into the large-scale equation. The method is outlined hereafter and the reader is referred to [START_REF] Hachem | Stabilized nite element method for incompressible ows with high Reynolds number[END_REF] for extensive details about the formulation.

The velocity and the pressure elds are split into resolvable coarse-scale and unresolved ne-scale components, such that u = u h + u and p = p h + p , where the subscript h is used hereafter to denote the nite element (coarse) component, and the prime is used for the so called subgrid scale (ne) component. The same decomposition can be applied to test functions, hence w = w h + w and q = q h + q . The enriched function spaces are dened as

V = V h ⊕ V , V 0 = V h,0 ⊕ V 0 and Q = Q h ⊕ Q .
Therefore the resulting nite element approximation of the time-dependent NavierStokes problem reads Find (u, p) ∈ V × Q such that:

( ∂ t (u h + u ) + (u h + u ) • ∇(u h + u ) , (w h + w ) ) + ( 2µ ε(u h + u ) , ε(w h + w ) ) -( (p h + p ) , ∇ • (w h + w ) ) = ( f , (w h + w ) ) , ∀ w ∈ V 0 ( ∇ • (u h + u ) , (q h + q ) ) = 0 , ∀ q ∈ Q. (4) 
In order to derive the stabilized formulation, Equations ( 4) are split into a large-scale and a ne-scale problem. The ne-scale problem is dened on element interiors. Under several assumptions regarding the time-dependency and the nonlinearity of the momentum equation of the subscale system detailed in [START_REF] Hachem | Stabilized nite element method for incompressible ows with high Reynolds number[END_REF], the ne-scale solutions u and p are written in terms of the time-dependent large-scale variables using consistently derived residual-based terms. Consequently, we can use static condensation, that consists in substituting directly u and p into the large-scale problem, which gives rise to additional terms in the Finite Element formulation, tuned by a local stabilizing parameter. These terms are responsible for the enhanced stability compared to the standard Galerkin formulation. The large-scale system nally reads:

( ∂ t u h + u h • ∇u h , w h ) -( τ 1 R m , u h • ∇w h ) + ( 2µ ε(u h ) , ε(w h ) ) -( p h , ∇ • w h ) -( τ 2 R c , ∇ • w h ) = ( f , w h ) , ∀ w h ∈ V h,0 ( ∇ • u h , q h ) -( τ 1 R m , ∇q h ) = 0 , ∀ q h ∈ Q h (5) 
where R m and R c are piecewise constant momentum and continuity residuals:

R m = f -(∂ t u h + u h • ∇u h ) -∇p h R c = -∇ • u h (6) 
and τ 1 and τ 2 are piecewise dened stabilization parameters for which we adopt the expression proposed in [START_REF] Codina | Stabilization of incompressibility and convection through orthogonal sub-scales in nite element methods[END_REF]:

τ 1 = 2 u h K h K 2 + 4µ h 2 K 2 -1 2 , (7) 
τ 2 = µ 2 + c 2 u h K c 1 h K 2 1 2 (8) 
where h K is the characteristic length of the element and c 1 and c 2 are algorithmic constants taken as c 1 = 4 and c 2 = 2 for linear elements [START_REF] Codina | Stabilization of incompressibility and convection through orthogonal sub-scales in nite element methods[END_REF]. Compared to the standard Galerkin method, the proposed stabilized formulation involves additional integrals that are evaluated element-wise. These additional terms represent the stabilizing eect of the sub-grid scales and are introduced in a consistent way in the Galerkin formulation. They allow avoiding instabilities caused by both dominant convection terms and incompatible approximation spaces. Equations ( 6) are discretized in time by a semi-implicit scheme. The convective term, the viscous term, the pressure term in the momentum equation, as well the divergence term in the continuity equation, are integrated implicitly through a backward Euler scheme while other contributions are explicit. Owing to the fractional step approach for the NavierStokes and the SpalartAllmaras equations, the dependency of the total viscosity µ on the turbulent viscosity µ t is also explicit. Given the nonlineary of the convection operator a Newton algorithm is applied to the system at each time step. Solving for (u h , p h ) and denoting by (u * h , p * h ) the solution pair at the previous time step, the i + 1-th inner iteration of the xed-point algorithm reads

( (u i+1 h -u * h ) δt -1 + u i h • ∇u i+1 h + u i+1 h • ∇u i h -u i h • ∇u i h , w h ) -( τ * 1 R * m , u * h • ∇w h ) + ( 2µ * ε(u i+1 h ) , ε(w h ) ) -( p i+1 h , ∇ • w h ) -( τ * 2 R * c , ∇ • w h ) = ( f * , w h ) , ∀w h ∈ V h,0 ( ∇ • u i+1 h , q h ) -( τ * 1 R * m , ∇q h ) = 0 , ∀q h ∈ Q h . (9) 
with (u i+1 h , p i+1 h ) and (u i h , p i h ) solution pairs, respectively, at current and previous xed-point iterations, and quantities

µ * , τ * 1 , τ * 2 , R * m , R * c evaluated using (u * h , p * h ).
The linear system is preconditioned with a block Jacobi method supplemented by an incomplete LU (Lower-Upper) factorization, and solved with the GMRES (Generalized Minimal Residual) algorithm [START_REF] Saad | Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF][START_REF] Constantinescu | Iterative Methods for Sparse Linear Systems[END_REF][START_REF] Knoll | Jacobian-free newton-krylov methods: a survey of approaches and applications[END_REF].

The SpalartAllmaras turbulence model

The turbulence model chosen to compute the eddy viscosity is the one-equation SpalartAllmaras (SA) model [START_REF] Spalart | A one-equation turbulence model for aerodynamic ows[END_REF] which describes the evolution of the kinematic eddy viscosity. The eddy viscosity µ t in the NavierStokes equations is computed by relation µ t = νf v1 with f v1 a given damping function to enforce linear prole in the viscous sublayer. The turbulent scale ν is governed by the non linear convection diusionreaction equation

∂ ν ∂t + u • ∇ν -c b1 (1 -f t2 ) S ν + c w1 f w - c b1 κ 2 f t2 ν d 2 - c b2 σ ∇ν • ∇ν - 1 σ ∇ • [(ν + ν)∇ν] = 0 ( 10 
)
where d is the distance to the nearest wall boundary, σ = 2/3, and S denotes the modied vorticity magnitude

S = S + ν κ 2 d 2 f v2 , S = 2W (u) : W (u) (11) 
with κ = 0.4 the von Kármán constant, W the rotation-rate tensor, and f v2 a damping function to enforce the logarithmic prole. Finally, damping functions read

f v1 = χ 3 χ 3 + c 3 v1 , χ = ν ν , f v2 = 1 - χ 1 + χf v1 f t2 = c t3 e -ct4χ 2 f w = g 1 + c 6 w3 g 6 + c 6 w3 1 6 , g = r + c w2 (r 6 -r), r = ν Sκ 2 d 2 , (12) 
and model coecients are specied as

c b1 = 0.1355 , c b2 = 0.622 , c v1 = 7.1 , c v2 = 0.7 , c v3 = 0.9 c w1 = c b1 κ + 1 + c b2 σ , c w2 = 0.3 , c w3 = 2 , c t3 = 1.2 , c t = 0.5 (13) 
Variants of the SpalartAllmaras model exist in the literature, most of which are collected in NASA turbulence modeling resource webpage [START_REF] Rumsey | NASA turbulence modeling resource page[END_REF]. In this work, the Negative SpalartAllmaras Model was selected because of its capability to avoid the generation of negative turbulent viscosity without the use of clipping [START_REF] Allmaras | Modications and Clarications for the Implementation of the Spalart-Allmaras turbulence model[END_REF]. It consists in replacing [START_REF] Möller | On advancing front mesh generation in three dimensions[END_REF] when ν is negative by

∂ ν ∂t + u • ∇ν -c b1 (1 -c t3 )S ν -c w1 ν d 2 - c b2 σ ∇ν • ∇ν - 1 σ ∇ • [(ν + f n ν)∇ν] = 0, (14) 
with f n = (c n1 + χ 3 )/(c n1 -χ 3 ) and c n1 = 16. In addition, the turbulent eddy viscosity µ t is set to zero in regions where the computed value of ν is negative. A stabilized Finite Element discretization of the SpalartAllmaras model is proposed in [START_REF] Khurram | Multiscale nite element method applied to the Spalart-Allmaras turbulence model for 3D detached-eddy simulation[END_REF]. Following a similar idea, we recast Equation ( 10) into a convectiondiusionreaction form, and apply a backward Euler time discretization, to give

νn+1 -νn δt + u n+1 - c b2 σ ∇ν n+1 • ∇ν n+1 convection - 1 σ ∇ • (ν + νn+1 )∇ν n+1 diusion -c b1 (1 -f n+1 t2 ) Sn+1 + c w1 f n+1 w - c b1 κ 2 f n+1 t2 νn+1 d 2 νn+1 reaction = 0 (15)
where νn stands for the value of ν at discrete time t n . As the value of the velocity eld at time t n+1 is computed before the SpalartAllmaras equation at the same time step, quantities u n+1 , Sn+1 , f n+1 t2 and f n+1 w are available when solving Equation [START_REF] Sahni | Adaptive boundary layer meshing for viscous ow simulations[END_REF]. Equation ( 15) being nonlinear, a xed-point algorithm is applied at semi-discrete level, but not relying on the Newton method employed in [START_REF] Khurram | Multiscale nite element method applied to the Spalart-Allmaras turbulence model for 3D detached-eddy simulation[END_REF], rather on a simpler Picard-like linearization. For the sake of simplicity, using the superscript νi for the value of νn+1 at the i-th iteration, and ν * for the solution at the previous time step, an iteration of the nonlinear root search reads

νi+1 -ν * δt + u n+1 - c b2 σ ∇ν i • ∇ν i+1 - 1 σ ∇ • (ν + νi )∇ν i+1 -c b1 (1 -f t2 ) Sn+1 + c w1 f w - c b1 κ 2 f t2 νi d 2 νi+1 = 0 (16)
Equation ( 16) is then discretized in space using a Streamline Upwind PetrovGalerkin (SUPG) method. Following the steps in [START_REF] Badia | Analysis of a stabilized nite element approximation of the transient convection-diusion equation using an ALE framework[END_REF] the stabilized weak form of ( 16) reads

( (ν i+1 -ν * )δt -1 + u n+1 - c b2 σ ∇ν i • ∇ν i+1 h , ω h ) -( 1 σ (ν + νi h )∇ν i+1 h , ∇ω h ) -( c b1 (1 -f n+1 t2 ) Sn+1 h + c w1 f n+1 w - c b1 κ 2 f n+1 t2 νi h d 2 νi+1 h , ω h ) + ( R s (ν i ) , τ i 3 u n+1 h - c b2 σ ∇ν i h • ∇ω h ) = 0, ∀ω h ∈ W h . ( 17 
)
where R s is the nite element residual of ( 16) and τ 3 is a stabilization parameter computed over each element as

τ 3 = c 2 h α c K + c 1 h 2 K α d + α r -1 (18) 
where α c , α d and α r are respectively the convection, diusion and reaction coecients in Equation ( 17), h K is the element size, α c K a characteristic norm of the convection term and c 1 = 4, c 2 = 2 for linear elements. Finally, the linear system arising from Equation ( 17) is solved using the same method as in Section 2.1.

Element size measures in stabilization parameters

Coecients τ i , i = 1, 2, 3, weight the stabilization terms added to Galerkin formulations ( 5) and [START_REF] Billon | Boundary-volume mesh generation and adaptation for turbulent ows around complex geometries[END_REF]. They are piecewise constant on each element K of the triangulation and depend on the local mesh size h K . Many numerical experiments show that good results can be obtained when using the minimum edge length of K [START_REF]On the performance of high aspect ratio elements for incompressible ows[END_REF] on fairly regular meshes, while others always use the triangle diameter (see [START_REF] Micheletti | Stabilized nite elements on anisotropic meshes: A priori error estimates for the advection-diusion and the stokes problems[END_REF] for details).

However, in the case of strongly anisotropic meshes with highly stretched elements, the denition of h K is still an open problem and plays a critical role in the design of the stabilizing coecients [START_REF] Harari | What are C and h?: Inequalities for the analysis and design of nite element methods[END_REF][START_REF] Codina | Stabilization of incompressibility and convection through orthogonal sub-scales in nite element methods[END_REF]. In [START_REF] Förster | Stabilized nite element formulation for incompressible ow on distorted meshes[END_REF], the authors examine thorougly the eect of dierent element length denitions on distorted meshes. In [START_REF] Cangiani | The residual-free-bubble nite element method on anisotropic partitions[END_REF], anisotropic error estimates for the Residual Free Bubble (RFB) method are developed to derive a new choice of the stabilizing parameters suitable for anisotropic partitions. In this work, we adopt the denition proposed in [START_REF] Tezduyar | Finite element stabilization parameters computed from element matrices and vectors[END_REF] to compute h K as the size of K in the direction of the velocity:

h K = 2|u h | Σ N K i=1 |u h • ∇θ i | (19) 
where N K is the number of vertices of K and (θ i ) 1≤i≤N K are the usual basis functions of P 1 (K).

Automated anisotropic boundary layer mesh adaptation 3.1. Boundary layer structure

The boundary layer is a region of the ow where frictional eects are dominant. A large part of the boundary layer theory is devoted to the calculation of two important quantities: the shear stress at the wall τ w , and the boundary layer thickness δ. In a shear ow the velocity increases continuously from zero from the wall to the velocity in the inner region such that the wall shear stress is dened as:

τ w = µ du x dy y=0 (20) 
with µ the dynamic viscosity of the uid, and dux dy y=0

the gradient of the streamwise velocity u x at the wall. Since it is dicult to compute the wall shear stress without knowing the velocity solution, the dimensionless skin friction coecient is calculated as being a dimensionless quantity obtained by dividing the shear stress by the freestream dynamic pressure q ∞ :

C f = τ w q ∞ = τ w 1 2 ρ ∞ u 2 ∞ ( 21 
)
where ρ ∞ and u ∞ are respectively the freestream density and velocity. When turbulent ow regimes take place, the skin friction coecient is deduced from the Schlichting skin-friction correlation for ows with Reynolds number Re < 10 9 [START_REF] Schlichting | Boundary-layer theory[END_REF]:

C f = [2log 10 (Re L ) -0.65] -2.3 (22) 
Recall that, the ow in the boundary layer is laminar or turbulent depending on the Reynolds number Re:

Re = ρu ∞ µ y ( 23 
)
where y is the distance to the wall. As described in [START_REF] Billon | Anisotropic boundary layer mesh generation for immersed complex geometries[END_REF] the boundary layer can be considered as a superposition of layers where the ow behaves dierently, depending on whether the ow is laminar or turbulent. In the rst thin layer, immediately adjacent to the surface, the ow is laminar and slides smoothly along a streamline. An irregular transition to the turbulent regime then occurs, in which uid elements move in a random fashion, and vortices progressively form and grow while being advected downstream. A relevant boundary-layer mesh needs to be ne enough to capture all vortex scales. The boundary layer thickness δ strongly depends on the regimes of the ow, hence the expression of the thickness for laminar ow is given by δ lam , and for turbulent ows by δ turb .

δ lam = 5L Re 1 2 L , δ turb = 0.38L Re 1 5 L (24) 

Geometric construction of the boundary layer mesh

The mesh is built layer by layer in the vicinity of solid wall boundaries following the procedure sketched in Figure 1. All cells (tetrahedra in 3D, triangles in 2D) at the surface of the object have the same size in the direction normal to the boundary

h min = y + 0 µ u * ( 25 
)
determined by the desired dimensionless wall distance at the rst cell y + 0 , the dynamic viscosity µ, and the friction velocity Combining ( 21) and ( 26) in [START_REF] Codina | Stabilization of incompressibility and convection through orthogonal sub-scales in nite element methods[END_REF] the mesh size at the surface can be expressed as a function of the Reynolds number and the characteristic length L of the problem by relation

u * u * = τ w ρ (26) 
h min = Ly + 0 Re L C f 2 (27) 
A stretching parameter α > 1 is now introduced to control the growth of the element size in the direction normal to the wall such the thickness of the n-th layer from the wall is given by h min α n-1 . Simulations in this paper were performed using a stretching parameter of value α = 1.2.

Multi-Levelset method

This section describes a new anisotropic boundary layer mesh adaptation procedure meant for complex geometries immersed in an arbitrary coarse unstructured mesh. Let us suppose that the whole domain is denoted by Ω where an interface of the geometry denoted by Γ is immersed such that the domain is decomposed into two subdomains Ω 1 and Ω 2 with Γ = Ω1 ∩ Ω2 . A multi-levelset method is implemented to locate the boundary layer, and to control the element size distribution and orientation ensuring a smooth gradation. In this algorithm the levelset function ϕ is dened as a signed distance function

φ(x) =    -dist(x, Γ) , ∀x ∈ Ω 1 0 , ∀x ∈ Γ +dist(x, Γ) , ∀x ∈ Ω 2 (28)
to represent the interface of the object but also used as a geometric tool to compute interface properties such as smoothness and curvature. As depicted in Figure 1 the boundary region is composed of several layers, each of which is localized by the multi-levelset method. Since each interface is represented by the isovalue zero of the levelset, the rst layer is equal to the same levelset as the boundary interface plus the minimum size h min between the two layers. The second sub-layer is then equal to the preceding one plus the h min multiplied by α. The procedure is applied with

φ k = φ k-1 + h min (29) 
for k = 1, . . . , n, until the last layer is reached. In a simplied manner, the whole domain including the immersed geometry inside is decomposed into three boxes as illustrated in Figure 2: Box 3: Represents the entire computational domain and the mesh grows exponentially with the distance from Box2 to the frontier of the computational domain. In practice, the mesh size in Box 2 is entirely dened by the given number of sub-layers and the rate of linear growth, set here to α = 1.2. For each wake ow considered in the following, the dimensions of Box 2 are chosen in a way such that this intermediate region encompasses the mean ow recirculation computed under zero incidence angle, which requires running a few preliminary simulations on coarse meshes. Local mesh sizes computed as described may now be used to build anisotropic meshes according to a given metric tensor.

Metric-based mesh generation

The metric-based mesh adaptation [START_REF] Mesri | Continuous mesh adaptation models for CFD[END_REF][START_REF] Marcum | Aligned metric-based anisotropic solution adaptive mesh generation[END_REF] is used to transform any unstructured mesh into an anisotropic one. The main idea is to build a unit mesh in a prescribed Riemannian metric space which is equiped with similar notions of length and volume as the Euclidean metric space. The Riemannian metric space constructed on a triangulation T h is denoted by family of inner products (M(x)) x∈V(T h ) , with V(T h ) vertices of T h , and where M is a symmetric positive denite matrix called metric tensor. As the metric tensor is symmetric positive denite, it is diagonalizable according to

M(x) = R T (x)Λ(x)R(x) ( 30 
)
where Λ is the diagonal matrix composed of the eigenvalues λ i=1..N > 0 of M, R is the orthonormal matrix composed of the related eigenvectors, hence satisfying R T R = RR T = I d . The main operations performed by the mesh generator are the evaluation of the length of any edge e ij = e(x i , x j ), i = j, and the volume of any element K in (M(x)) x∈Ω . For a Riemannian metric space, the length of an edge is computed using the line parameterization γ ij (s) = x i + s e ij , with s ∈ [0, 1], which yields

M (e ij ) = 1 0 e T ij M(γ ij (s)) e ij ds (31) 
and the volume is calculated similarly as

|K| M = K det(M(x)) dx (32) 
The metric tensor can be geometrically represented as the set of points verifying x T M i x = 1 denes a unique ellipsoid, called the unit-ball (See Figure 3). The sizes along the eigendirections of M are given by 

h i = λ i -1 2 . Figure 3 depicts how the mapping between physical space (R d , I d ) to the metric space (R d , M) is dened by λ 1 2 R. h 2 v 2 h 1 v 1 w (R 2 , I 2 ) R T Λ -1/2 Λ 1/2 R h 2 v 2 M = 1 h 1 v 1 M = 1 w M = 1 (R 2 , M) h 1 v 1 h 2 v 2 w

Mesh size and directions

Let h n denote the local mesh size computed in the direction normal to the solid wall boundary. An isotropic mesh is generated using the classical metric for which the mesh size is taken as h n in all directions

M =      1 h 2 n 0 0 0 1 h 2 n 0 0 0 1 h 2 n      = 1 h 2 n I d ( 33 
)
Since the boundary layer is a highly viscous region in which the strong velocity gradients produce large amounts of vorticity, an extremely large number of elements is required to resolve the ow structures incurring high computational cost. To circumvent this diculty an anisotropic ratio R a is dened as

R a = H 2 h n ( 34 
)
where H 2 denotes the maximum mesh size in Box2 in tangential directions. The related optimal metric solution can thus be expressed as

M =        1 h 2 n n ⊗ n + 1 h 2 t (I d -n ⊗ n) Inside Box2, where h t = H 2 1 h 2 t I d Outside Box2 ( 35 
)
where n represents the normal vector to the surface, written in function of the levelset φ of the surface as

n = - ∇φ |∇φ| (36) 

Boundary layer metric

In preceding sections we have described how to build the boundary layer mesh layer by layer in a structured way with the corresponding mesh size. However, the formulation of the metric that we set has several drawbacks, namely the complexity of the geometry (especially the curvature) is not taken into account, and the tangential directions are not appropriately dened, meaning that the interface could not be smoothly recovered by element faces in 3D. We thus use the approach introduced in [START_REF] Billon | Anisotropic boundary layer mesh generation for immersed complex geometries[END_REF], that is precisely meant to solve this issue. Let us introduce the shape operator

S = ∇ T n = 1 |∇φ(x)| (I d -n ⊗ n) Hess(φ)(x) (37) 
where Hess(φ) is the Hessian matrix that measures the second-order rate of change of φ. We aim here at computing the eigenvalues and eigenvectors of S, and note that n is an eigenvector of S associated to the zero eigenvalue on behalf of S • n = 0. The two other eigenvalues are thus such that

κ i = tr(S) + tr(S) 2 2 ± Z(S) (38) 
and the associated eigenvectors form an orthonormal basis (n, t 1 , t 2 ). The curvature of the object surface should now be translated into tangential mesh sizes. As shown in Figure 4 the latter deduces using a simple geometrical approach, by taking into account the inverse of the radius of the circle C . The mesh size in the tangential direction h t is then recovered from the curvature κ and the normal mesh size, according to

h ti = 2 h n κ i + h 2 n ( 39 
)
and the anisotropic boundary layer metric is ultimately written as

M =   n t 1 t 2     1 hn 0 0 0 1 ht1 0 0 0 1 ht2   n t 1 t 2 (40) 

Numerical Experiments

This section describes the numerical tests conducted to assess the correctness and eciency of the method. For classical benchmarks such as the steady and unsteady ows past a square cylinder and a sphere, the obtained results are compared to reference data from the literature. For ows relevant to a more practical context, such as those past a 3D airship and a drone, we rather use novel in-house experimental results. For these two test cases details about the characteristics and the cost of the mesh generation are provided. The boundary layer mesh generation itself is an oine process which consists of iterations involving a sequential inner stage with blocked interprocess interfaces alternated with a mesh repartitioning and load balancing stage; the algorithm is implemented in a C++ library and parallelized using the Message Passing Implementation (MPI). 

Γ im

Figure 4: The interface Γ is represented in black, while the best t circle in P ∈ Γ is drawn in red. The circle C is centered in O(x 0 , y 0 ) and has for radius r. The normal and tangential vectors to the interface at P are denoted n and t [START_REF] Billon | Anisotropic boundary layer mesh generation for immersed complex geometries[END_REF].

Turbulent ow around a square cylinder

We start with an academic test case, the widely benchmarked turbulent ow past a square cylinder [START_REF] Rodi | Status of large eddy simulation: results of a workshop[END_REF] as a mean to assess the eectiveness of the anisotropic boundary layer mesh framework proposed in the section 3, as well as the ability of the numerical method described in section 2 to correctly predict the main features of the ow oscillations, e.g. the drag and lift coecients, denoted by C D and C L , respectively, and the vortex-shedding frequency denoted by S t . The cylinder is spanwise innite with diameter H, so the ow is treated as being 2D. The center of the cylinder is the origin of the domain at (0,0). The dimensions of the computational domain are [-16H,74H]×[-25H,25H] in the streamwise (x) and crosswise (y) directions; see gure 5. The Reynolds number is set to 2.2 × 10 4 , based on the inlet velocity and the cylinder diameter. The inow boundary conditions are u = (V in , 0), together with ν = 3ν, which corresponds to a ratio of eddy to kinematic viscosity of ∼ 0.2 (varying the value of this ratio was found to have little inuence on the numerical results.). For the lateral boundaries, we use symmetry conditions ∂ y u x = u y = 0 and ∂ y ν = 0. For the outow, ∂ x u x = ∂ x u y = 0, ∂ x ν = 0 together with p = 0 are prescribed, and no slip conditions u = 0 and ν = 0 are imposed at the cylinder surface. Our reference simulation is for a boundary layer mesh comprising of 95, 945 elements, such that, the minimum mesh size to reach is h min = 10 -3 . The latter is shown in gure 7, together with a close-up on the top-right corner evidencing the anisotropy and the perfect orientation of the elements with respect to the cylinder surface.

The evolution of drag and lift coecients for three dierent time steps δt = 0.01, δt = 0.05 and δt = 0.1 is shown in gure 6. After a transient, all three simulations converged to the expected oscillating state [START_REF] Sohankar | Large eddy simulation of ow past a square cylinder: comparison of dierent subgrid scale models[END_REF]; see also the related snapshots of the instantaneous velocity and pressure in Figure 7 and of the turbulent variable ν in the periodic regime of the ow in Figure 8. The main features of the oscillations reported in Table 1 compare well to 2D RANS numerical data available from the literature. A similar agreement exists with the reference 3D experimental data of [START_REF] Lyn | A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder[END_REF], which suggests that the 2D ow assumption holds true (at least to a rst approximation) and assesses the reliability of the retained numerical approach.

Flow past a sphere

As a rst 3D numerical test, we disregard the SpalartAllmaras turbulence model (µ t = 0) and consider one of the classical benchmark for blu-body aerodynamics, namely the incompressible ow past a sphere. This test case has been the objective of numerous experimental and numerical investigations the focus of which has been on describing and visualizing the (rst steady, then unsteady) hairpin structures that develop at Reynolds numbers up to 300 [START_REF] Fornberg | Steady viscous ow past a sphere at high Reynolds numbers[END_REF][START_REF] Johnson | Flow past a sphere up to a Reynolds number of 300[END_REF][START_REF] Constantinescu | LES and DES investigations of turbulent ow over a sphere[END_REF][START_REF] Tomboulides | Numerical investigation of transitional and weak turbulent ow past a sphere[END_REF][START_REF] Kim | Laminar ow past a sphere rotating in the transverse direction[END_REF][START_REF] Jindal | Large eddy simulations around a sphere using unstructured grids[END_REF]. The sphere has diameter D, and its center is the origin of the domain at (0, 0, 0). The dimensions of the computational domain shown in gure 9 are [-30D,60D]×[-25D,25D]×[-25D,25D] in the streamwise (x), crosswise (y), and spanwise (z) directions, respectively. A plot of the nal boundary layer mesh is represented in Figure 10, composed of 20 layers such that h min = 10 -3 . The number of elements is set to 2, 922, 022. As expected, a high degree of mesh anisotropy is reached and the geometry shape is properly well-tted.

Three tests are considered and correspond to simulate the ow past the sphere for dierent Reynolds number. The non-dimensional time step is chosen equal to δt = 0.1s. The rst one is for a Reynolds number Re = 100 based on the inlet velocity and the sphere diameter. The solution shown in 11(a) is characterized by a steady axisymmetric recirculating region located just behind the sphere, similar to the topology described in [START_REF] Johnson | Flow past a sphere up to a Reynolds number of 300[END_REF], reproduced just besides. The steady value of drag compares especially well to that reported in the aforementioned reference, with a discrepancy lower than 2%. The second case from the same reference is at Re = 250, for which the ow remains steady, but no longer exhibits axial symmetry. We have checked the dynamics to be similar to the simulation of [START_REF] Johnson | Flow past a sphere up to a Reynolds number of 300[END_REF], with the upper spiral in the (x, y)-plane being fed by uid from upstream, while the lower spiral releases uid into the wake after sending it up and around the upper spiral. Again, the steady value of drag exhibits a high level of compliance with the reference values of the literature, as a discrepancy lower than 4% is reported in Table 2.

For Reynolds numbers larger than Re = 270, the ow past is expected to become unsteady, with a highly organized periodic structure dominated by vortex shedding [START_REF] Johnson | Flow past a sphere up to a Reynolds number of 300[END_REF]. An important point to note is that the resulting wake retains the reectional symmetry observed before the onset of unsteadiness, only pairs of vortex structures with opposite signs are now periodically shed. This subtle feature is accurately recovered by the present approach, which is best seen from the streamlines of the time-averaged solution computed here at Re = 300 and unveiled in gure 11. The results synthesized in Table 2 again show a good agreement with the literature data, with the discrepancy smaller than 3% on the mean values of drag and lift. The only noticeable dierence is in the shedding frequency, found to be slightly underestimated by 7 -8%, but the agreement remains satisfying. 1.14 0.72 0.679 ±3.9 × 10 -3 0.066 ±2.03 × 10 -2 0.139

Analysis of turbulent ow past an airship

We return now to turbulent ow regimes, and consider a series of cases relevant to practical, external aerodynamic situations in 3D. In this test case, the aim is to assess the capability of our numerical method to simulate the turbulent ow past an airship geometry. The target model has a total length of 100 m and a diameter of 33 m.

The numerical and experimental results obtained in table 3 are performed for a scaled prototype of length 0.84 m and diameter 0.27 m. The inlet velocity is set to 34 m/s, yielding a span-based Reynolds number of 2 × 10 6 . The dimensions of the computational domain are 50 m, 33 m and 33 m in the streamwise (x), crosswise (y) and spanwise (z) directions, which is considered large enough to avoid any inuence of the boundaries. Figure 13 gives a general view of the computational domain containing 7, 098, 793 elements.

The adaptive mesh renement in 3D is represented in Figure 14 including dierent close-ups to highlight the size and directions of the elements close to the interface. The mesh has been generated for h min = 10 -4 . This leads to a nal boundary layer composed of 20 layers and of a total number of elements equal to 7, 886, 874. Simulations were run on 64 cores for an average duration of 72 hours after an initial mesh generation stage of approximately 12 hours, thus making boundary layer mesh generation about 15 percent of the total simulation time.

Time-marching the governing equations with a time step and using the same boundary conditions as in the square cylinder case has been found to yield a steady solution, disclosed in Figures 15 and16 for several angles of attack ranging from 0 • to 15 • . Results obtained for the drag are presented in Table 3. The agreement between the numerical and the experimental results is satisfying despite the discrepancies between the experimental setup and the numerical simulations. 

Analysis of turbulent ow past a ying drone

This last case is about a 3D ying drone with buckled wing, for which we seek to reproduce experimental results obtained for several angles of attack. The experimental setup is depicted in Figure 18. The model has a span of 300 mm and a total length of 300 mm. The inlet velocity is set to 13.5 m/s, yielding a span-based Reynolds number of Re = 2 × 10 6 . The model is placed in a computational domain of length 3 m and width 1 m, with Figure 17 giving a general view of the constructed mesh. The nal boundary layer mesh consists of 1 million elements made of 20 layers, and obtained after 2 hour on 64 cores. The boundary conditions are the same as above. Again, the governing equations are marched in time with time step δt = 10 -4 until a steady-state is reached. Once again, the ability of the proposed procedure is well highlighted in Figure 19 by capturing with high delity all the details of the drone for angles of attack equal to 0 and 60 • . Results obtained for the drag are presented in Figure 22. The agreement between the numerical and the experimental results is satisfying despite the discrepancies between the experimental setup and the numerical simulations. In particular, the surface roughness of the model obtained by additive manufacturing may be the cause of the higher drag, due to the increased turbulent skin friction.

In gure 20 and gure 21, front view and upper view respectively of the streamlines past the drone are depicted and show that for the 0 • , 5 • , 10 • and 15 • angles of attack, the ow seems stable and absent of any ow separation. As the angle of attack increases from 45 • and 60 • , as shown in gure 23 and gure 24, the ow is more disturbed and reached very chaotic regime as α = 90 • .

Conclusion

This paper shows that the combination of anisotropic meshing with stabilized nite element methods provides an adequate framework for solving turbulent ows past immersed complex geometries at high Reynolds numbers. To this eect a new anisotropic boundary layer mesh method based on the use of multi-levelset method was combined with a stabilized Variational Multiscale nite element method to solve the incompressible NavierStokes equations, and with the SpalartAllmaras turbulence model treated by the Streamline Upwind PetrovGalerkin (SUPG) method. The eciency and exibility of this framework was assessed by the simulation of realistic cases in 2 and 3 dimensions. The results of the numerical tests show that this approach produces accurate numerical solutions at moderate number of degrees of freedom. Future work will be focused on the improvement of the orientation of elements in the boundary layer so that crosswise facets are optimally directed with respect to the normal to solid wall boundaries.
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 1 Figure 1: Structure of boundary layers.
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 25 Figure 5: Geometry for the square cylinder test case in Section 4.1.
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 6 Figure 6: Drag and lift coecients for dierent time steps.
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 7 Figure 7: Final plots for Test # 1.
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 89 Figure 8: Plots of ν for the square cylinder.
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 10 Figure 10: Boundary layer mesh around the 3D sphere
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 12 Figure 12: Streamlines for (x, y)-plane (top) and (x, z)-plane (bottom) at (a) Re = 300.
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 13 Figure 13: The airship inside the numerical wind channel
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 1415 Figure 14: Boundary layer mesh around the airship
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 16 Figure 16: Angles of sideslip.
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 17 Figure 17: The immersed drone (as indicated by the red circle) inside the numerical wind channel
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 1819 Figure 18: The experimental setup: the drone inside a wind channel
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 20 Figure 20: Front view of the streamlines past the drone for angle of attacks 0 • , 5 • , 10 • and 15 • (from left to right, and from top to bottom).
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 21 Figure 21: Upper view of the streamlines past the drone for angle of attacks 0 • , 5 • , 10 • and 15 • (from left to right, and from top to bottom).
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  Figure Comparisons for the drone mean drag coecient at 13.5m/s
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 23 Figure 23: Front view of the streamlines past the drone for angle of attacks 30 • , 45 • , 60 • and 90 • (from left to right, and from top to bottom).
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 24 Figure 24: Upper view of the streamlines past the drone for α = 30, α = α = 60 and α = 90.

Table 1 :

 1 Results of drag and lift coecients for the square cylinder. The time-averaged (resp. uctuating) values is indicated with an overbar (resp. a rms subscript).

		Model	C D	C Drms C Lrms	S t
	Lyn et al. [45]	Experimental (3D)	2.1	-	-	0.132
	Iaccarino et al. [46]	ν 2 -f	2.22	0.056	1.83	0.141
	Bosch (in Rodi et al. [43])	2-layer k -ω	2.004	-	-	0.143
	Meliga et al. [47]	SA	2.19	0.14	1.55	0.139
	Present work	Negative SA / δt = 0.1 2.0895 0.2087 1.7175 0.1168
	Present work	Negative SA / δt = 0.05 2.0736 0.2001 1.649 0.1224
	Present work	Negative SA / δt = 0.01 2.0351 0.169	1.547 0.1268
	Boundary layer mesh	Zoom on the corner	
	Velocity			Pressure		

Table 2 :

 2 Comparison of mean drag/lift coecients and Strouhal number with previous studies for ow past a sphere.

	C D	C L	St

Table 3 :

 3 Comparison of the airship mean drag coecient between experimental and numerical tests.

		C D			
	Angle of Attack	0 •	5 •	10 •	15 •
	Present experimental 2.10 ×10 -2 2.71 ×10 -2 4.31 ×10 -2	-
	Present numerical	2.39 ×10 -2 2.64 ×10 -2 3.55 ×10 -2 4.94 ×10 -2