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Paracontrolled calculus for quasilinear
singular PDEs

I. BAILLEUL1 and A. MOUZARD

Abstract. We develop further in this work the high order paracontrolled calculus setting
to deal with the analytic part of the study of quasilinear singular PDEs. A number of
continuity results for some operators are proved for that purpose. Unlike the regularity
structures approach of the subject by Gerencser & Hairer and Otto, Sauer, Smith & Weber,
or Furlan and Gubinelli’ study of the two dimensional quasilinear parabolic Anderson model
equation, we do not use parametrised families of models or paraproducts to set the scene.
We use instead infinite dimensional paracontrolled structures that we introduce here.

1 – Introduction

This work is dedicated to the study of the quasilinear singular partial differential equa-
tion (PDE)

Btu´ dpuqAu “ fpuqζ, (1.1)
where ζ stands for a spacetime noise of parabolic Hölder regularity α´ 2, with 2{5 ă α ă
1{2, with a real-valued unknown u defined on a 3-dimensional closed Riemannian manifold
M , and A an elliptic operator on M in Hörmander form

A “
ÿ̀

i“1

A2
i ,

for smooth vector fields Ai on M , and ` ě 3. The function d – for diffusivity, is supposed
to be smooth enough and to take its values in a compact set of p0,`8q. We assume here
for simplicity that the initial condition u0 in equation (1.1) is regular enough to treat the
free propagation of the initial condition as a remainder term and avoid the technical use
of weighted norms. The reader acquainted with the results of Bailleul and Bernicot’s work
[3] on the high order paracontrolled calculus will see that our method for the study of
equation (1.1), and the tools introduced along the way, give a direct access to the analysis
of the quasilinear generalised (KPZ) equation

Btu´ dpuqB
2
xu “ fpuqζ ` gpuq|Bxu|

2,

or any other quasilinear version of parabolic semilinear equations, or systems of equations,
that can be studied within the setting of the high order paracontrolled calculus.

Paracontrolled calculus was introduced in Gubinelli, Imkeller and Perkowski’ seminal
work [19] as a first order ‘expansion machinery’ for the study of a number of singular
PDEs. Despite the first order limitation, the paracontrolled approach to the study of
singular PDEs has been very successful, as Gubinelli and Perkowski’s works [21, 22] on
the KPZ and stochastic Burgers equations, Catellier-Chouk, Mourrat-Weber and Gubinelli
& co-authors works [12, 24, 25, 9, 18] on the Φ4 scalar equation from quantum field theory,
the works [1, 14] of Chouk and co-authors on the spectral theory for the 2-dimensional
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Laplacian with white noise potential, and the very recents works on hyperbolic singular
PDEs [20, 26], testify, amongst others. The scope of the first order paracontrolled calculus
was much extended in [2, 3, 4], and the high order paracontrolled calculus offers now a
convenient setting for the study of a whole class of singular parabolic PDEs, in diverse
geometric settings.

The study of quasilinear singular PDEs was launched by the works [28] of Otto and
Weber, [15] of Furlan and Gubinelli, and [6] of Bailleul, Debussche and Hofmanová, that
all appeared within a few months. Interestingly, each of these works used different meth-
ods to tackle the same equation: The 2-dimensional quasilinear parabolic Anderson model
equation. Otto and Weber introduced a rough paths flavoured variant of regularity struc-
tures, Furlan and Gubinelli introduced a variant of the first order paracontrolled calculus
using paracomposition operators instead of paraproducts, while Bailleul, Debussche and
Hofmanová showed that the original first order paracontrolled calculus is sufficient to prove
well-posedness of the equation on a small time interval. Gerencsér and Hairer then showed
in [17] that the study of a whole class of quasilinear singular parabolic PDEs can be done
in the setting of regularity structures, in the above regime for the regularity exponent α,
giving results way beyond the scope of what was proved in [28, 15, 6] and Otto, Sauer,
Smith and Weber’s followup work [27]. The only caveat to their remarkable results is the
fact that their formulation of the quasilinear equation does not allow for a clean treat-
ment of the renormalisation problem; it is thus unclear at the moment that renormalised
equations are ‘local’, like in the semilinear setting [10, 11]. See however Gerencsér’s recent
work [16] for a first result in this direction.

By adding a few results to the toolkit of the high order paracontrolled calculus [4], we
are able to prove a local in time well-posedness result for equation (1.1), with the same line
of attack as in [6]. The method works mutatis mutandis for the study of the quasilinear
generalised (KPZ) equation or the quasilinear version of the geometric stochastic heat
equation. The present work is purely analytical and does not consider the problem of
renormalisation. This amounts here to assuming that a sequence of multilinear functions
of the noise are given a priori as elements of their natural spaces, with natural bounds on
their norms.

‚ Let u0 be a smooth function close enough to u0 in C4α – this will be quantified later, in
the proof of Theorem 10. Our starting point consists in defining the solution-independent
operator

L :“ ´
ÿ̀

i“1

V 2
i , Vi :“

a

dpu0qAi,

and rewriting equation (1.1) under the form of an evolution equation
L u :“ pBt ` Lqu

“ fpuqζ `
`

dpuq ´ dpu0q
˘

Au`
ÿ̀

i“1

Ai
`

dpu0q
1{2

˘

Viu

“ fpuqζ ´ dpu0q
´1
`

dpuq ´ dpu0q
˘

Lu`
ÿ̀

i“1

´

1´ dpu0q
´1
`

dpuq ´ dpu0q
˘

¯

Ai
`

dpu0q
1{2

˘

Viu

“: fpuqζ ` εpu, ¨qLu`
ÿ̀

i“1

aipu, ¨qViu,

(1.2)
involving the solution-independent operator L. The nonlinear term

εpu, ¨qLu “ dpu0q
´1
`

dpuq ´ dpu0q
˘

Lu
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in the right hand side still involves a second order term, a feature of quasilinear equations.
(The dot sign in εpu, ¨q stands for the dependence on x PM of ε, via dpu0q.) In the spirit
of the study [6] of the 2-dimensional semilinear parabolic Anderson model equation, we
are able to define a paracontrolled structure and formulate the equation as a fixed point
for a contracting map defined on this structure, using the fact that u stays close to u0

on a small time interval. This is our main result, stated in Theorem 10. As a guide for
the reader, we describe now the twist on the paracontrolled setting that we use to handle
quasilinear equations.

Following [3], one can associate to the differential operator L a paraproduct P, and its
companion paraproduct rP, intertwined to P by the relation

L ´1 ˝ P “ rP ˝L ´1. (1.3)
A resonant operator Π is also constructed from L. The basic mechanics of the paracon-
trolled approach to semilinear singular PDEs is best illustrated on the model case of the
2-dimensional parabolic Anderson model equation

L u “ uζ “ Puζ ` Pζu` Πpu, ζq, (1.4)
with constant initial condition u0 “ c. One has almost surely ζ in the parabolic Hölder
space Cα´2, for α any positive real number strictly smaller than 1. Whereas the above
paraproduct terms always make sense for arguments in Hölder spaces of positive or nega-
tive exponents, the resonant term is well-defined only if the sum of the Hölder regularity
exponents of u and ζ add up to a positive real number. With ζ of Hölder regularity α´ 2
and α ă 1, one has α ` pα ´ 2q ă 0, and we fall short here of fullfilling this constraint.
Rather than looking for a solution of the equation in the class Cα of α-Hölder parabolic
function, we look for a solution in a restricted class of Cα functions of the form

u “ rPu1Z ` u
7, (1.5)

for a reference function Z P Cα, to be determined from the noise only and from the
equation, with a remainder u7 P C2α of parabolic Hölder regularity 2α. Given Z, the
unknown becomes the pair pu1, u7q, with u1 in a well-chosen function space. The special
paracontrolled form of u allows to make sense of the a priori ill-defined resonant term
Πpu, ζq, under the assumption that ΠpZ, ζq is given as an element of C2α´2 – this is
Gubinelli, Imkeller and Perkowski’s fundamental ‘commutator lemma’ [19], Lemma 2.4.
We write

L u “ Puζ ` p2α´ 2qpu1, u7q,

for a function p2α ´ 2qpu1, u7q depending implicitly on ζ, Z and ΠpZ, ζq, as a continuous
function of all its arguments. From the defining intertwining relation (1.3), the fixed point
formulation of equation (1.4) then reads

rPu1Z ` u
7 “ u “ rPupL

´1ζq `L ´1
`

p2α´ 2qpu1, u7q
˘

` c,

– recall we assume for simplicity u0 “ c is constant, that is, one has Z “ L ´1pζq on the
one hand, and

u1 “ u “ rPu1Z ` u
7, u7 “ L ´1

`

p2α´ 2qpu1, u7q
˘

` c,

on the other hand.
The main feature of the quasilinear setting is the presence of a second order term Lu

in the right hand side of the equation. Consider, as a motivation, the model equation
L u “ uζ ` uLu

“ Puζ ` PuLu`
´

Pζu` Πpu, ζq ` PLuu` Πpu, Luq
¯

,
(1.6)

still in the setting where 2{3 ă α ă 1 is close to 1. As above, one problem is to make
sense of the resonant term Πpu, Luq. This can be done assuming that the term Π

`

Z,LZ
˘

makes sense as an element of the parabolic Hölder space of exponent 2α ´ 2. With the
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above well-posedness and regularity assumptions on the resonant term ΠpZ, ζq, this allows
to define the term in parentheses in the right hand side of (1.6) as an element of C2α´2.
One can see that, for u of paracontrolled form (1.5), one has

PuLu » Pu1uLZ,

up to a term in C2α´2. A naive fixed point formulation of equation (1.6) then reads
rPu1Z ` u

7 “ rPuL
´1pζq ` rPu1uL

´1pLZq ` p2αqpu1, u7q.

Note that the operator L ´1L sends any Cβ into itself, with no regularization property. So
consistency imposes that Z is actually made up of two components Z “

`

Zp1q, Zp2q
˘

, with
Zp1q “ L ´1pζq and Zp2q “ L ´1pLZp1qq. The function u1 should have as a consequence
two components as well, and equation (1.6) then rewrites

2
ÿ

k“1

rPu1kZ
pkq ` u7 “ rPuL

´1pζq `
2
ÿ

k“1

rPu1kuL
´1pLZpkqq ` p2αqpu1, u7q,

with terms L ´1
`

ΠpZpiq, LZpjqq
˘

inside the remainder p2αqp¨ ¨ ¨ q given a priori. The first
two terms in the right hand side are taken care of by the Zp1q and Zp2q terms in the
left hand side; this is not the case of the term rPu12uL

´1pLZp2qq in the right hand side.
Consistency then imposes that we actually add a third component to Z and u1, to take
care of rPu12uL

´1pLZp2qq. The story then repeats itself, and we are led to consider as a
priori form for the solution an infinite paracontrolled expansion

u “
ÿ

kě1

rPu1kZ
pkq ` u7,

with Zpkq “ pL ´1Lqk´1Zp1q for k ą 1, and Zp1q “ L ´1pζq. All the Zpkq are elements
of Cα here. This infinite dimensional paracontrolled structure is a characteristic feature
of the paracontrolled approach of quasilinear singular equations. The convergence of
the preceding sum needs to be built in the setting, together with the a priori data of
the terms ΠpZpiq, LZpjqq as elements of C2α´2. Anticipating over the results to follow,
the reference functions in the paracontrolled expansion of a solution to equation (1.1)
have the same tree-like structure as the reference functions of a corresponding semilinear
equation. This comes from their inductive definition. However, each edge in a ‘tree’ now
has a length, corresponding to composing first the operator represented by the edge by the
operator pL ´1Lqk, for some k ě 0. This echoes Gerencsér and Hairer’s work [17], where
each symbol represents an infinite dimensional space. This is the quasilinear effect. The
approach works under the quantitative assumption that each a priori term has a natural
norm bounded above by a constant multiple of Ck, for a constant C ą 1, and k the number
of times that the operator L ´1L appears in the formal definition of the term – the total
“length” of the tree.

We set the scene of paracontrolled calculus in Section 2, in the form that we need here.
Section 3 is dedicated to the proof of the well-posedness result in small time for equation
(1.1), stated in Theorem 10. We give in Appendix A a bird’s eye view on the results from
[4] on the high order paracontrolled calculus that we use here. The proofs of a number
of new continuity results for operators needed for the study of quasilinear equations are
collected in Appendix B and Appendix C.

Notations. We gather here a number of notations used below.
‚ It will be useful sometimes to denote by pβq an element of the parabolic Hölder space

Cβ with exponent β, whose only noticeable feature is its regularity.
‚ We denote by M a 3-dimensional closed Riemannian manifold and set M :“ r0, T s ˆ

M , for a finite positive time horizon T . Given α P R, we denote by Cα the space of
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α-Hölder functions on M , defined as the Besov space Bα
88, and write Cα for the parabolic

Hölder spaces. We refer the reader to Appendix A for more information about these spaces.

2 – Paracontrolled calculus

One can describe as follows the paracontrolled approach to the study of a generic semi-
linear singular parabolic PDEs

L u “ fpu, Bu, ζq.

Denote by P the resolution of the free heat equation
Pu0 :“ pτ, xq ÞÑ

`

e´τLu0

˘

pxq,

and recall the intertwining relation (1.3) relating P and rP.

1. Paracontrolled ansatz. The irregularity of the noise ζ dictates the choice of a
solution space made up of functions/distributions of the form

u “
k0
ÿ

i“1

rPuiZi ` u
7, (2.1)

for reference functions/distributions Zi, of regularity iα, that depend formally only
on ζ, to be determined later. The order of the expansion is chosen in such a way
that pk0 ` 1qα` pα´ 2q ą 0. The ‘derivatives’ ui of u also need to satisfy similar
structure equations to a lower order; their derivatives as well, and so on. Denote
by pu7 the datum of all the remainders in these expansions; they determine entirely
this triangular system.

2. Right hand side. Rewrite the right hand side fpu, Bu, ζq of the equation in the
canonical form

f
`

u, Bu, ζ
˘

“

k0
ÿ

j“1

PvjYj ` p5q (2.2)

where p5q is a nice remainder and the distributions Yj depend only on ζ and the
Zi.

3. Fixed point. The fixed point relation
u “ Pu0 `L ´1

`

fpu, Bu, ζq
˘

“ Pu0 `

k0
ÿ

j“1

L ´1
´

PvjYj

¯

`L ´1p5q

“ Pu0 `

k0
ÿ

j“1

rPvjZj `L ´1p5q,

imposes some consistency relations on the choice of the Zi “ L ´1pYiq that define
them uniquely as functions of ζ, and induces a fixed point relation for pu7.

Two different questions are addressed in Step 2. Making sense of the ill-defined products,
characteristic of singular PDEs, and putting the right hand side of the equation in the form
(2.2), for an easy formulation of the fixed point in Step 3. One of the main findings of [4]
is that, at the end of the day, each of these two tasks are dealt with repeating essentially
only one operation for each.

Given β P R, denote by Eβp¨ ¨ ¨ q a generic (possibly multi-) linear operator that sends
continuously Cγ into Cβ`γ , for any γ big enough, and such that

EβprPab, . . . q “ aEβpb, . . . q ` Eβ`|b|pa, . . . q, (2.3)



6

for all a P C|a| and b P C|b|, with |a|, |b| big enough. We say that E sends formally Cγ into
Cβ`γ when γ is not large enough. A typical example is given by the resonant operator

Πp¨, cq “ E|c|p¨q,

with a fixed argument c P C|c|; this is part of Gubinelli, Imkeller and Perkowski’s important
‘commutator lemma’, Lemma 2.4 in [19]. The corrector C from [4] and its iterates are E-
type operators; the operator

PBaBb “ E´2pa, bq

that appears in the study of the (generalised) (KPZ) equation as well. Another example
is

PLuεpu, ¨q “ E´2
`

u, εpu, ¨q
˘

.

Applying repeatedly identity (2.3) is all we need to investigate the multiplication problem.
(The continuity results on the iterated correctors from [4] quantify that claim.)

Denote by Fβp¨ ¨ ¨ q a generic (possibly multi-) linear operator that sends continuously
Cγ into Cβ`γ , for any γ, and such that

FβprPab, . . . q “ PaFβpb, . . . q ` Fβ`|b|pa, . . . q, (2.4)
for all a P C|a| and b P C|b|, for any |a|, |b|. Here is a typical example for us

Pζu “ Fα´2puq.

Applying repeatedly identity (2.4) and continuity results on iterated paraproducts is all we
need to put the right hand side in the form (2.2) after all the E-operations have been done
to analyse the multiplication problems. (The merging operator R˝ from [4] is involved
here. See Appendix A for the elements of the high order paracontrolled calculus used in
the present work.) With these notations, Eβ and Fβ, with no argument, will simply denote
elements of Cβ. In those terms, and writing below Eβ`|b| for Eβpbq, one has for instance

EβprPabq “ aEβ`|b| ` Eβpa, bq

“ PaEβ`|b| ` PEβ`|b|a` Π
`

a,Eβ`|b|
˘

` Eβ`|b|paq

“ PaEβ`|b| ` Fβ`|b|paq ` Eβ`|b|paq.

We can see on this expression that if a itself is given in paracontrolled form rPa1a1, then we
can re-expand the E and F functions of a above. This is the core of the machinery of the
high order paracontrolled calculus. We refer the reader to [4] for a detailed presentation
of the latter. The definitions of the different operators that we use here are recalled in
Appendix A. The quasilinear setting has however two significant features compared to
the semilinear setting. Dealing with the second order term εpu, ¨qLu requires that we
work with infinite dimensional paracontrolled system, and one needs to introduce a new
corrector together with its iterates to take care of the specific term εpu, ¨qLu.

2.1 Paracontrolled systems for quasilinear equations

Fix 0 ă α ă 1. Let an integer n ě 1 be given, together with countable families
T1, . . . ,Tn of real-valued functions on r0, T s ˆM , with each τ P Ti of parabolic Hölder
regularity |τ | :“ iα. Write

T :“ T1 Y ¨ ¨ ¨ YTn.

A generic finite word with letters in T will be denoted by a “ pτ1, . . . , τkq, to avoid
confusion with the function τ1 ¨ ¨ ¨ τk, and assigned a homogeneity

|a| :“ |τ1| ` ¨ ¨ ¨ ` |τk|.

Define
A :“ HY

!

a “ pτ1, . . . , τkq ; k ě 1, |a| ď nα
)

.
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This is the set of words with letters in the alphabet T , and homogeneity no greater than
nα. This set depends on n, which will be fixed in each application. We do no record the
dependence of A on n in the notation. For a word a “ pτ1, . . . , τkq and τ P T , we denote
by aτ the concatenation of a and τ , so |aτ | “ |a| ` |τ |. We thus use the symbol τ both as
a function and as a letter in the alphabet T . The setting always makes the meaning of
every occurence of a symbol τ clear; as a rule of thumb τ is always considered as a letter
when it appears in indices. Set LHM :“ 1, and for a “ pτ1, . . . , τmq P A , set

LaM “ }pτ1, . . . , τmq} :“ }τ1}C|τ1| . . . }τm}C|τm| ;

this is not a norm. The following definition of a paracontrolled system coincides with the
notion used in the study of semilinear singular PDEs, where T can be chosen to be finite
rather than countable.

Definition 1. Let pβaqaPA be a family of positive real numbers. A system paracontrolled
by T at order n is a family pu “ puaqaPA of parabolic functions such that one has

ua “
ÿ

τPT ;|aτ |ďnα

rPuaτ τ ` u
7
a, (2.5)

with u7a P Cnα`βa´|a|, for all a P A , and
~pu~ :“

ÿ

bPA

}u7b}Cnα`βb´|b|LbM ă 8. (2.6)

The convergence condition (2.6) is always fulfilled in a semilinear setting, where one can
work with a finite set T . One proves in Proposition 2 below that condition (2.6) garantees
the convergence in a proper space of the (possibly infinite) sum (2.5). A reasonable choice
for the constant βa would be to take them all equal to α. This is not a convenient choice
from the technical point of view, and all of them will be chosen in the interval p2{5, αq
in a particular way explained in Section 3 before Theorem 10. In particular, they verify
βa ą βa1 for any a, a1 P A with a1 a word containing a as a subword. They play a crucial
role in proving that the fixed point formulation of the equation involves a contracting map.
We note that all ua with |a| ă nα are Cα, while the ua with |a| “ nα, are elements of Cβa .
Putting together all the contributions from each Ti, each ua in a paracontrolled system is
in particular required to have an expansion of the form

ua “ pαq ` p2αq ` . . .` pnα` βa ´ |a|q

as will be proved in the following propostion. Notice that a paracontrolled system is
triangular: The bigger |a| the lesser we expand ua. Note also that a paracontrolled system
is actually determined by the set pu “ pu7aqaPA of all remainders in the paracontrolled
expansion (2.5). This motivates that we rewrite the convergence condition (2.6) in terms
of the remainders only.

Proposition 2. Let pu be a system paracontrolled by T at order n. One has
ÿ

aPA

}ua}Cβa LaM À ~pu~.

This implies in particular
}ua}Cβa À ~pu~, @ a P A .

Proof – Given any a P A , we have by a finite induction
}ua}Cβa À

ÿ

τPT ;|aτ |ďnα

}uaτ }Cβaτ }τ} ` }u
7
a}Cβa

À
ÿ

bPA ;|ab|ďnα

}u7ab}Cβab LbM.
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This yields
ÿ

aPA

}ua}Cβa LaM À
ÿ

aPA

}u7a}Cβa LaM À ~pu~.

B

2.2 Additional correctors

The formulation of the quasilinear equation (1.1) in the semilinear-like form (1.2) in-
volves the second order term εpu, ¨qLu, specific to the quasilinear setting. Writing

εpu, ¨qLu “ Pεpu,¨qLu` PLuεpu, ¨q ` Π
`

εpu, ¨q, Lu
˘

, (2.7)
the E-type operators

PLab, ΠpLa, bq

that appear in the last two terms of the right hand side of identity (2.7) happen to be of
the same type as the resonant operator pa, bq ÞÑ Πpa, bq. Their analysis is thus similar to
what was done in [4] for the resonant operator via the introduction of the corrector C and
its iterates. The F-type operator

PaLb

that appears in the first term of the right hand side of (2.7) does not show up in the study
of semilinear singular PDEs and requires a specific treatment. We state here a number
of continuity results whose proofs are given in Appendix B; all the proofs are variations
on the pattern of proofs of continuity results from [4]. Given that the technical setting of
[3, 4] is likely not to be familiar to most readers, we also give in this section the proofs
of some of the statements in the time-independent model setting of the flat torus. The
paraproduct and resonant operators

P 0
a b :“

ÿ

iăj´1

∆ipaq∆jpbq, Π0pa, bq :“
ÿ

|i´j|ď1

∆ipaq∆jpbq,

are then defined classically in terms of Fourier projectors ∆k. We refer the reader to [5] for
the basics on Littlewood-Paley decomposition and paraproduct and resonant operators in
that setting.

The continuity results from this section are all we need in addition to the results of [4]
to study equation (1.1), and more generally a whole class of quasilinear singular PDEs.

2.2.1 Operator PaLb. We define the operator
Lpa, bq :“ LrPab´ PaLb.

Continuity results on this operator allow to get an expansion for Lu of the form
Lu “

ÿ

Pu1τ pLτq ` p4α´ 2q,

for some u1τ , from a paracontrolled expansion for u. A paracontrolled expansion for a term
of the form PapLuq can then be obtained. We also define the refined operator

Lp1qpa, bq :“ LrPab´ PaLb´
ÿ̀

i“1

P
piq
dpu0q´1Via

Lb

to deal with arguments a in Lpa, bq with regularity exponent greater than 1. The operators
Ppiq are defined by for any e in the parabolic space M by

´

Ppiqa b
¯

peq :“

ż

e1,e2PM
Kpe; e1, e2qape1q

´

rPδip¨,e1qb
¯

pe2q νpde1qνpde2q

with K the kernel of the bilinear operator pa, bq ÞÑ Pab. See Appendix A for notations
and details on the parabolic setting. The following theorem is proved in Theorem 18 in
Appendix B.
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Theorem 3. ‚ Let α P p0, 1q and β P p´3, 3q, be such that α`β ă 3, and α`β´2 P
p´3, 3q. Then the operator L has a natural extension as a continuous operator from
Cα ˆ Cβ into Cα`β´2.

‚ Let α1, α2 P p0, 1q and β P p´3, 3q such that α1`β ă 3 and α1`α2`β´2 P p´3, 3q.
Then the iterated operator

L
`

pa1, a2q, b
˘

:“ L
`

Pa1a2, b
˘

´ Pa1Lpa2, bq

has a natural extension as a continuous operator from Cα1ˆCα2ˆCβ into Cα1`α2`β´2.

‚ Let α1, α2, α3 P p0, 1q and β P p´3, 3q such that α1 ` α2 ` β ă 3, α2 ` β ă 3 and
α1 ` α2 ` β ´ 2 P p´3, 3q. Then the iterated operator

L
´

`

pa1, a2q, a3

˘

, b
˘

:“ L
`

pPa1a2, a3q, b
˘

´ Pa1L
`

pa2, a3q, b
˘

has a natural extension as a continuous operator from Cα1 ˆ Cα2 ˆ Cα3 ˆ Cβ into
Cα1`α2`α3`β´2.

‚ Let α P p1, 2q and β P p´3, 3q, be such that α`β ă 3, and pα`β´2q P p´3, 3q. Then
the operator Lp1q has a natural extension as a continuous operator from Cα ˆ Cβ

into Cα`β´2.

2.2.2 Operators PLab and ΠpLa, bq. These two operators of E-type are defined by similar
formulas as the resonant operator, in terms of the parabolic approximation operators Qt

from [4]. It is thus natural that they satisfy expansion rules similar to the expansion rules
satisfied by the resonant operator. Introduce for that purpose the operators

CăL

´

pa1, a2q, b
¯

:“ P
LrPa1a2

b´ a1PLa2b,

CąL

´

a, pb1, b2q
¯

:“ PLa

´

rPb1b2

¯

´ b1PLab2,

CL

´

pa1, a2q, b
¯

:“ Π
´

LrPa1a2, b
¯

´ a1Π
´

La2, b
¯

.

We choose the notation ă in the exponent of CăL to emphasize that the paraproduct
term is in the low ‘frequency’ part of the operator, while it is in the high ‘frequency’ part
in CąL . The following theorem is proved here in the time-independent model setting of the
flat torus; see Theorem 16 in Appendix B for the proof.

Theorem 4. ‚ Let α1 P p0, 1q and α2, β P p´3, 3q such that α1 ` α2 P p´3, 3q. If
α2 ` β ´ 2 ă 0 and α1 ` α2 ` β ´ 2 ą 0 (2.8)

then the operators CăL and CL have natural extensions as continuous operators from
Cα1 ˆ Cα2 ˆ Cβ into Cα1`α2`β´2.

‚ Let β1 P p0, 1q and α, β2 P p´3, 3q such that β1 ` β2 P p´3, 3q. If
α` β2 ´ 2 ă 0 and α` β1 ` β2 ´ 2 ą 0

then the operator CąL has a natural extension as a continuous operator from Cα ˆ
Cβ1 ˆ Cβ2 into Cα`β1`β2´2.

Proof – Write ∆ for the usual Laplacian on the flat torus.
‚ Set

C0
∆pa1, a2, bq :“ Π0p∆P 0

a1a2, vq ´ a1Π0p∆a2, bq.

We prove that for α1, α2 and β such that inequalities (2.8) hold true, the operator C0
∆

is continuous from Cα1 ˆ Cα2 ˆ Cβ into Cα1`α2`β´2. We have
C0

∆pa1, a2, bq “
ÿ

|i´j|ă1

∆i

`

P 0
a1a2

˘

∆jpbq ´ a1∆ipa2q∆jpbq.
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Setting
εi :“ ∆i

`

∆P 0
a1a2

˘

´ a1∆ip∆a2q,

we have
C0

∆pa, b, cq “
ÿ

|i´j|ă1

εi ∆jpbq.

As in the proof of the estimate for the classic corrector C, one sees that one has
}∆kεi}L8 À 22i 2´iα22´maxpi,kqα1 }a1}Cα1 }a2}Cα2 ;

the factor 22i comes from the ∆ operator. Writing
∆k

`

C0
∆pa1, a2, bq

˘

“
ÿ

|i´j|ď1

∆k

`

εi ∆jpbq
˘

“
ÿ

jăk´2
|i´j|ď1

∆kpεiq∆jpbq `
ÿ

kăj´2
|i´j|ď1

∆k

`

∆ipεiq∆jpbq
˘

`
ÿ

|k´j|ď1
|i´j|ď1

∆k

`

Sipεiq∆jpbq
˘

,

we see that
›

›

›
∆k

`

C0
∆pa1, a2, bq

˘

›

›

›

L8
À

#

ÿ

iăk´2

2´ipα2`β´2q2´kα1 `
ÿ

kăi´2

2´ipα1`α2`β´2q

`
ÿ

|i´k|ď1

2´ipα1`α2`β´2q

,

.

-

}a1}Cα1 }a2}Cα2 }b}Cβ

À 2´kpα1`α2`β´2q }a1}Cα1 }a2}Cα2 }b}Cβ

using that pα2 ` β ´ 2q ă 0 and pα1 ` α2 ` β ´ 2q ą 0.

‚ Set now
Că,0∆ pa1, a2, bq :“P 0

∆P 0
a1
a2
b´ a1P

0
∆a2b

“
ÿ

iăj´2

εi ∆jpbq.

We prove that for α1, α2 and β such that inequalities (2.8) hold true, Că,0∆ is continuous
from Cα1 ˆ Cα2 ˆ Cβ into Cα1`α2`β´2. This can be seen by writing

∆k

´

Că,0L pa1, a2, bq
¯

“
ÿ

jăk´2
iăj´2

∆kpεiq∆jpbq `
ÿ

kăj´2
iăj´2

∆k

`

∆ipεiq∆jpbq
˘

`
ÿ

|k´j|ď1
iăj´2

∆k

`

Sipεiq∆jpbq
˘

,

from which one sees that
›

›

›
∆k

!

Că,0L pa1, a2, bq
¯
›

›

›

L8
À

#

ÿ

jăk´2

2´ipα2`β´2q2´kα1 `
ÿ

kăj´2

2´ipα1`α2`β´2q

`
ÿ

|j´k|ď1

2´ipα1`α2`β´2q

,

.

-

}a1}Cα1 }a2}Cα2 }b}Cβ

À 2´kpα1`α2`β´2q }a1}Cα1 }a2}Cα2 }b}Cβ .

B

We use this continuity result under the form of the E-type identity
P
LrPa1a2

b “ E´2pPa1a2, bq “ a1E´2pa2, bq ` E´2`|a2|pa1, bq, (2.9)

or its analogue with b given by a paraproduct; Theorem 4 justifies fully this identity in
the regime α1 P p0, 1q or β1 P p0, 1q. In a setting where a2 and b play the role of data, one
rewrites identity (2.9) as

P
LrPa1a2

b “ E´2pPa1a2, bq “ Pa1E´2`|a2|`|b| ` F´2`|a2|`|b|pa1q ` E´2`|a2|`|b|pa1q.
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We also have continuity estimates on iterated correctors, as in [4]. Given the proof of
Theorem 4 given in Appendix B, it will be clear to the reader that their statements and
proofs are identical to what is done in [4] for the iterated correctors, see Section 3.1.3
therein. We leave their statements and proofs to the reader. The continuity results from
Theorem 4 take profit only from the Hölder regularity of a1 or b1, for any regularity
exponent in p0, 1s. As in the semilinear case, we need to introduce refined correctors to
refine the estimates if a1 or b1 are α1 or β1-Lipscthiz, with α1 or β1 strictly greater than
1. We set for that purpose, for a generic spacetime point e,

CăL,p1q

´

a1, a2, b
¯

peq :“ CăL pa1, a2, bqpeq ´ d
`

u0peq
˘´1

ÿ̀

i“1

pVia1qpeq
´

P
LrPδipe,¨qa2

b
¯

peq,

CąL,p1q

´

a, b1, b2

¯

peq :“ CąL pa, b1, b2qpeq ´ d
`

u0peq
˘´1

ÿ̀

i“1

pVib1qpeq
´

PLarPδipe,¨qb2

¯

peq,

CL,p1q

´

a1, a2, b
¯

peq :“ CLpa1, a2, bqpeq ´ d
`

u0peq
˘´1

ÿ̀

i“1

pVia1qpeqΠ
´

LrPδipe,¨qa2, b
¯

peq,

where the functions δi are defined in Appendix B. Keep in mind right now that in the
setting of the flat torus d

`

u0peq
˘´1

Vi “ Bi, the partial derivative in the ith space direction,
and δipe, e

1q “ d
`

u0pxq
˘1{2

pxi ´ x1iq, for spacetime points e “ pt, xq and e1 “ pt1, x1q. The
following theorem is also proved here in the time-independent model setting of the flat
torus; see Theorem 17 in Appendix B for the proof.

Theorem 5. ‚ Let α1 P p1, 2q and α2, β P p´3, 3q such that α1 ` α2 P p´3, 3q. If
α2 ` β ´ 2 ă 0 and α1 ` α2 ` β ´ 2 ą 0

then the operators CăL,p1q and CL,p1q have natural extensions as continuous operators
from Cα1 ˆ Cα2 ˆ Cβ into Cα1`α2`β´2.

‚ Let β1 P p1, 2q and α, β2 P p´3, 3q such that β1 ` β2 P p´3, 3q. If
α` β2 ´ 2 ă 0 and α` β1 ` β2 ´ 2 ą 0

then the operator CąL,p1q has a natural extension as a continuous operator from
Cα ˆ Cβ1 ˆ Cβ2 into Cα`β1`β2´2.

In terms of E-type identities, this continuity result rewrites under the form

P
LrPa1a2

b “ E´2pPa1a2, bq “ a1E´2pa2, bq `
ÿ̀

i“1

d´1
0 pVia1qE

´1
i pa2, bq ` E´2`|a2|pa1, bq,

with d0 :“ dpu0q, and similar expressions for CăL,p1q and CąL,p1q. This identity holds here in
the regime 1 ă |a1| ă 2. In a setting where a2 and b play the role of data, one rewrites
the preceding identity as

P
LrPa1a2

b “ Pa1E´2`|a2|`|b| ` F´2`|a2|`|b|pa1q ` E´2`|a2|`|b|pa1q.

This identity takes here the same form as in the regime 0 ă a1 ă 1. This is the form that
we use in the computations.

Theorem 3, Theorem 4 and Theorem 5 take care of the specific features of quasilinear
equations, compared to their semilinear analogue. Formulation (1.2) also involve a term
aipu, ¨qViu that can appear in a semilinear setting as well, and the function εpu, ¨q. The
last two paragraphs of this section state the results that we need about them.
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2.2.3 Dealing with the term aipu, ¨qViu. We have the following continuity results for the
operators

CăVi

´

a1, a2, b
¯

:“ P
VirPa1a2

b´ a1PVia2b,

CąVi

´

a, b1, b1

¯

:“ PVia

´

rPb1b2

¯

´ b1PViab2,

CVi

´

a1, a2, b
¯

:“ Π
´

VirPa1a2, b
¯

´ a1Π
´

Via2, b
¯

;

see Theorem 16 in Appendix B for the proof.

Theorem 6. ‚ Let α1 P p0, 1q and α2, β P p´3, 3q such that α1 ` α2 P p´3, 3q. If
α2 ` β ´ 1 ă 0 and α1 ` α2 ` β ´ 1 ą 0 (2.10)

then the operators CăVi and CVi have natural extensions as continuous operators
from Cα1 ˆ Cα2 ˆ Cβ into Cα1`α2`β´1.

‚ Let β1 P p0, 1q and α, β2 P p´3, 3q such that β1 ` β2 P p´3, 3q. If
α` β2 ´ 1 ă 0 and α` β1 ` β2 ´ 1 ą 0

then the operator CąVi has a natural extension as a continuous operator from Cα ˆ
Cβ1 ˆ Cβ2 into Cα`β1`β2´1.

Proof – We prove here this continuity result for a simplified version of the operator CV
in the time-independent case of the flat torus, with the constant vector field B1 in the
role of Vi; we refer the reader to Appendix B for the proof of Theorem 6 in the general
setting. Set

C0
B1
pa, b, cq :“ Π0

`

B1P
0
a b, c

˘

´ aΠ0pB1b, cq.

We prove that for α, β and γ such that inequalities (2.10) hold true, the operator C0
B1

is continuous from Cα ˆ Cβ ˆ Cγ into Cα`β`γ´2. Using that ∆ipB1fq » Op2iq∆ipfq,
for a function Op2iq with uniform norm of order 2i, we have

C0
B1
pa, b, cq »

ÿ

|i´j|ă1

Op2iq∆i

`

Π0
ab
˘

∆jpcq ´ aOp2
iq∆ipbq∆jpcq,

so
C0
B1
pa, b, cq “

ÿ

|i´j|ă1

Op2iqεi∆jpcq.

The same computations as above then yield the estimate
›

›∆k

`

C0
V pa, b, cq

˘›

›

L8
À 2´kpα`β`γ´1q}a}Cα}b}Cβ}c}Cγ .

B

Theorem 6 justifies that we summarize the above continuity statement under the fol-
lowing E-type identity

P
VirPa1a2

b “ a1PVia2b` E|a2|´1pa1, bq,

with similar identities satisfied by the expressions PVia

´

rPb1b2

¯

and Π
´

VirPa1a2, b
¯

. In a
setting where a2 and b play the role of data, one rewrites the preceding identity as

P
VirPa1a2

b “ Pa1E|a2|`|b|´1 ` E|a2|`|b|´1pa1q.

This is the form under which we use Theorem 6 in computations.
Associate with each vector field Vi the operator

Vipa, bq :“ Vi
`

rPab
˘

´ PapVibq.

We prove the theorem here in the time-independent model setting of the flat torus; see
Theorem 18 in Appendix B for the proof.
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Theorem 7. ‚ Let α, β P p´3, 3q such that α ` β ´ 1 P p´3, 3q. Then the operator
Vi has a natural extension as a continuous operator from Cα ˆ Cβ to Cα`β´1.

‚ Let α1, α2 P p0, 1q and β P p´3, 3q such that α1`β ă 3 and α1`α2`β´1 P p´3, 3q.
Then the iterated operator

Vippa1, a2q, bq :“ ViprPa1a2, bq ´ Pa1Vipa2, bq

has a natural extension as a continuous operator from Cα1ˆCα2ˆCβ to Cα1`α2`β´1.

2.2.4 Paracontrolled expansion of εpu, ¨q. Finally, we have the following variation on the
high order paracontrolled expansion formula from [4], Theorem 4 therein.

Theorem 8. Let f : R Ñ R, be a C4
b function and let u and v be respectively Cα and C4α

functions on r0, T s ˆM , with α P p0, 1q. Then we have

fpuqv “ Pf 1puqvu`
1

2

!

Pf p2qpuqvu
2 ´ 2Pf p2qpuquvu

)

`
1

3!

!

Pf p3qpuqvu
3 ´ 3Pf p3qpuquvu

2 ` 3Pf p3qpuqu2vu
)

` p7q,

for a remainder p7q P C4α.

The proof of this statement is given in Appendix C.

3 – Quasilinear generalised (PAM) equation

We use the generic three step process from Section 2 to solve the quasilinear generalised
(PAM) equation (1.2).

Step 1. We have 2{5 ă α ă 1{2, so we choose to work with a third order paracontrolled
expansion, to have a remainder term u7 in the paracontrolled expansion of u for which the
product of u7 P C4α with any distribution of Hölder regularity α´ 2 is well-defined.

Step 2. We use continuity results for correctors, commutators and their iterates, to
put the right hand side of equation (1.2) in the canonical form (2.2). Recall d0 “ dpu0q.
Indices a, b, c below are in A , while τ P T .

Proposition 9. Assume we are given a system puaqaPA paracontrolled by a family T at
order 3. Then

fpuqζ ` εpu, ¨qLu`
ÿ̀

i“1

aipu, ¨qViu

“ Pfpuqζ `
ÿ

|a|ď2α

Pf 1puquaζ
p1q
a `

ÿ

|ab|ď2α

Pf p2qpuquaubζ
p1q
ab

`
ÿ

τPT

Pεpu,¨quτLτ `
ÿ

|a|ď3α;aPA zT

Pεpuquaζ
p2q
a

`
ÿ

|ab|ď3α

Pd´1
0 d1puquaub

ζ
p2q
ab `

ÿ

|abc|ď3α

Pd´1
0 dp2qpuquaubuc

ζ
p2q
abc

`
ÿ

|τ |“α;1ďjď`

Pajpu,¨quτ ζj,τ ` p7q,

(3.1)

for distributions ζp1qe , ζ
p2q
e , ζj,τ that depend only on ζ and T , with ζp1qe of regularity |e|`α´2,

with ζp2qe of regularity |e|´ 2 and ζj,τ of regularity |τ |´ 1, for e P A , τ P T and 1 ď j ď `.
The remainder p7q is an element of C4α´2.
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As always in the analytic part of the study of a singular PDE, one needs to assume that
the distributions ζp1qe , ζ

p2q
e , ζj,τ are given off-line. The remainder term p4α´2q also involves

off-line data. The point with stochastic singular PDEs is that one can construct the data
by probabilistic means; this is what renormalisation is about. It comes as a by-product of
the proof that the remainder is the sum of a term of regularity 4α ´ 2 involving off-line
data and a term of regularity 5α ´ 2 that is a continuous function of the paracontrolled
system puaqaPA and all the off-line data.

Proof – Below, we check the convergence of all implicit infinite sums of T using the
convergence condition (2.6) in the definition of a paracontrolled system; we do not
do that explicitly each time. Recall we denote by pβq an element of the parabolic
Hölder space Cβ with regularity exponent any β P R, whose only noticeable feature is
its regularity. Its expression may change from line to line. Recall also from Appendix
A the definition of the operator

R˝pa, b, cq “ PaPbc´ Pabc,

its continuity and expansion properties. To shorten notations, we sometimes use
implicit summation on repeated indices.
‚ The term fpuqζ is the same as in the semilinear (gPAM) equation so its decom-

position is given by proposition 17 of [4], that is

fpuqζ “ Pfpuqζ `
ÿ

|a|ď2α

Pf 1puquaζ
p1q
a `

ÿ

|ab|ď2α

Pf p2qpuquaubζ
p1q
ab ` p4α´ 2q.

‚ For the term Pεpu,¨qLu, first, we have from Theorem 3

Lu “ LrPuτ τ ` p4α´ 2q

“ PuτLτ ` Lpuτ , τq ` p4α´ 2q

“ PuτLτ ` PuτσLpσ, τq ` Lppuτσ, σq, τq ` p4α´ 2q

“ PuτLτ ` PuτσLpσ, τq ` PuτσγLppγ, σq, τq ` p4α´ 2q.

One takes care of remainder terms in the expansions of the uτ ’s with |τ | “ α,
in the expression Lpuτ , τq, using the operator Lp1q. Write the above expression
under the form

Lu “: Puaξ
p2q
a ` p4α´ 2q,

with ξp2qa of regularity |a| ´ 2. Keeping in mind that the expression p4α´ 2q may
change from line to line, this yields
Pεpu,¨qLu “ Pεpu,¨qPuaξ

p2q
a ` p4α´ 2q

“ Pεpu,¨quaξ
p2q
a ` R˝

`

εpu, ¨q, ua, ξ
p2q
a

˘

` p4α´ 2q

“ Pεpu,¨quaξ
p2q
a ` R˝

`

εpu, ¨q, uτ , Lτ
˘

` p4α´ 2q

“ Pεpu,¨quaξ
p2q
a ` R˝

`

εpu, ¨quτσ, σ, Lτ
˘

` p4α´ 2q

“ Pεpu,¨quaξ
p2q
a ` Pd´1

0 d1puquγuτσ`εpu,¨quτσγ
R˝

`

γ, σ, Lτ
˘

` p4α´ 2q

“ Pεpu,¨quaζ
p2q
a ` Pd´1

0 d1puquγuτσ
Y d
γ,τσ ` p4α´ 2q

The term Pεpu,¨quτσγR˝pγ, σ, Lτq has been added to Pεpu,¨quaξ
p2q
a , with a “ τσγ,

resulting in changing ξp2qa to ζp2qa . We rewrite this formula under the form
Pεpu,¨qLu “

ÿ

τPT

Pεpu,¨quτLτ `
ÿ

aRT

Pεpu,¨quaζ
p2q
a ` Pd´1

0 d1puquγuτσ
Y d
γ,τσ ` p4α´ 2q,
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to put forward the terms Pεpu,¨quτLτ , of regularity α ´ 2. This is the only term
in the right hand side of equation (1.2) that has the same regularity as the noise
ζ.

‚ The terms
PLuεpu, ¨q “ PLud

´1
0 dpuq ´ PLu1 “ PLu

`

d´1
0 dpuq

˘

` p4α´ 2q

and
Π
`

εpu, ¨q, Lu
˘

“ Π
`

d´1
0 dpuq, Lu

˘

´ Πp1, Luq “ Π
`

d´1
0 dpuq, Lu

˘

` p4α´ 2q

are dealt with using the correctors C,CăL ,C
ą
L and CL, to take care of paraprod-

ucts, and their refined versions C1
L,p1q, etc., to take care of remainder terms in

paracontrolled expansions. Recall the E-type form of the continuity statements
on these operators. Recall also that d0 and d´1

0 are smooth. Using the E-notation
for operators of E-type, such as in the introduction of Section 2, we have

PLu
`

d´1
0 dpuq

˘

` Π
`

d´1
0 dpuq, Lu

˘

“ E´2
`

d´1
0 dpuq, u

˘

“ d´1
0 d1puqE´2pu, uq ` d´1

0 dp2qpuqE´2pu, u, uq ` p4α´ 2q.

The analysis of the term E´2pu, uq is conveniently done as follows. (This com-
putation was already done at length in [4].) We first write it in multiplicative
form

E´2pu, uq “ uτ1E´2`|τ1|puq ` E´2`|τ1|puτ1 , uq ` p5α´ 2q

“

!

uτ1uτ2E´2`|τ1|`|τ2| ` uτ1E´2`|τ1|`|τ2|puτ2q ` p5α´ 2q
)

`

!

uτ1σ1E´2`|τ1|`|σ1|puq ` E´2`|τ1|`|σ1|puτ1σ1 , uq ` p5α´ 2q
)

` p5α´ 2q

“

!

uτ1uτ2E´2`|τ1|`|τ2| ` uτ1uτ2σ2E´2`|τ1|`|τ2|`|σ2|

` uτ1uτ2σ2µ2E´2`|τ1|`|τ2|`|σ2|`|µ2| ` p5α´ 2q
)

`

!

uτ1σ1E´2`|τ1|`|σ1|`|τ2| ` uτ1σ1uτ2σ2E´2`|τ1|`|σ1|`|τ2|`|σ2| ` p5α´ 2q

` uτ1σ1µ1uτ2E´2`|τ1|`|σ1|`|µ1|`|τ2| ` p5α´ 2q
)

` p5α´ 2q.

Each term above that is not a remainder p5α´ 2q is of the form
p‹qEβ “ Pp‹qE

β ` Fβp‹q ` Eβp‹q,

for different values of β, and p‹q either of the form ua or uaub, with a, b P A . The
term Pp‹qE

β has the expected form. We use the paracontrolled structure of ua
and the F-expansion property to deal with Fβpuaq. To deal with Fβpuaubq, write
first

Fβpuaubq “ Fβ
`

Puaub
˘

` Fβ
`

Pubua
˘

` Fβ
`

Πpua, ubq
˘

,

and use the F-expansion property for the first two terms. For the resonant term,
we use the commutator operator D and its continuity properties, recalled in Ap-
pendix A, to expand first the resonant term in the form

Πpua, ubq “ PuaτΠpτ, ubq ` Dpuaτ , τ, ubq,

and then expand the paraproduct inside the operators Π and D, using the para-
controlled forms of ub and uaτ . We leave the details to the reader; all these
operations are only done up to remainders of positive regularity 5α´ 2. We also
leave the analysis of the term E´2pu, uq to the reader. These computations give
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in the end
PLu

`

d´1
0 dpuq

˘

` Π
`

d´1
0 dpuq, Lu

˘

“ Pd´1
0 d1puquaub

ζ
p2q
ab ` Pd´1

0 dp2qpuquaubuc
ζ
p2q
abc ` p4α´ 2q.

‚ For the terms involving the vector fields aipu, ¨qViu, we simply note that
PViuaipu, ¨q ` Πpaipu, ¨q, Viuq “ p2α´ 1q “ p4α´ 2q,

since 2α´ 1 ą 4α´ 2, and that
Viu “ VirPuτ τ ` p4α´ 2q

“ PuτViτ ` Vipuτ , τq ` p4α´ 2q

“ PuτViτ ` p4α´ 2q.

using Theorem 7.
B

We insist again on the fact that all the implicit sums on repeated indices above converge
as a consequence of the bound (2.6) satisfied by paracontrolled systems, and from the
continuity estimates from Section 2.2.

Step 3. We did not say so far which reference set T choosing in Step 1. We build T
from the fixed point formulation of equation (1.2) from Proposition 9.

One identifies from equation (3.1) a number of constraints that T needs to satisfy.
Denote by e “ pa1, . . . , akq a generic sentence with words in A , with |e| :“ |a1|`¨ ¨ ¨`|ak|.

$

’

’

’

’

&

’

’

’

’

%

L ´1pζq P T1,
pL ´1LqpTiq Ă Ti, for 1 ď i ď 3,

L ´1
`

ζ
p1q
e

˘

Ă Ti`1, for |e| “ iα ď 2α,

L ´1
`

ζ
p2q
e

˘

Ă Ti, for |e| “ iα ď 3α, and e R T ,
L ´1

`

ζjpT1q
˘

Ă T3.

(3.2)

Recall from Appendix A the definition of the operator R. Requiring
Πpτ, σq P T2 and Rp1, τ, σq P T2, @τ, σ P T1. (3.3)

ensures that for u paracontrolled to order 3 by the a reference set T , all the functions
fpuq, f 1puqua, f

p2qpuquaub, etc. that appear as arguments of the paraproducts in identity
(3.1), have a second order paracontrolled expansion with respect to that reference set T .
We define T “ T1 Y T2 Y T3, as the smallest set of reference functions satisfying the
constraints (3.2) and (3.3). This construction recipe for T gives back the finite set T ˝

used for the study of the semilinear generalised (PAM) equation in [4], if one replaces the
preceding infinite set T1 be the one point set

 

L ´1ζ
(

. In a sense, one can see T ˝ as the
‘skeleton’ of T , each occurence of L ´1pζq in an element of T ˝ being possibly any element
of T1 in T . Given τ P T , denote by nτ the total number of times that the operator L ´1L
appears in the formal expression for τ .

Assumption (A). There exists positive constants k and C ą 1 such that one has
}τ}C|τ | ď k Cnτ ,

for all τ P T .

See remark 2 after the proof of Theorem 10 for comments on this assumption. With
that choice of T , given a system pu paracontrolled by T , the function

L ´1

˜

fpuqζ ` εpu, ¨qLu`
ÿ̀

i“1

aipu, ¨qViu

¸

is the first element of a system paracontrolled by T that we denote by
Ψ
`

puaqaPA
˘

.
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Write
Φ
`

pu7aqaPA
˘

for the associated map that gives the collection of all the remainders in the paracontrolled
expansion of the different elements of Ψ

`

puaqaPA
˘

. Note that the fixed point identity

u “
ÿ

τPT

rPuτ τ ` u
7 “ L ´1

´

fpuqζ ` εpu, ¨qLu`
ÿ̀

i“1

aipu, ¨qViu
¯

` Pu0

identifies then each uτ in the left hand side to an explicit function hτ puq of u only. One
has for instance

uτ “ εpu, ¨qkfpuq, for τ “ pL ´1Lqk
`

L ´1ζ
˘

,

We now choose the exponents pβaqaPA in p5{2, αq in such a way that βa ą βa1, if the
word a has more letters that a1, and βa ą βa1, if a and a1 have the same number of letters
and |a| ă |a1|. Given the above skeleton picture of T , this can be done in such a way that
the βa take only finitely many values. This will be import in order to prove that the map
Φ is a contraction for T small enough.

Denote by pu7 “ pu7aqaPA a generic element of the product space
ź

aPA

C3α`βa´|a|,

endowed with the norm
~pu7~ :“

ÿ

aPA

}u7a}C3α`βa´|a|LaM.

Given u0 P C
4α, set hHpu0q :“ u0, and define

Spu0q :“
!

pu7; ~ pu7~ ă 8, and u7a|t“0
“ hapu0q, @ a P A

)

;

this is a closed subspace of
´

ś

aPA C3α`βa´|a|,~ ¨ ~
¯

.

Theorem 10. The map Φ is a contraction of Spu0q, provided the positive time horizon T
is small enough.

This statement means that equation (1.1) has a unique local in time solution in the
space Spu0q; it depends continuously on T . The choice of u0 is made at the end of point
(i) of the proof.

Proof – Recall we use exclusively the symbols τ, σ for letters from the alphabet T , while
we write a, b, c for elements of A – possibly words with only one lettres.
‚ We first prove that Φ is a well-defined map from Spu0q into itself, that is show is
that the condition

ÿ

aPA

}u7a}C3α´|a|`βa LaM ă 8

is stable by Φ. We decompose this sum according to the value of |a|.
– For |a| “ 3α, one has va “ v7a P Cβa , and the condition reads

ÿ

|a|“3α

}va}Cβa LaM ă 8.

We read on formula (3.1) the different possibilities for a, of the form L ´1pζ
p1q
e q, with

e P ta, pb, cqua,b,cPA and |a| “ 2α or |bc| “ 2α, etc. If for instance a “ L ´1pζ
p1q
a1 q with

|a1| “ 2α, we need to show that
ÿ

|a1|“2α

›

›g1puqua1
›

›

Cβa1
›

›L ´1pζ
p1q
a1 q

›

›

C2α ă 8.
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This can be seen from a direct computation
ÿ

|a1|“2α

›

›f 1puqua1
›

›

Cβa1
›

›L ´1pζ
p1q
a1 q

›

›

C2α

“
ÿ

|τ |“2α

›

›f 1puquτ
›

›

Cβa1
›

›L ´1pζp1qτ q
›

›

C2α `
ÿ

|σ|“|γ|“α

}f 1puquσγ}Cβa1
›

›L ´1pζp1qσγ q
›

›

C2α

À }f 1puq}Cα

¨

˝

ÿ

|τ |“2α

}uτ }Cβa1 }a
1} `

ÿ

|σ|“|γ|“α

}uσγ}Cβa1 }σγ}

˛

‚

À
ÿ

|τ |“2α

}uτ }βτ }τ} `
ÿ

|σ|“|γ|“α

}uσγ}Cβσγ }σγ}

À ~pu7~ ă 8,

using that βσ ą βa1 since |σ| ă |a1| and βσγ ą βa1 . We let the reader check the other
cases.
– For |a| “ 2α, we need to show

ÿ

|a|“2α

}v7a}α`βaLaM ă 8

so we need to compute the remainders v7a for all such a, which are given by
va “

ÿ

|τ |“α

rPvaτ τ ` v
7
a.

Here again, different cases can happen depending on a. If for instance a “ L ´1pζ
p1q
a1 q,

with |a1| “ α, so a1 “ σ P T1, we have va “ f 1puquσ, and
f 1puquσ “ Pf 1puquσ ` Puσf

1puq ` Π
`

f 1puq, uσ
˘

“ rPf 1puquσγ`f p2qpuquσuγγ `
!

R
`

f 1puq, uσγ , γ
˘

` R
`

1, f 1puquσγ , γ
˘

` R
`

f p2qpuquσ, uγ , γ
˘

` Rp1, f p2qpuquσuγ , γ
˘

` Puσf
1puq7 ` Π

`

f 1puq, uσ
˘

)

“: rPvaγγ ` v
7
a

where all term in the remainder v7a satisfy the convergence condition. As an example,
we have
ÿ

|σ|“α

ÿ

|γ|“α

›

›Rp1, f 1puquσγ , γq
›

›

α`βa
}σ} À }g1puq}α

ÿ

|σ|“|γ|“α

}uσγ}βσγ }σγ} À ~pu
7~ ă 8.

The reader is invited to check the other cases.
– A direct computation also shows that

ÿ

|a|“α

}v7a}2α`βaLaM ă 8.

The remaining details are left to the reader.

‚ We now prove that Φ is a contraction for a positive time horizon T small enough.
Pick pu7 “ pu7aqaPA P Spu0q and pv7 “ pv7aqaPA P Spu0q. Since both paracontrolled
systems are in the solution space,

pw :“ Φppuq ´ Φppvq

is a system paracontrolled by T at order 3, whose elements are equal to 0 at time 0.
This allows us to gain a factor T pγ1´γq{2 when comparing the norms of such functions
in two different parabolic Hölder spaces with respective exponents γ and γ1. From
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Propostion 9, we have
pwH “

ÿ

|τ |ď3α

rPwτ τ ` w
7

with explicit formulas for wτ “ Φppuqτ ´ Φppvqτ . In the expansion of pwH, we have to
control two types of terms, that is (i) }wτ }βτ for |τ | “ 3α and (ii) }w7}3α`βH .

(i) We first consider the terms wτ . For example, we have to control
›

›f 1puqua ´ f
1pvqva

›

›

βτ
, with |a| “ 2α, and τ “ L ´1pζp1qa q.

and this is done writing
›

›f 1puqua ´ f
1pvqva

›

›

βσ
À

›

›

`

f 1puq ´ f 1pvq
˘

ua
›

›

βσ
`
›

›f 1pvqpua ´ vaq
›

›

βσ

À T
α´βσ

2

›

›f 1puq ´ f 1pvq
›

›

α
}ua}βσ ` T

βa´βσ
2

›

›f 1pvq
›

›

α
}ua ´ va}βa

À T
α´βσ

2

´

}f}C2
b

`

1` }u}α
˘

}ua}βσ

¯

}u´ v}α ` T
βa´βσ

2 }f 1pvq}α}ua ´ va}βa

À

!

T
α´βσ

2

´

}f}C2
b

`

1` }u}α
˘

}ua}βσ

¯

` T
βa´βσ

2 }f 1pvq}α

)

~pu7 ´ pv7~

Another example is
›

›f p2qpuquaub ´ f
p2qpvqvavb

›

›

βσ

with |a| ` |b| “ 2α and σ P T given by L ´1
´

ζ
p1q
ab

¯

. It is dealt with writing
›

›f p2qpuquaub ´ f
p2qpvqvavb

›

›

βσ
À

›

›

›

´

f p2qpuq ´ f p2qpvq
¯

uaub

›

›

›

βσ
`
›

›f p2qpvqpuaub ´ vavbq
›

›

βσ

À T
α´βσ

2 }f p2qpuq ´ f p2qpvq}α}uaub}βσ ` T
minpβa,βbq´βσ

2

›

›f p2qpvq
›

›

βσ

›

›uaub ´ vavb
›

›

minpβa,βbq

À

´

T
α´βσ

2 }f}C3
b
}uaub}βσ ` T

minpβa,βbq´βσ
2 }f p2qpvq}βσ

¯

~pu7 ´ pv7~.

All the other terms are dealed with using the following four inequalities.
‚ One has

›

›

›
εpu, ¨qua ´ εpv, ¨qva

›

›

›

βσ
À T

α´βσ
2

›

›εpu, ¨q ´ εpv, ¨q
›

›

α
}ua}βσ ` T

βa´βτ
2 }εpv, ¨q}α}ua ´ va}βa

for a R T , |a| “ 3α and σ P T given by L ´1
´

ζ
p2q
a

¯

.
‚ One has
›

›d´1
0 d1puquaub ´ d

´1
0 d1pvqvavb

›

›

βσ
À T

α´βσ
2

›

›d´1
0 d1puq ´ d´1

0 d1pvq
›

›

α
}uaub}βσ

` T
minpβa,βbq´βσ

2

›

›d´1
0 d1pvq

›

›

βσ

›

›uaub ´ vavb
›

›

minpβa,βbq

for |a| ` |b| “ 3α and σ P T given by L ´1
´

ζ
p2q
ab

¯

.
‚ One has

›

›d´1
0 dp2qpuquaubuc ´ d

´1
0 dp2qpvqvavbvc

›

›

βσ
À T

α´βσ
2

›

›d´1
0 dp2qpuq ´ d´1

0 dp2qpvq
›

›

α
}uaubuc}βσ

` T
minpβa,βb,βcq´βτ

2

›

›d´1
0 dp2qpvq

›

›

βσ

›

›uaubuc ´ vavbvc
›

›

minpβa,βb,βcq

for |a| ` |b| ` |c| “ 3α and σ P T given by L ´1
´

ζ
p2q
abc

¯

.
‚ One has

›

›d`pu, ¨quτ´d`pv, ¨qvσ
›

›

βσ
À T

α´βσ
2

›

›d`pu, ¨q´d`pv, ¨q
›

›

α
}uτ }βσ`T

βτ´βσ
2

›

›d`pv, ¨q
›

›

βσ

›

›uτ´vτ
›

›

βτ

for |τ | “ α and σ P T given by L ´1pζj,τ q.
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There is only one case where we use that εpu, ¨q is small when T is small, to estimate
›

›

›
εpu, ¨quτ ´ εpv, ¨qvτ

›

›

›

βσ
À

›

› pεpu, ¨q ´ εpv, ¨qquτ
›

›

βσ
`
›

›εpv, ¨qpuτ ´ vτ q
›

›

βσ
. (3.4)

While we have
} pεpu, ¨q ´ εpv, ¨qquτ }βσ À T

α´βσ
2

›

›εpu, ¨q ´ εpv, ¨qfflbig}α}uτ }βσ

we do not gain a T -dependent fact using the regularity of uτ ´ uσ in the second term
of the right hand side of inequality (3.4), since βτ “ βσ. We use instead that
›

›εpv, ¨qpuτ ´ vτ q
›

›

βσ
À }εpv, ¨q}βτ }uτ ´ vτ }βτ

À

´

›

›dpvq ´ dpu0q
›

›

βτ
`
›

›dpu0q ´ dpu0q
›

›

βτ

¯

}uτ ´ vτ }βτ

À

´

T
βτ´α

2

›

›dpvq ´ dpu0q
›

›

α
`
›

›dpu0q ´ dpu0q
›

›

βτ

¯

}uτ ´ vτ }βτ

since dpvq ´ dpu0q is equal to 0 at t “ 0, and the factor }dpu0q ´ dpu0q}βτ is as small
as we want for u0 close enough to u0 in Cα.
(ii) For the remainder terms, the same arguments with an explicit computations of
p7qp pwq is enough. For example, we have for |τ | “ |σ| “ |σ| “ α a term

›

›Lpppuτσγ , γq, σq, τq
›

›

3α`βH
À T

βτσγ´βH
2 }uτσγ}βτσγ }τ}α}σ}α}γ}α

or
›

›

›

rPεpu,¨qpL
´1Lqu7 ´ rPεpv,¨qpL

´1Lqv7
›

›

›

3α`βH
À T

α´βH
2 }εpu, ¨q ´ εpv, ¨q}α}u

7}3α`βH

` T
α´βH

2 }εpv, ¨q}α}u
7 ´ v7}3α`βH .

The above considerations deal with pwH. The analysis of the general terms pwa, with
a P A , is similar or easier; it is left to the reader.

In order to get a contraction, we see that the different terms T
β
2 can be chosen smaller

than one for T small enough. Since there is a finite numbers of β’s, this shows that Φ
is indeed a contraction for T small enough, and u0 close enough to u0 in Cα. B

Remarks. 1. Condition (3.2) makes plain sense if the noise ζ is smooth enough. In a low
regularity setting where the noise is a random distribution one needs to build the elements
of the space T by probabilistic means from a renormalisation algorithm. A constraint like
pL ´1Lqpζ

p1q
a q Ă Ti`1, for |a| “ iα, is then understood as the requirement that the inclusion

holds for each regularisation parameter, for the corresponding function/distribution spaces,
and each regularized/renormalised function/distribution is converging in a probabilistic
sense to a limit in its natural space.

2. One expects that a version of the BPHZ renormalisation works for the renormal-
isation of semilinear singular stochastic PDEs. (While this has been fully proved in the
regularity structures setting [11, 13], this remains to be worked out in a paracontrolled set-
ting. See [7] for a strong hint that this is indeed the case.) On that basis, it is most likely
that an ad hoc renormalisation process for the quasilinear setting would be given by the
same renormalisation process as in the semilinear setting, with trees with branches of ad
hoc length used instead of their skeleton ‘semilinear’ trees. As a consequence, one expects
an estimate of the form

}τ}C|τ | ď kτ˝ C
nτ ,

with τ˝ the skeleton tree corresponding to τ in the semilinear setting and C ą 1 a constant
depending only on the operator L ´1L. As there are only finitely many trees τ˝ in a
subcritical regime, one could take a uniform constant k instead of kτ˝. This point will be
the object of a forthcoming work.
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3. The quasilinear (gPAM) equation dealt with in [6] involved a space white noise ζ on
the two-dimensional torus. One can use in that setting a one point set

T1 “
 

L´1pζq
(

“: tZ1u,

in the paracontrolled structure, as one has
LZ1 “ ζ “ LZ1.

(Recall the computations from the Introduction section.) Since T reduces to T1 in the
two-dimensional setting, this simplifies the analysis. Even if working with a space white
noise, one would need an infinite set T2 on the 3-dimensional torus, as one cannot choose
only time-independent elements in T2, so a single time-dependent element in T2 produces
an infinity of them, from the stability condition (3.2).

A – Basics on high order paracontrolled calculus

We recall in this appendix a number of results from [3, 4] that we use in this work.
This should help the reader understanding the computations of Appendix B and their
mechanics.

We first describe the approximation operators where the heat semigroup plays the
role of Fourier theory and Paley-Littlewood projectors in our general geometric setting.
The parabolic Hölder space are defined from these operators. We also recall the form
of our space-time paraproducts and give some of the continuity estimates on different
correctors/commutators and their iterated versions.

Recall that we denote by M a 3-dimensional closed Riemannian manifold and set M :“
r0, T sˆM , for a finite positive time horizon T . We denote by e “ pτ, xq a generic spacetime
point. Denote by µ the Riemannian volume measure and define the parabolic measure

ν :“ dtb µ.

A.1 Approximation operators and parabolic Hölder spaces

In the flat setting of the torus, we can use Fourier theory to approximate Schwartz
distributions by smooth functions. We have

f “ lim
nÑ8

Snpfq “
ÿ

iě´1

∆ipfq

with ∆j the Paley-Littlewood projectors. Refer e.g. to [5] for basics on Littlewood-Paley
theory. Using the heat semigroup, one has in a more general geometric framework

f “ lim
tÑ0

P
pbq
t f “

ż 1

0
Q
pbq
t f

dt

t
` P

pbq
1 f

where
Q
pbq
t :“

ptLqbe´tL

pb´ 1q!
and ´ tBtP

pbq
t :“ Q

pbq
t

with P0 “ Id. One can show that there exists a polynomial pb of degree pb´ 1q such that
P
pbq
t “ pbptLqe

´tL and pbp0q “ 1. The operators Qpbqt and P
pbq
t play the role of Paley-

Littlewood projector and Fourier series, respectively. Indeed, if one works on the torus,
then

y

Q
pbq
t pλq “

`

t|λ|2
˘b

pb´ 1q!
e´|λ|

2t and y

P
pbq
t pλq “ pb

`

t|λ|2
˘

e´|λ|
2t

so we see that Qpbqt localize in frequency around the annulus |λ| „ t´
1
2 and P

pbq
t localize

in frequency on the ball |λ| À t´
1
2 . Since the measure dt{t gives unit mass to each
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interval r2´pi`1q, 2´is, the operator Qpbqt is a multiplier that is approximately localized at
‘frequencies’ of size t´

1
2 . However, this decomposition using a continuous parameter does

not satisfy the perfect cancellation property ∆i∆j “ 0 for |i´ j| ą 1, but the identity

Q
pbq
t Qpbqs “

ˆ

ts

pt` sq2

˙b

Q
p2bq
t`s

for any s, t P p0, 1q. The parameter b encodes a ‘degree’ of cancellation. In order to
deal with time approximation, define for m P L1pRq, with support in R`, the convolution
operator

m‹pfqpτq :“

ż 8

0
mpτ ´ σqfpσqdσ and mtp¨q :“

1

t
m
´

¨

t

¯

for τ P R and a positive scaling parameter t. Given I “ pi1, . . . , inq P t1, . . . , `u
n, define

the nth-oder differential operator
VI :“ Vin . . . Vi1 .

We say that a familly pQtqtPp0,1s is Gaussian if each the kernel of each Qt is bounded
pointwisely by Gt, the reference Gaussian kernel. We do not recall its expression here and
refer the reader to Section 3.2 of [3].

Definition – Let a P J0, 2bK. We define the standard collection StGCa of operators with
cancellation of order a as the set of families

ˆ

`

t
|I|
2 VI

˘`

tL
˘

j
2P

pcq
t b ϕ‹t

˙

tPp0,1s

where a “ |I|`j`2k, c P J1, bK and ϕ a smooth function supported in r2´1, 2s with bounded
first derivative by 1 such that

ż

τ impτqdτ “ 0 for every 0 ď i ď k ´ 1.

These operators are uniformly bounded in LppMq for every p P r1,8s, as functions of the
parameter t P p0, 1s. We also set

StGCr0,2bs :“
ď

0ďaď2b

StGCa.

A standard family of operator Q P StGCa can be seen as a bounded map t ÞÑ Qt from
p0, 1s to the space of bounded linear operator on LppMq. Since ViVj ‰ VjVi, the operators
Vi do not commute with L so that

VIL
be´tL ‰ Lbe´tLVI .

For the next proposition, we introduce the notation
´

VIψpLq
¯‚

:“ ψpLqVI

for any holomorphic function ψ. This notation is not related to any notion of duality.

Proposition 11. Consider Q1 P StGCa1 and Q2 P StGCa2 two standard collections with
cancellation. Then for every s, t P p0, 1s, the composition Q1

s ˝Q2‚
t has a kernel pointwisely

bounded by
ˇ

ˇ

ˇ
KQ1

s˝Q2‚
t
pe, e1q

ˇ

ˇ

ˇ
À

#

´s

t

¯

a1
2
1săt `

ˆ

t

s

˙

a2
2

1sět

+

Gt`spe, e1q

À

ˆ

ts

ps` tq2

˙
a
2

Gt`spe, e1q

with a :“ minpa1, a2q.
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We also need operators that are not in the standard form but still have some cancellation
property.

Definition – Let a P J0, 2bK. We define the collection GCa of operators with cancellation
of order a as the set of families of Gaussian operators Q such as the following property
holds. For every s, t P p0, 1s and every S P StGCa1 with a ă a1 ď 2b, the composition Qs˝S‚t
has a kernel pointwisely bounded by

ˇ

ˇKQs˝S‚t pe, e
1q
ˇ

ˇ À

ˆ

ts

pt` sq2

˙
a
2

Gt`spe, e1q.

Definition – Given any α P p´3, 3q, we define the parabolic Hölder spaces CαpMq as
the set of distribution f P D1pMq such that

}f}Cα :“
›

›e´Lf
›

›

L8
` sup

QPStGCk
|α|ăkď2b

sup
tPp0,1s

t´
α
2 }Qtf}L8 ă 8.

A.2 Parabolic paraproducts, correctors and commutators

The Paley-Littlewood decomposition can be used to describe a product as
fg “ lim

nÑ8
SnpfqSnpgq

“
ÿ

iăj´2

∆ipfq∆jpgq `
ÿ

|i´j|ď1

∆ipfq∆jpgq `
ÿ

iąj`1

∆ipfq∆jpgq

“
ÿ

i

∆ăipfq∆ipgq `
ÿ

|i´j|ď1

∆ipfq∆jpgq `
ÿ

i

∆ipfq∆ăipgq

“ P 0
f g `Π0pf, gq ` P 0

g f,

the paraproducts P 0
f g and P 0

g f being always well-defined, unlike the resonant term Π0pf, gq.
In our framework, we use a slightly different identity

fg “ lim
tÑ0

Ppbqt
´

Ppbqt f ¨ Ppbqt g
¯

“

ż 1

0

!

Qpbqt
`

Ppbqt f ¨ Ppbqt g
˘

` Ppbqt
`

Qpbqt f ¨ Ppbqt g
˘

` Ppbqt
`

Ppbqt f ¨Qpbqt g
˘

) dt

t

` Ppbq1

´

Ppbq1 f ¨ Ppbq1 g
¯

.

(A.1)

This corresponds to writing
fg “ lim

nÑ8
Sn

`

SnpfqSnpgq
˘

.

Since Ppbqt plays the role of ∆ăi and Qpbqt the role of ∆i, we want to manipulate this
expression to get terms of the following forms
ż 1

0
P1‚
t

`

Q1
t f ¨Q2

t g
˘ dt

t
, or

ż 1

0
Q1‚
t

`

Q2
t f ¨ P1

t g
˘ dt

t
, and

ż 1

0
Q1‚
t

`

P1
t f ¨Q2

t g
˘ dt

t
,

where Q1,Q2 P StGCc encode some cancellation so c ą 0 and P1 P StGCr0,ds can encode
no cancellation. This is done using repeatedly the Leibnitz rule Vipfgq “ Vipfqg` fVipgq.
For example, we have

ż 1

0

Ppbqt
´

b´1ptLqQpb´1q
t f ¨ Ppbqt g

¯ dt

t
“ b´1

ż 1

0

Ppbqt ptLq
´

Qpb´1q
t f ¨ Ppbqt g

¯ dt

t

´ b´1

ż 1

0

Ppbqt
´

Qpb´1q
t f ¨ ptLqPpbqt g

¯ dt

t
´ 2b´1

ÿ̀

i“1

ż 1

0

Ppbqt p
?
tViq

´

Qpb´1q
t f ¨ p

?
tViqPpbqt g

¯ dt

t
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where we ‘take’ some cancellation from Qpbqt to the other terms. Starting from identity
(A.1), repeated use of this decomposition allows to rewrite the product fg as

fg “ Pfg ` Πpf, gq ` Pgf,

where Pfg is a linear combination of terms of the form
ż 1

0
Q1‚
t

`

P1
t f ¨Q2

t g
˘ dt

t
,

and Πpf, gq is a linear combination of terms of the form
ż 1

0
P1‚
t

`

Q1
t f ¨Q2

t g
˘ dt

t
,

with Q1,Q2 P StGC
b
2 and P1 P StGCr0,2bs, up to the smooth term Ppbq1

´

Ppbq1 f ¨ Ppbq1 g
¯

. All
the details on this construction and the classical estimates on P and Π can be found in
Section 4 of [3]. In order to solve semilinear singular PDEs, we want to investigate the
property of the intertwined operator rP defined through

rPfg “
`

L ´1 ˝ Pf ˝L
˘

g

for any functions/distributions f and g. One can show that rPfg is given as a linear
combination of

ż 1

0

rQ1‚
t

`

P1
t f ¨Q2

t

˘ dt

t

with rQ1 P GC
b
4
´2, Q2 P StGC

b
2 and P1 P StGCr0,2bs. The only difference is that rQ1 is not

given by a standard form but still encodes some cancellation. This is however sufficient
for rP to enjoy the same continuity properties as P.

The study of semilinear singular SPDEs using paracontrolled calculus relies on a number
of continuity estimate for different operators, we recall three of them here and refer the
reader to [4]. Define the E-type operators

Cpa, b, cq :“ Π
´

rPab, c
¯

´ aΠ
`

b, c
¯

and its iterate
C
´

pa, bq, c, d
¯

:“ C
´

rPab, c, d
¯

´ aC
´

b, c, d
¯

.

Proposition 12. ‚ Let α P p0, 1q and β, γ P p´3, 3q such that
β ` γ ă 0 and 0 ă α` β ` γ ă 1.

Then the corrector C has a unique extension as a continuous operator from Cα ˆ
Cβ ˆ Cγ to Cα`β`γ.

‚ Let α1, α2 P p0, 1q and β, γ P p´3, 3q such that
α1 ` β ` γ ă 0, α2 ` β ` γ ă 0 and 0 ă α1 ` α2 ` β ` γ ă 1.

Then the iterated corrector C has a unique extension as a continuous operator from
Cα1 ˆ Cα2 ˆ Cβ ˆ Cγ to Cα1`α2`β`γ.

Note that the Hölder regularity exponent of the first argument in the corrector C has to
be less than 1 in the above statement. In order to gain more information from a regularity
exponent in the interval p1, 2q, one needs to consider the refined corrector given for any
e PM, by

Cp1q

´

a, b, c
¯

peq :“ C
´

a, b, c
¯

peq ´
ÿ̀

i“1

γi
`

Via
˘

peqΠ
´

rPδipe,¨qb, c
¯

peq
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where δi is given by
δipe, e

1q :“ χ
`

dpx, x1q
˘

xVipxq, πx,x1yTxM
with χ a smooth non-negative function on r0,`8q equal to 1 in a neighbourhood of 0
with χprq “ 0 for r ě rm the injectivity radius of the compact manifold M and πx,x1 a
tangent vector of TxM of length dpx, yq, whose associated geodesic reaches y at time 1.
The functions γi are defined from the identity

∇f “
ÿ̀

i“1

γipVifqVi,

for all smoothe real-valued functions f on M .

Proposition 13. Let α P p1, 2q and β, γ P p´3, 3q such that
α` β ` γ ą 0 and β ` γ ă 0.

Then the operator Cp1q has a unique extension as a continuous operator from CαˆCβˆCγ

to Cα`β`γ.

In the high order setting, we also work with well-defined expressions that are not in the
algebraic form required to set up the fixed point in a simple way; these are the F-type
terms. We need continuity estimates on

Dpa, b, cq :“ Π
´

rPab, c
¯

´ PaΠ
´

b, c
¯

,

Rpa, b, cq :“ ParPbc´ Pabc,

R˝pa, b, cq :“ PaPbc´ Pabc.

Proposition 14. ‚ Let α, β, γ P p0, 3q. Then the commutator D is continuous from
Cα ˆ Cβ ˆ Cγ to Cα`β`γ.

‚ Let β P p0, 1q and γ P p´3, 3q such that β ` γ P p´3, 3q. Then the operators R and
R˝ are continuous from L8 ˆ Cβ ˆ Cγ to Cβ`γ.

‚ Let α, β P p0, 1{2q and γ P p´3, 3q. Then the operator R˝ is continuous from
Cα ˆ Cβ ˆ Cγ to Cα`β`γ.

We also need continuity estimates on iterates of the operator R˝. However in this case
the expansion rule is different depending on which argument we expand.

Proposition 15. ‚ Let α1, α2 P p0, 1q and γ P p´3, 3q. Then the operator

R˝
`

pa1, a2q, b, c
˘

:“ R˝
`

rPa1a2, b, c
˘

´ Pa1R˝pa2, b, cq

is continuous from Cα1 ˆ Cα2 ˆ L8 ˆ Cγ to Cα1`α2`γ.
‚ Let β1, β2 P p0, 1q and γ P p´3, 3q. Then the operator

R˝
`

a, pb1, b2q, c
˘

:“ R˝
`

a, rPb1b2, c
˘

´ R˝pab1, b2, cq

is continuous from L8 ˆ Cβ1 ˆ Cβ2 ˆ Cγ to Cβ1`β2`γ.

B – Correctors and commutators

In order to simplify the notation, we write here } ¨ }α for } ¨ }Cα . The proofs of the
corrector estimates follow the line of reasoning of similar estimates proved in [4]. Recall
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the definitions of the following operators

CăL

´

a1, a2, b
¯

“ P
LrPa1a2

b´ a1PLa2b,

CąL

´

a, b1, b1

¯

“ PLa

´

rPb1b2

¯

´ b1PLab2,

CL

´

a1, a2, b
¯

“ Π
´

LrPa1a2, b
¯

´ a1Π
´

La2, b
¯

.

Theorem 16. ‚ Let α1 P p0, 1q and α2, β P p´3, 3q such that α1 ` α2 P p´3, 3q. If
α2 ` β ´ 2 ă 0 and α1 ` α2 ` β ´ 2 ą 0

then the operators CăL and CL have natural extensions as continuous operators from
Cα1 ˆ Cα2 ˆ Cβ to Cα1`α2`β´2.

‚ Let β1 P p0, 1q and α, β2 P p´3, 3q such that β1 ` β2 P p´3, 3q. If
α` β2 ´ 2 ă 0 and α` β1 ` β2 ´ 2 ą 0

then the operator CąL has a natural extension as a continuous operator from Cα ˆ
Cβ1 ˆ Cβ2 to Cα`β1`β2´2.

‚ Let α1 P p0, 1q and α2, β P p´3, 3q such that α1 ` α2 P p´3, 3q. If
α2 ` β ´ 1 ă 0 and α1 ` α2 ` β ´ 1 ą 0

then the operators CăVi and CVi have natural extensions as continuous operators
from Cα1 ˆ Cα2 ˆ Cβ to Cα1`α2`β´1.

‚ Let β1 P p0, 1q and α, β2 P p´3, 3q such that β1 ` β2 P p´3, 3q. If
α` β2 ´ 1 ă 0 and α` β1 ` β2 ´ 1 ą 0

then the operator CąVi has a natural extension as a continuous operator from Cα ˆ
Cβ1 ˆ Cβ2 to Cα`β1`β2´1.

Proof – We give here the details for the continuity estimate on CL and explain how to
adapt the proof for CăL ,C

ą
L ,CVi ,C

ă
Vi

and CąVi .

We want to compute the regularity of CLpa1, a2, bq using a family Q of StGCr with
r ą |α1`α2`β´2|. Recall that a term ΠpLa, bq can be written as a linear combination
of terms of the form

ż 1

0
P1‚
t pQ1

t ptLqa ¨Q2
t bq

dt

t2
,

while rPba is a linear combination of terms of the form
ż 1

0

rQ3‚
t

`

rQ4
ta ¨ P2

t b
˘dt

t

with Q1,Q2, rQ4 P StGC
3
2 , rQ3 P GC

3
2 and P1,P2 P StGCr0,3s. For the terms where

P2 P StGCr1,3s, we already have the correct regularity since
ż 1

0

ż 1

0
QuP1‚

t

´

Q1
t ptLq

rQ3‚
s

´

P2
sa1 ¨ rQ4

sa2

¯

¨Q2
t b
¯ ds

s

dt

t2

À }a1}α1}a2}α2}b}β

ż 1

0

ż 1

0

ˆ

ut

pt` uq2

˙
r
2
ˆ

ts

ps` tq2

˙
3
2

s
α1`α2

2 t
β
2
ds

s

dt

t2

À }a1}α1}a2}α2}b}β u
α1`α2`β´2

2

using that α1 P p0, 1q. We only consider P2 P StGC0 for the remainder of the proof.
For all e PM, we have

CLpa1, a2, bqpeq “ Π
´

LrPa1a2, b
¯

peq´a1peq¨ΠpLa2, bqpeq “ Π
´

LrPa1a2 ´ a1peq ¨ La2, b
¯

peq,
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since Π is bilinear and a1peq is a scalar. This yields that Cpa1, a2, bqpeq is a linear
combination of terms of the form

ż 1

0

ż 1

0
P1‚
t

ˆ

Q1
t ptLq

rQ3‚
s

´

`

P2
sa1 ´ a1peq

˘

¨ rQ4
sa2

¯

¨Q2
t b

˙

peq
ds

s

dt

t2

using that
ż 1

0
L rQ3‚

s
rQ4
s

ds

s
“ L, up to smooth terms. This gives

`

QuCLpa1, a2, bq
˘

peq

as a linear combination of terms of the form
ż

KQupe, e
1qP1‚

t

ˆ

Q1
t ptLq

rQ3‚
s

´

`

P2
sa1 ´ a1pe

1q
˘

¨ rQ4
sa2

¯

¨Q2
t b

˙

pe1q
ds

s

dt

t2
νpde1q

“

ż

KQupe, e
1qKP1‚

t
pe1, e2q

ˆ

Q1
t ptLq

rQ3‚
s

´

`

P2
sa1 ´ a1pe

2q
˘

¨ rQ4
sa2

¯

¨Q2
t b

˙

pe2q
ds

s

dt

t2
νpde1qνpde2q

`

ż ż u

0

KQupe, e
1qKP1‚

t
pe1, e2q

´

a1pe
2q ´ a1pe

1q

¯

`

Q1
t ptLqa2 ¨Q2

t b
˘

pe2q
dt

t2
νpde1qνpde2q

`

ż ż 1

u

KQupe, e
1qKP1‚

t
pe1, e2q

´

a1pe
2q ´ a1pe

1q

¯

`

Q1
t ptLqa2 ¨Q2

t b
˘

pe2q
dt

t2
νpde1qνpde2q

“: A`B ` C.

The term A is bounded using cancellations properties. We have

|A| “

ż

KQuP1‚
t
pe, e1q

ˆ

Q1
t ptLq

rQ3‚
s

´

`

P2
sa1 ´ a1pe

1q
˘

¨ rQ4
sa2

¯

¨Q2
t b

˙

pe1q
ds

s

dt

t2
νpde1q

À }a1}α1}a2}α2}b}β

˜

ż u

0

ż 1

0

ˆ

st

ps` tq2

˙
3
2

ps` tq
α1
2 s

α2
2 t

β
2
ds

s

dt

t2

`

ż 1

u

ż 1

0

ˆ

tu

pt` uq2

˙
r
2
ˆ

st

ps` tq2

˙
3
2

ps` tq
α1
2 s

α2
2 t

β
2
ds

s

dt

t2

¸

À }a1}α1}a2}α2}b}β u
α1`α2`β´2

2 ,

using that α1 P p0, 1q,P2 P StGC0 and pα1 ` α2 ` β ´ 2q ą 0.
For the term B, we have

|B| À }a1}α1}a2}α2}b}β

ż

e1,e2

ż u

0
KQupe, e

1qKP1‚
t
pe1, e2qdpe1, e2qα1t

α2`β
2

dt

t2
νpde1qνpde2q

À }a1}α1}a2}α2}b}β

ż u

0
t
α1`α2`β´2

2
dt

t

À }a1}α1}a2}α2}b}β u
α1`α2`β´2

2 ,

using again that α1 P p0, 1q and pα1 ` α2 ` β ´ 2q ą 0.
Finally for C, we also use cancellations properties to get

|C| À }a1}α1}a2}α2}b}β

"
ż

e1,e2

ż 1

u
KQupe, e

1qKP1‚
t
pe1, e2q

ˇ

ˇ

ˇ
a1peq ´ a1pe

1q

ˇ

ˇ

ˇ
t
α2`β

2
dt

t2
νpde1qνpde2q

`

ż

e1,e2

ż 1

u
KQupe, e

1qKP1‚
t
pe1, e2q

ˇ

ˇ

ˇ
a1pe

1q ´ a1pe
2q

ˇ

ˇ

ˇ
t
α2`β

2
dt

t2
νpde1qνpde2q

*

À }a1}α1}a2}α2}b}β

"
ż

e1,e2

ż 1

u
KQupe, e

1qKP1‚
t
pe1, e2qdpe, e1qα1t

α2`β
2

dt

t2
νpde1qνpde2q

`

ż

e1,e2

ż 1

u
KQupe, e

1qKP1‚
t
pe1, e2qdpe1, e2qα1t

α2`β
2

dt

t2
νpde1qνpde2q

*



28

À }a1}α1}a2}α2}b}β

"

u
α1
2

ż 1

u
t
α2`β´2

2
dt

t
`

ż 1

u

ˆ

tu

pt` uq2

˙
r
2

t
α1`α2`β´2

2
dt

t

*

À }a1}α1}a2}α2}b}β u
α1`α2`β´2

2 ,

using that α1 P p0, 1q and pα2 ` β ´ 2q ă 0. In the end, we have
›

›

›
QuCpa1, a2, bq

›

›

›

8
À }a1}α1}a2}α2}b}β u

α1`α2`β´2
2

uniformly in u P p0, 1s, so the proof is complete for CL. The proofs for CăL and CąL are
then easy to obtain since PLab has the same form as ΠpLa, bq. Indeed, PLab is a linear
combination of

ż 1

0
Q1‚
t

´

P1
t ptLqa ¨Q2

t b
¯ dt

t2

where Q1,Q2 P StGC
3
2 ,P1 P StGCr0,3s and we have

`

P1
t ptLq

˘

0ătď1
P StGC2.

The proofs for CVi ,C
ă
Vi

and CąVi also follow from the same argument and using the
Leibnitz rule as for the corrector CB use in [4] to solve the generalised (KPZ) equation.
B

Theorem 17. ‚ Let α1 P p1, 2q and α2, β P p´3, 3q such that α1 ` α2 P p´3, 3q. If
α2 ` β ´ 2 ă 0 and α1 ` α2 ` β ´ 2 ą 0

then the operators CăL,p1q and CL,p1q have natural extension as continuous operators
from Cα1 ˆ Cα2 ˆ Cβ to Cα1`α2`β´2.

‚ Let β1 P p1, 2q and α, β2 P p´3, 3q such that β1 ` β2 P p´3, 3q. If
α` β2 ´ 2 ă 0 and α` β1 ` β2 ´ 2 ą 0

then the operator CąL,p1q has a natural extension as a continuous operator from
Cα ˆ Cβ1 ˆ Cβ2 to Cα`β1`β2´2.

Proof – For the continuity estimate of CL,p1q, we also want to compute the regularity
using a family Q of StGCr with r ą |α1 ` α2 ` β ´ 2|. Again a term ΠpLa, bq can be
written as a linear combination of terms of the form

ż 1

0
P1‚
t

`

Q1
t ptLqa ¨Q2

t b
˘dt

t2
,

while rPba is a linear combination of terms of the form
ż 1

0

rQ3‚
t p

rQ4
ta ¨ P2

t bq
dt

t
,

with Q1,Q2, rQ3, rQ4 P StGC
3
2 and P1,P2 P StGCr0,3s. For the terms where P2 P

StGCr2,3s, we already have the correct regularity since
ż 1

0

ż 1

0
QuP1‚

t

´

Q1
t ptLq

rQ3‚
s

´

P2
sa1 ¨ rQ4

sa2

¯

¨Q2
t b
¯ ds

s

dt

t2

À }a1}α1}a2}α2}b}β

ż 1

0

ż 1

0

ˆ

ut

pt` uq2

˙
r
2
ˆ

ts

ps` tq2

˙
3
2

s
α1`α2

2 t
β
2
ds

s

dt

t2

À }a1}α1}a2}α2}b}β u
α1`α2`β´2

2

using that α1 P p1, 2q so we only consider P2 P StGCr0,1s. For P2 P StGC0, we control
it using the term a1ΠpLa2, bq as in the proof of the continuity estimate of C. We are
left with

ż

P1‚
t

˜

Q1
t ptLq

rQ3‚
s

˜˜

P2
s

´

a1 ´ d
`

u0peq
˘´1

ÿ̀

i“1

pVia1qpeqδip¨, eq
¯

¸

¨ rQ4
sa2

¸

¨Q2
t b

¸

peq
ds

s

dt

t2
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with P2 P StGC1. Then the result follows with the same proof using that P2
s 1 “ 0

since it encodes some cancellation and the first order Taylor expansion
ˇ

ˇ

ˇ

ˇ

ˇ

a1pe
1q ´ a1peq ´ dpu0q

´1
ÿ̀

i“1

pVia1qpeqδipe
1, eq

ˇ

ˇ

ˇ

ˇ

ˇ

À dpe, e1qα.

We let the reader prove the continuity resuls for CăL,p1q and CąL,p1q; they can be proved
by the same argument as above. B

Theorem 18. ‚ Let α P p0, 1q and β P p´3, 3q, be such that α`β ă 3, and α`β´2 P
p´3, 3q. Then the operator L has a natural extension as a continuous operator from
Cα ˆ Cβ into Cα`β´2.

‚ Let α1, α2 P p0, 1q and β P p´3, 3q such that α1`β ă 3 and α1`α2`β´2 P p´3, 3q.
Then the iterated operator

L
`

pa1, a2q, b
˘

:“ L
`

Pa1a2, b
˘

´ Pa1Lpa2, bq

has a natural extension as a continuous operator from Cα1ˆCα2ˆCβ into Cα1`α2`β´2.

‚ Let α1, α2, α3 P p0, 1q and β P p´3, 3q such that α1 ` α2 ` β ă 3, α2 ` β ă 3 and
α1 ` α2 ` β ´ 2 P p´3, 3q. Then the iterated operator

L
´

`

pa1, a2q, a3

˘

, b
˘

:“ L
`

pPa1a2, a3q, b
˘

´ Pa1L
`

pa2, a3q, b
˘

has a natural extension as a continuous operator from Cα1 ˆ Cα2 ˆ Cα3 ˆ Cβ into
Cα1`α2`α3`β´2.

‚ Let α P p1, 2q and β P p´3, 3q, be such that α`β ă 3, and α`β´2 P p´3, 3q. Then
the operator Lp1q has a natural extension as a continuous operator from Cα ˆ Cβ

into Cα`β´2.
‚ Let α, β P p´3, 3q such that α`β´1 P p´3, 3q. Then the operator Vi has a natural

extension as a continuous operator from Cα ˆ Cβ to Cα`β´1.
‚ Let α1, α2 P p0, 1q and β P p´3, 3q such that α1`β ă 3 and α1`α2`β´1 P p´3, 3q.

Then the iterated operator
Vippa1, a2q, bq :“ VipPa1a2, bq ´ Pa1Vipa2, bq

has a natural extension as a continuous operator from Cα1ˆCα2ˆCβ to Cα1`α2`β´1.

Proof – We give the proof for the continuity estimate on L and Lp1q. We let the reader
adapt the proof from [4] for the iterated operators of L since it relies on the same
argument. The same holds for Vipa, bq and its first iteration.

We want to compute the regularity of Lpa, bq “ LrPab´PaLb using a family Q P StGCr

with r ą |α` β ´ 2|. We write rPab and Pab respectively as linear combination of
ż 1

0

rQ3‚
s

´

P2
sa ¨

rQ4
sb
¯ ds

s
and

ż 1

0
Q1‚
t

`

P1
t a ¨Q2

t b
˘ dt

t

with Q1,Q2, rQ4 P StGC
3
2 , rQ3 P GC

3
2 and P1,P2 P StGCr0,3s. As done for C, we only

have to consider P1,P2 P StGC0 since the other terms already have the right regularity
using that α P p0, 1q. We consider a term

ż 1

0
L rQ3‚

s

´

P2
sa ¨

rQ4
sb
¯ ds

s
´

ż 1

0
Q1‚
t

`

P1
t a ¨Q2

t ptLqb
˘ dt

t2
.
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We use that
ż 1

0
Q1‚
t Q2

t

dt

t
“

ż 1

0

rQ3‚
s

rQ4
s

ds

s
“ Id up to smooth term to get

ż 1

0

ż 1

0
Q1‚
t

´

Q2
t ptLq

rQ3‚
s

´

P2
sa ¨

rQ4
sb
¯

´ P1
t a ¨Q2

t ptLq
rQ3‚
s

rQ4
sb
¯ dt

t2
ds

s

“

ż 1

0

ż 1

0
Q1‚
t

´

Q2
t ptLq

rQ3‚
s

´

`

P2
sa´ P1

t ap¨q
˘

¨ rQ4
sb
¯¯ dt

t2
ds

s

where the variable of P1
t ap¨q is frozen as before, in the sense that Q2

t ptLq
rQ3‚
s does not

act on it. Since α P p0, 1q, we can use that for any e, e1
ˇ

ˇP2
sape

1q ´ P1
t apeq

ˇ

ˇ ď
ˇ

ˇP2
sape

1q ´ ape1q
ˇ

ˇ` |ape1q ´ apeq| `
ˇ

ˇapeq ´ P1
t apeq

ˇ

ˇ ,

to get
ż 1

0

ż 1

0
QuQ1‚

t

´

Q2
t ptLq

rQ3‚
s

´

`

P2
sa´ P1

t ap¨q
˘

¨ rQ4
sb
¯¯ dt

t2
ds

s

À }a}α}b}β

ż 1

0

ż 1

0

ˆ

tu

pt` uq2

˙
r
2
ˆ

st

ps` tq2

˙
3
2

pt` sqαsβ
dt

t2
ds

s

À }a}α}b}β u
α`β
2

which complete the proof for Lpa, bq.
We finally prove the estimate for the refined commutator Lp1qpa, bq that is given for
any e PM by

Lp1qpa, bqpeq “
`

LrPab
˘

peq ´
`

PaLb
˘

peq ´
ÿ̀

i“1

`

P
piq
dpu0q´1Viaq

b
˘

peq.

where
`

Ppiqa b
˘

peq “

ż

e1,e2
Kpe; e1, e2qape1q

´

rPδip¨,e1qb
¯

pe2qνpde1qνpde2q,

with K the kernel of the bilinear operator pa, bq ÞÑ Pab. As in the proof of CL,p1q, we
are left with

ż

KQ1‚
t
pe, e1q

"

Q2
t ptLq

rQ3‚
s

`

P2
sa ¨

rQ4
sb
˘

´
ÿ̀

i“1

`

P1
t pdpu0q

´1Viaq
˘

pe1q ¨Q2
t ptLq

rQ3‚
s

`

P2
s δip¨, e

1q ¨ rQ4
sb
˘

*

pe1q
dt

t2
ds

s
νpde1q

“

ż

KQ1‚
t
pe, e1q

˜

Q2
t ptLq

rQ3‚
s

˜

P2
s

´

a´
ÿ̀

i“1

P1
t

`

dpu0qa
˘

pe1q
˘

δip¨, e
1q

¯

¨ rQ4
sb

¸¸

pe1q
dt

t2
ds

s
νpde1q

with P1,P2 P StGC1. The result follows with the same proof using that P2
s 1 “ 0 since

it encodes some cancellation and the first order Taylor expansion for a. B
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C – Paracontrolled expansion

Theorem 19. Let f : R Ñ R be a C4 function and let u and v be respectively Cα and C4α

functions on r0, T s ˆ T3 with α P p0, 1q. Then

fpuqv “ Pf 1puqvu`
1

2

!

Pf p2qpuqvu
2 ´ 2Pf p2qpuquvu

)

`
1

3!

!

Pf p3qpuqvu
3 ´ 3Pf p3qpuquvu

2 ` 3Pf p3qpuqu2vu
)

` fvpuq
7

for some remainder fvpuq7 P C4α.

Proof – We have to prove that

R :“ vfpuq ´ Pvf 1puqu´
1

2

!

Pvf p2qpuqu
2 ´ 2Pvf p2qpuquu

)

´
1

3!

!

Pvf p3qpuqu
3 ´ 3Pvf p3qpuquu

2 ` 3Pvf p3qpuqu2u
)

is a 3α-Hölder function. Using that P1vfpuq “ vfpuq up to smooth term and that
Pab is the sum of terms of the form

ż 1

0
Q1‚
t pQ2

ta ¨ P1
t bq

dt

t

with Q1,Q2 P StGC
3
2 and P1 P StGCr0,3s, R is a sum of terms of the form

ş1
0 Q

1‚
t prtq

dt
t

with

rt :“ Q2
t

´

vfpuq
¯

´Q2
t

´

vf 1puq
¯

P1
t puq ´

1

2
Q2
t

´

vf p2qpuq
¯

P1
t pu

2q `Q2
t

´

vf p2qpuqu
¯

P1
t puq

`
1

6
Q2
t

´

vf p3qpuq
¯

P1
t pu

3q `
1

2
Q2
t

´

vf p3qpuqu
¯

P1
t pu

2q ´
1

2
Q2
t

´

vf p3qpuqu2
¯

P1
t puq.

We need to get a bound on rt in L8pMq. We have for e PM

rtpeq “

ż

M2

KQ2
t
pe, e1qKP1

t
pe, e2q

!´

vfpuq
¯

pe1q ´
´

vf 1puq
¯

pe1qupe2q ´
1

2

´

vf p2qpuq
¯

pe1qu2pe2q

`

´

vf p2qpuqu
¯

pe1qupe2q `
1

6

´

vf p3qpuq
¯

pe1qu3pe2q `
1

2

´

vf p3qpuqu
¯

pe1qu2pe2q

´
1

2

´

vf p3qpuqu2
¯

pe1qupe2q
)

νpde1qνpde2q.

Using a Taylor expansion for f , we have

rtpeq “

ż

r0,1s4
f p4q

´

upe2q ` s4s3s2s1

`

upe1q ´ upe2q
˘

¯

s3s2s1

`

upe1q ´ upe2q
˘4
ds4ds3ds2ds1

` vpe1q
´

fpupe2qq ` upe2qf 1pupe2qq `
1

2
u2pe2qf p2qpupe2qq `

1

3!
u3pe2qf p3qpupe2qq

¯

“ p1q ` p2q.

For the first term, we have
p1q ď }u}4α t

4α
2

and for the second term
p2q ď }u}L8}v}4α t

4α
2

which allows us to conclude. B
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