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Regularity structures and paracontrolled calculus

[. BAILLEUL & M. HOSHINO

Abstract. We prove a general equivalence statement between the notions of models and modelled
distribution over a regularity structure, and paracontrolled systems indexed by the regularity
structure. This takes in particular the form of a parametrisation of the set of models over a
regularity structure by the set of reference functions used in the paracontrolled representation
of these objects. The construction of a modelled distribution from a paracontrolled system is
explicit, and takes a particularly simple form in the case of the BHZ regularity structures used
for the study of singular stochastic partial differential equations.

1 — Introduction

Two different sets of tools for the study of singular stochastic partial differential equations
(PDEs) have emerged recently, under the form of Hairer’s theory of regularity structures
[9, 16} [7, 5] and paracontrolled calculus [8, 2], 3], after Gubinelli, Imkeller and Perkowski’ seminal
work. While Hairer’s theory has now reached the state of a ready-to-use black box for the
study of singular stochastic PDEs, like Cauchy-Lipschitz well-posedness theorem for ordinary
differential equations, the task of giving a self-contained treatment of renormalisation matters
within paracontrolled calculus remains to be done. It happens nonetheless to be possible
to compare the two languages, independently of their applications to the study of singular
stochastic PDEs. This task was initiated in our previous work [4], where we proved that
the set of admissible models M = (g, 1) over a concrete regularity structure equipped with
an abstract integration map is parametrised by a paracontrolled representation of 1 on the
set of trees with non-positive homogeneity. Such a statement is concerned with models on
regularity structures associated with singular stochastic PDEs. We step back in the present
work and prove a general result giving a parametrization of any model M = (g, 1) on any
reasonable concrete regularity structure, in terms of representations of the maps g and I by
paracontrolled systems. (All the words will be explained below.) Being reasonable means here
satisfying assumptions (A-C) from Section [3| and Section {4} The result takes the following
form. Given a concrete regularity structure

T = ((T",A%),(T,A)),

denote by #yap(7,R?) the space of models on R? decreasing rapidly at infinity. Given M =
(g,N) € Mrap(T,R?), denote by Diap(T, g) the space of modelled distributions taking values
in the vector space T, with regularity exponent . (All function spaces are defined in Section

2y

Theorem 1. Let T be a concrete reqularity structure satisfying assumptions (A-C). Then
Myap(T ,RY) is homeomorphic to the product space

[T Ca®R) <[] CELRY.

oeGy T€B., |T|<0

The set B, above parametrizes part of a linear basis of the vector space T', while the set
G+ parametrizes part of a linear basis of the vector space T". Assumption (A) is a harmless
requirement on how polynomials sit within 7" and 7. Assumption (B) is a very mild require-
ment on the splitting map A : T — T ® T't, and assumption (C) is a structure requirement
on T and A* that provides a fundamental induction structure. The three assumptions are

met by all concrete regularity structures built for the study of singular stochastic PDEs.
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Given a model M = (g, ) on a concrete regularity structure, natural regularity spaces are
given by the Holder-type spaces D7(T,g). The parametrization of D?(T,g) by data in para-
controlled representations of elements of that space requires in general a structure condition
on these data reminiscent of a similar condition introduced by Martin and Perkowski in [10];
it is stated in Theorem This non-trivial structure condition has a clear meaning in terms
of an extension problem for the map g from the Hopf algebra T to a larger Hopf algebra.
It happens nonetheless to take a very simple form for special concrete regularity structures
satisfying assumption (D).

Theorem 2. Let a concrete reqularity structure 7 satisfy assumptions (A-D). Pick v €
R, and M = (g,N) € Mrap(T,R?). Then Dp(T,g) is homeomorphic to the product space

[Trepn. jriey Clap ™ (RY).

Unlike the other assumptions, assumption (D) is fundamentally a requirement on a linear
basis of T', not on the concrete regularity structure itself. It may then happen that one basis
of T satisfies it whereas another does not. Satisfying assumption (D) thus means the existence
of a linear basis satisfying this assumption. It happens that the class of concrete regularity
structures introduced by Bruned, Hairer and Zambotti in [6] for the study of singular stochastic
PDE:s all satisfy assumption (D), despite the fact that their canonical bases do not satisfy it.

Theorem 3. The BHZ concrete reqularity structures satisfy assumptions (A-D).

Like in our previous work [4], we work here with the usual isotropic Holder space rather than
with anisotropic spaces. All results given here hold true in that more general setting, with
identical proofs. The reader will find relevant technical details in the work [10] of Martin and
Perkowski. The above statements have counterparts with functional spaces with polynomial
growth at infinity, rather than with spaces with fast decrease at infinity; we let the reader
prove these statements on the model of proofs of the present work.

Section [2] is dedicated to describing different functional spaces and operators. Section [3] is
dedicated to giving paracontrolled representations of models and the reconstruction of modelled
distributions in terms of data in paracontrolled systems, proving part of Theorem [I] The later
is proved in Section [d where the main work consists in providing a parametrization of g-maps
by paracontrolled representations, Theorem Theorem [2| and Theorem (3| are proved in
Section [.2] and [£.3] respectively. Appendix [A] gives back the setting of concrete regularity
structures introduced in [4], while Appendix [B| gives a number of technical details that are
variations on corresponding results from [4].

Notations e We use exclusively the letters a, 8, to denote real numbers, and use the letters
o, T, i, v to denote elements of T or T'F.

o We agree to use the shorthand notation st to mean both the statement s and the statement
st

o We use the pairing notation {-,-) for duality between a finite dimensional vector space and
its dual space.

e We adopt the notations and terminology of the work [4], and write in particular N§ and

8yx, for what is denoted by 11, and Ty, in Hairer’s terminology.

2 — Functional setting

We describe in this section different function spaces we shall work with and introduce a
modified paraproduct. For z € R?, set

z|x =1+ |z|, xeR%



The weight function |x|, satisfies the inequalities
|+ yls < |zlalyls, |/ Als < [,
for any A > 1

Let (p;)_1<i<e be a dyadic decomposition of unity on RY, and let A;f := F~1(p; Ff). For

j=—1, set
> AL
i<j—1
Denote by @); and P; the integral kernels associated with A; and S

Aifla)i= [ Qe =iy, Sif@)i= [ P =0y

- For any measurable function f : R* — R, set
Hf||Lgo(Rd) = H| : |(ifHL°C(Rd)’

and define the corresponding space L (R?) of functions with finite | -|| Lo (R4)-nOIM. Set

d d
LE( ﬂ LYRY,  LL,(R? U L*,(R%)
- For any distribution £ € S’(Rd), set

[€llcaray == sup 2% Az€] Lz (re)-
j=—1
and define the corresponding space C<(R%) of functions with finite | - lco (ray-norm. We

have C$(RY) = C%(R?). Set

0

d d d

rap ﬂ Ca (RY) goly(R ) = U C2,(RY)
a=1

- For any two-parameter function F : R? x R — R and a > 0, set
|F(z,y)]
[Ellcg (rixray := sup (lz[5 A [yl5) :
CaRERT) z,yeR? - * |‘T - y|a

and define the corresponding space C¢(R? x R?) of functions with finite | - lca (Re xRy~

norm. Set also
o0

C*(RYx RY) :=CF(RT x RY), o, (RTx RY) = () C2(R x RY).
a=1
- For any R%indexed family of distributions A = (A;),cre = S'(R?) on R, and «a € R,
set
IAllpg == sup sup |2[427%|(Ag, Pz — ).
zeRd j=—1
Set

rap ﬂ Da

(In Hairer’ seminal work [9], models are assumed to satisfy a (A, ¢)-uniform regularity condition

|(ME7) ()] < A,
locally uniformly in z. Requiring (M&7),cga € D! is equivalent to the above uniform estimate
— see Lemma 6.6 of Gubinelli, Imkeller and Perkowski’ seminal work [§] on paracontrolled

distributions.)



For any f,g € S'(R?), we define the paraproduct

0

Prg = Y.(S;1)(49),

J=1
and resonant operator

Nf.9) = >, (Aif)(Ajg).

li—j|<1
For any g € S'(R?), set
Sg:=g—Pig=(A_1 +Ag)ge C*(R?).
The following continuity result is an elementary variation on the classical continuity results
for the paraproduct and resonant operators. We refer the reader to [I] for a reference.
Proposition 4. Let o, € R, a,be Z.
o Ifa # 0, then C¢(R?) x C'bﬁ(Rd) 3(f,g) = Pyge CO‘AMﬁ(Rd), is continuous.

a+b
e Ifa+ B3>0, then C¥(RY) x Cf(Rd) 3 (f,9)—N(f,9) € Cg‘:f(Rd), is continuous.
o Ifa,8 # 0 and o+ f > 0, then CX(RY) x CL(RY) 3 (f.9) — f-g € CLP(RY), is
continuous.

As a consequence of the last item, the product fg, of f € S(R?) and g € C%(R?), belongs to

Crogp(Rd), for any o € R — so the space C’raap(Rd) is in particular not empty.

We use a modified paraproduct in Section 3.1.3. Note that
V" f = FH - MFS),
for m € Z, is well-defined for functions f € & (Rd) whose Fourier transform have support in an

annulus. For m € N and a € R, the map |V|™ sends continuously Cgp(Rd) into Cl?;;m(Rd).
For m € N, we define the modified paraproduct

0
Ta:=IVI"(PIVI"g) = X IVI™(Sif - VI Ag).
j=1
Note that PY = P. The first item of Proposition 4| also holds for the modified paraproduct P™.

— From regularity structures and models to paracontrolled systems

We introduce in this section assumptions (A) and (B), and show that they provide a frame-
work where to represent models and reconstructions of modelled distributions by paracon-
trolled systems. We refer the reader to Appendix |A|land [4] for details on concrete regularity
structures.

3.1 A basic assumption
Let 7 = ((I',A™), (T, A)) be a concrete regularity structure, with 7t = @ 4+ T and
T = @pea Tp. Write 1 for the unit of the algebra T. Set
Bo := min A.

Recall that we agree to use the shorthand notation s(*) to mean both the statement s and the
statement s*.

Assumption (A) — The spaces T and T have linear bases BT and B, respectively, with the
following properties.



(a1) BT is a commutative monoid freely generated by a finite set BY and Taylor monomials
X1,...,X4. Each element T € B has a positive homogeneity. For general elements in
B, homogeneities are defined by | X;| = 1, and multiplicativity
[To| =[] + |o].
(a2) The action of AT on polynomials is characterised by its action on the monomials
ATX; =X, ®1; +1, ® X,
that holds for all 1 < i < d. Denote by B} the submonoid generated by Xy, ..., Xq,
and define
Ty = span(B%).
For any 7 € BY and k € N%, there is no term of the form X* ® X*, with ¢ € N¢, in the
expansion of AT T.
(b1) There exists a subset Bs < B, such that B is in bijection with N% x B,. An element
(k,0) € N® x B,, is denoted by X*o, and assigned a homogeneity
| XFo| = |k| + |o].
(bg) If Be contains an element 1 with homogeneity 0, then it is unique and satisfies the
identity
Al=1®1,.
Write X* for X*1. Set
= {Xk}keNd c B.
The coproduct A on X* is characterised by its action on the monomials
AX; =X, ®1: +1®X;,
that holds for all 1 < @ < d, and by requiring multiplicativity on Bx. For general
elements, one has the multzplzcatwe formula
A(xFo) = (AXH) (Ao).

For any 7 € Bo and k € N%, there is no term of the form X* ® X*, with £ € N¢, in the
expansion of AT.

For later use, denote by {r'},c5 the dual basis of B. Following [4], for o,7 € BM*), write
o <*) 7, if o appears in the left hand side of the tensor products in the expansion of A(H) 7
so we have the unique representation

A = Z c®(r/Mo),
oeB(+)
o<(H)r

where 7/(F)g e T, Write 0 <(*) 7, if 0 <(*) 7 and o # 7. Write in particular, for 7 € B,

Atr = Z o®(1/70) —l—ZXk (/T X*)
oeBH\BY,

=: Z ®(r/To) + Z — ® DFr
oceBH\B%
The notations /o and o <) 7 are only used for 7 and o in B . Be carefull The

notations <, <, etc. are basis-dependent — like the matrix of a linear map. Extend by linearity

the map DF from T to TF k) for all a € A.

Lemma 5. One has, for all k, £ e N?,
(a) D1 =1,
(b) D*D'r = Dkttr,



(C) DFX = (@Ij!k)! Xeik;

(d) D*(ro) =Y, (]f,)Dk,TDk_kla — Leibniz rule.

Proof — Item (b) is a consequence of the coassociativity property
(AT®IAT = (Id AT)AT
of the coproduct A*. It gives indeed the identity

XZ
ATD*r = DFr @1 + Z DFu® (t/7p) + Z o ® DF*er, (3.1)
<t u¢By e
We leave the proof of the other identities to the reader. >

3.2  From models to paracontrolled systems

We recall in this section some of the results proved in [4], stated here in the slightly more
general setting of the present work. The proofs of these extensions are given in Appendix

Given Fréchet spaces E and F', denote by L(FE, F') the space of continuous linear maps from
E into F. Recall G stands for the set of characters of the Hopf algebra T'". Given maps

g:RT—>G*, NeL(T,S'RY),
and z,y € R?, set
gy = (g, ®g, AT e GT,
and
né:= (N®g, YA e L(T,S'(RY).
Recall T = @5eA T3, and By = min A.

Definition 6. Let a concrete regularity structure T satisfying assumption (A) be given. We
denote by

Miap(T ,RY),
the set of pairs of maps
g:R"—> G, NeL(T,S'RY),
such that
(a) one has g, (X*) = 2, for all x € R% k € N%;
(b) for any T € BE, the function x — g, (1) belongs to L% (R?), and the function

rap
(@,y) = gya(7),
belongs to Crﬂ,(Rd x RY);
(c) one has (NX*o)(x) = 2¥(No)(z) and (N1)(z) = 1;
(d) for any T € B,\{1}, one has Nt € Cgfp(Rd), and the R-indexed family of distributions
{N&7},cra belongs to DLZ;L.
The pair (g, M) is called o rapidly decreasing model on the concrete regularity structure 7 .

This definition does not depend on the choice of bases for TT and T. Fix r > |8y A 0|. We
define metrics on the space of rapidly decreasing models on .7 setting

|glla := sup (g-(T)LgO(Rd) + ‘g"(T)HCaT(RdXRd))7

reBy

and

o€Be

g = sup (10l + 150 et ).



With a slight abuse of notations, we write
g2(7) € Ly (RY),  gya(7) € CL(RT x RY).
Condition (b) from Definition |§I does not hold for 7 € BY, instead one has
gz(Xk) € Lpoly(Rd)a gya&(Xk) € C‘k‘(Rd x Rd)'
(RY)- L (RY) « L (RY) and C*(R? x RY)-Cp(R? x RY) < CotP(R? x RY),

0¢]
Since one has L rap rap

poly
for all non-negative «, 3, condition (b) holds for any 7 € BT\B%. The next statement is a
variation on Proposition 12 of [4], where we use now the usual polynomials and polynomial
weights, and the modified paraproducts P™. Its proof is given in Appendix

Theorem 7. Pick m € N. For any model M = (g, 1) € Myap(T,R?), there exists a family

m, T m,M o d
{([[T]] eeClIL(R )>Te6+\5;’ ([[0]] e Cl7l(R ))UeB\BX}
such that one has, for any T € BY\BY and o € B\Bx, the identities

gr)= D Po e, 7S + [, (3:2)

1<tv<tr
+
veBT\By

> Pilop ™™ + [o]™ ™. (3.3)

n<o
neB\Bx

Moreover, the mapping

{1y (o0

s continuous.

We write [7]|¢ and [[o]M instead of [r]™# and [o™M, when m = 0. Given a model
M € Mrap(7,RY) on a regularity structure 7, and v € R, define the space Diap(T,g) of
rapidly decreasing modelled distributions as the set of functions

R~ P Tp,
B<y
such that, for each 7 € B, the function {7/, f(-)) belongs to L,

z,y) = {7, f(y) — & f(2))

belongs to cﬁa;‘T'(Rd x R?). We denote by Rf the reconstruction of a modelled distribution
f € Diap(T, g); if v > 0, it is charcaterized by the condition

(Rf —MEf(@)) D,

The proper setting to get a paracontrolled representation of a modelled distribution is given
by the following

(R%), and the function

Assumption (B) — For each 7, € B with T < p, either p/7 € T, or pu/7 € span(B+\BY%).

The next statement was proved in [4], Theorem 14, in the unweighted setting; its extension
to the present setting is given in Appendix

Theorem 8. Let T be a regularity structure satisfying assumption (A) and assumption (B).
Let a regularity exponent v € R and a model M = (g,N) € Myap(T,RY) on T be given. For
any modelled distribution

f= 3 forcDy(T.0).

lo|<y



each coefficient f, has a paracontrolled representation

fa = Z Pfu [[:U’/U]]g + [[fa]]ga (3'4)

o<p
p/o espan(BT\BY)

where [[f,]|8 € Cga?)lU'(Rd). Moreover, there exists a distribution [f]M € Crap(R?) such that
Rf= >, Prlol™+ LA™ (35)
UEB\BX
The mapping
(fep(7.8) - (([[f]]M, (1515 pess) € Cp(RY) x T Colgl7(RY) )

oeB
15 continuous.

A similar statement with P"" used in place of P holds true. We end this section with three
useful formulas involving g, that will be used in the proof of Theorem The reader can skip
this statement now and come back to it at the moment where it is needed. Recall D¥r = 0,
for |k| > |7]. Let Px : T — Ty, stand for the canonical projection map on 7%, and set

fo(7) i= —(8a ® g, ) (PxATT)

- _Z 17 g_l D'r)
For 7 # 1, we also have
fo(7) = (gz ®@g; 1) ((Id — Px)A™7)
= ) &l0)e'/ o).

o<*t1,0¢Bx

Lemma 9. For any 7€ BT\BY, we have

g(Dfr) = Y glr/To)fu(Dbo). (3.6)

o<t O’¢B;—<

and
ga(DF7) = D> gulr/To)f Z f. (D7), (3.7)
O'§+T,O'$B; 14
and
f(D") = o (g, @ &: ) (14— Px)AT)TY|
-4l Y eosol )

o<, UséB}

Note that one cannot interchange in the derivative operator with the sum, as a given
function g, (o) may not be sufficiently regular to be differentiated k times. Note that formula
does not have the classical feature of a Taylor-type expansion formula, which would
rather involve an z-dependent term in front of g,,(7/*0o), in the first term of the right hand
side.

Proof — e Note first that formula (3.1)) for A+ (DFr) gives
DY) = ) e@v)e (/) (3.9)

v<trvgBx



Formula (3.6) is an inversion formula for the preceding identity. One obtains the former
from the latter by writing

Y, &lr/To)fu(Dro) = > ga(7/*0)g; 0/ v)ga (D)

o<tr,o¢BY v<to<tr, ovgBE

- 2 g:(r/"0)g, (o) v)g (D" V)

v<to<tr, 1/¢B;}

D (g ®ea) 7/ ). (DMY)
v<tr, I/¢B}+(
= gz(DkT).

(In the second equality, we can remove the condition “o ¢ B} ” because v < X% implies
that v € B;’(. In the last equality, we use the property of the antipode.)

e Applying g, ® g; ! to , we have

g(DF7) = Y g, (D) g (r/ ) +2y, g ! (D7)
<t pugBY
e p (3.10)
_ Dk —1 + + o (y_flf) f Dk+€/
= > aD'we v/ W et/ ty) = 3 B (DE),
u<to<tr, ,u¢B;'< 4 ’

where we use the formula

A(r/fm)y = Y w/Twe /)

pu<tv<tr

in the expansion of g;!(7/" ). Identity (3.7) follows from (3.10]) using (3.9). Note that
p <* vand p¢ BY implies that v ¢ BY.

e Formula (3.8)) comes from identity (3.9) by rewriting the terms g, (D*v) in an appropriate
form. As a preliminary remark, notice that applying g,, ® g, to the defining identity

ATy = Z oc® (v/To) —l—Z—@Dk
0<+1/,<7¢B+

for the D*v, we have

_ + k (y—iﬂ)k
B = Y, 8ul(0) g/ o)+ Y ea(Drv) T

o<ty UéB;—( k
Since one has
ﬁggyx(a)fyzx =0,
for any x € R%, whenever |k| < |o|, one then has
0 =ty d{a) - Y se@wt/ ol (3.11)

y=x
o<ty 0%3}
lo|<[k|

At the same time, for v ¢ B}, one has

g(v) = D, (& #e) W/ ) gy() = D) (&' *ga)(v/ ") gy(n)

<ty u<ty
+
ugB%
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= ) e/ o)g o/ wey(w),

p<tosty
+
M70'¢BX

since p <* o and p ¢ BY, implies o ¢ BY. Furthermore, since u <™ o ¢ B} and |o| < |k|
implies p1 ¢ B or p < X*, we have

Z g.(1/ ) g;1(0/+ﬂ)gy(ﬂ) = Z g:(v/70) gya(0) + p<k(y),

pu<togsty o<ty
0B, |o|<|k| o¢BY, |o|<|k|

where p_i is a polynomial of degree less than k, hence 6§p<k = 0. We thus obtain from

formula , that
a0 =af 3w e wenl

p<to<ty
1,0#B%, |o|>|k|

Inserting this expression in formula (3.9)) one gets, with |k| < |7,
L(DFr) = > g7/ w g.(DFp)

p<tr, pgBY

4l Y e meeraet e/ e ]

v<tog<tustr
v,o,u¢BY, o>kl

_55{ 2, (gx*gml)(f/*a)gxl("/”)gy(”)}‘

v<to<tr
v,o¢BY, o>kl

4l N e

v<tr, U¢B};

Yy=x

y=x

4 — From paracontrolled systems to models and modelled distributions

We prove the main results of this work in this section. Theorem [I] gives a parametrization
of the space of models by data in paracontrolled representations. Its proof requires that
we introduce assumption (C), about the structure of the Hopf algebra (T, A*). We prove
Theorem [2]in Section [f.2]as a corollary of Theorem[I2] giving a paracontrolled parametrization
of g-maps. The case of BHZ regularity structures is investigated in Section

4.1 From paracontrolled systems to models

The following claim is the same as Corollary 15 in [4], with the modified paraproduct P
in the role of P. Recall from Proposition the defnition of the reference distributions [o]™M,
in the paracontrolled representation of the [I1 operator of a model M, using the modified
paraproduct P™.

Proposition 10. Pick m € N, and assume we are given a map g : R* — G, such that condi-
tions (a) and (b) in Deﬁm’tion@ are satisfied. Then for any family {[7] € Cl;ll)(Rd)}

T€B,,|T|<0’
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there exists a unique model M = (g, M) € Myap(T,R?) such that
Nr= Y Py o lol™ + 7], V7eB., |r| <0. (4.1)

o<T
oeB

The map

(& {10 e Clb R} ) = Me (T RY

T€B,,|T|<0
18 continuous.

Note that the distribution oM in ([@.1) is a distribution recursively defined by the ap-
plication of Theorem (7| to the subspace @B<IT\ Ts. If 0 € B,, then [o]™M = [[o].

Proof — This is a consequence of Theorem [§] that can be proved as follows. For 7 of negative
homogeneity, we need to prove a uniform bound

{niT}xeRd € D|T|

rap*
This is equivalent to saying that 7 is a reconstruction of the modelled distribution
h-(z) = Y _ g.(1/0)o € DI"(T,g) — as |7| < 0, the reconstruction is not unique.
But Theorem [8] already provides us with a reconstruction of h, of the form

> Pete/o o1 M + [T,

o<T

with [, ]™M e ClZL(RY). Since the latter differs from M7 by ([ — [h.]™M) € Cli,(RY),
we conclude that N7 is indeed another reconstruction of h,. We refer the reader to the
end of the proof of Corollary 15 in [4] for the unique extension of I to the whole of 7.
(There is no other element than 1 of zero homogeneity in the present setting.) >

This proof makes it clear that the above parametrization of the set of Il maps is related to
the non-uniqueness of the reconstruction map on the set of modelled distributions of negative
regularity exponent. This statement leaves us with the task of giving a parametrization of the
set of characters g on T by their paracontrolled representation. We need for that purpose to
make the following assumptions on the Hopf algebra (T, A1) and the basis B of T*. Recall
that D* : T+ — TC:F_| K| is a linear map satisfying the recursive rules from Lemma
Assumption (C)

(1) There exists a finite subset G of B such that BY is of the form

Bf = | | {D’% keN |7 — |k > o}.
reGd
For each a € R, denote by B (a™) the submonoid of Bt generated by
(X1,....Xa}o || {Dka ke N, |o| — |k| >0}.

oeGd, ol<a
(2) For each T € G, the coproduct At 7 is of the form
Xk
Atr=7®1+ Z a®(7’/+a)+2ﬂ®DkT, (4.2)
o<tr, 0'§£B;r( k

with o € BY(|7|7) and 7/* 0 € span(BT(|7|7)), for each o in the above sum.

Note the disjoint union in the description of BXf. Assumption (C-2) provides a useful
induction structure.

Lemma 11. Formula (4.2)), with the constraints on o and 7/o, holds for any T € BY.
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Proof — The proof is done by induction. Pick 7 € G, and assume that identity (4.2]) holds
for all 7/ € BY(|7|7). By the recursive rules in Lemma |5, (4.2)) holds for all the elements
of the form

(D7),
where k € N? and v € B*(|7|7). So (#.2) eventually holds for all 7" € B¥(87), where

8= min{\u\;uegi,\ﬂ\ >a} > o
>

Recall from formula (3.11)) that if we are given characters (g;),cge on T as in Definition
[0, then

£ =Ly d{e - Y aoat/ ol (4.3
o<tT, O’¢B;—( v=r
|o|<[K|

The induction structure from assumption (C-2) restricts the above sum and shows that the
family of all g,(D*7) is uniquely determined by the preceding formula. It follows then from
assumption (C-1) that the character g on T is entirely determined by the datum of the
g(7), for 7 € GF. Order the elements of G in non-decreasing order of homogeneity, so
GF = {m,...,7n}, with |11| < -+ < |7w]. (An arbitrary order is chosen amongst those 7’s
with equal homogeneity.) We have in particular

k
y—x
gy(71) = gya(m1) + 2 (k:,)gx(Dle):
k<71 '
since B (|71|7) = By, so for |k| < |r1|, one has
g.(Dkm1) = g, (n)], .. (4.4
and
fx(Dle) = ga:(-Dle)a
and ,
k_\ _ k (y — ) k+e
gy:c(D ) = gy(D 1) — Z o g:(D"" ). (4.5)

‘
Recall that, given a concrete regularity structure .7,
ng = ((TJra A+)7 (T+7 A+>)
is also a concrete regularity structure.

Theorem 12. Let .7 stand for a concrete regularity structure satisfying assumption (A) and
(B). Assume that T+ satisfies assumption (C). Then, for any family {[[7']] € C’gL(Rd)}

TGQJ’
there exists a unique model M& = (g, g) on I such that
g(r) = ) Pyupollel™ +[7], Vregl. (4.6)
o<*tr
oceBH\BE

The map

rap

(G EYe TGOV SINES UERTMEARLD

1s continuous.

The injectivity of the above map is elementary, so Theorem [12] and Proposition [I0, with
Theorem [7] prove all together Theorem

The remaining of this section is dedicated to proving Theorem The proof is done by
induction on i € {1,..., N}, where G = {m,...,7n}, with |7| < -+ < |7n].
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Initialisation of the induction. Set

1) =[],
and define g(D*7) and gyx(Dle) by (4.4) and (4.5). It is clear on these formulas that they
define elements of the spaces Cl;y—lkl(Rd) < L, (R?) and Cl;;‘"’“'(Rd x R%), respectively.

Induction step. Fix 7 = 7, € G, at the n'" step of the induction, and assume that g has
been constructed on the submonoid BT (|7|7) as a smooth function of the bracket data — so all
the functions [[oJM* and g(7/* o) make sense as elements of their natural spaces. Define g(7)
by identity (4.6), and define g(DF7) by ([@.3), for all k € N? with |k| < |7|. The induction step
consists in proving that g,(D¥7) € L% (R?) and gy, (DFr) € Cllr;L_‘k‘(Rd x R%), as one can use
the inclusions («, 5 non-negative)

Lp01y<Rd) ng,p(Rd) < Llﬁp(Rd)

and
(R x RY) . ¢

2R x RY) < CatFRY x RY),
to get the regularity properties of g, (u D7) and gy, (u D*7), for pe B (|7,]7).
We introduce for that purpose a regularity structure .7 (7) with Hopf algebra
T*(|7]7) = span(B*(|7]7)),
and T-space only made up of elements with negative homogeneity. We build a model (g, A)
on 7™(7), from g : T*(|7|7) — R and [[7], such that formula (3.8) giving f.(D¥o) can be
interpreted in terms of that model, under the form of identities

f(D o) = 35 (A& (o) ) ()
on distributions — the symbols o("™) are introduced below. The identity

N = AEo g

for operators J*¥m

is then used crucially to obtain estlmates on f,(D¥o), that eventually give informations on
g.(D*7) and g, (D*7) via formulas and ( .
Choose m € N, with m > |7|. Con51der the formal symbols

a(m
indexed by o € B\B%, with homogeneity
|O'(m)| = |o| —
Set
(1) = span(a(m) ; o€ BY(]7|7)\BY such that |o| < |7, or o = 7'),
so all elements of 7" (7) have negative homogeneity. We define a coassociative coproduct
§:T™(7) > T™(r) @ T (I7]7)
setting

s@™y:= >y (/).
u<to, ugBY
Assumption (C-2) ensures that
ANTH(|r) e T (7)) @ T (7)),
Tm(r) = ((TH(77), A7), (T7(7),9))

is a concrete regularity structure. For g € G, set

= (Id®g)d
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Let |V|™ be the Fourier multiplier operator
IVI™m¢ = FH( - " FC).
We define an operator
A:T™ (1) — S'(RY)
setting
No'™) = |V["g(0).

Lemma 13. The pair (g,N\) is a rapidly decreasing model on the reqularity structure ™ ().

Proof — Since we have the identity
No™) =|V|"g(o) = > P oo [VI™[ul® + [V [o]E,

p<o, ugBE
for all o € B (|7|7)\B% with |o| < |7|, ot o = 7, from the intertwining relation defining P™
and the induction assumption, the operator A is the unique model on 7™ (7) associated
by Proposition [I0] to the inputs

[ot™] == [V["[0]® € ClZ™ (RY),

rap

since all elements of 7" (7) have negative homogeneity. >

Note that it follows from identity (3.8) in Lemma |§| that the model I and the function
f(D*o) are related by the identity

fz(Dka)za’;{ > g;l(a/W)gy(u)}‘y_w

p<to, pgBy

=0’;{|Vy|‘m > ggl(ff/*u)/\(ﬂ(m))(y)}‘

y=z
pu<to, ugBy

(4.7)

A {Iv e
=: Z J?’m (/\ggﬂ (O'(m))> (x),
J

where the operators J?’m are defined by

I7(C) = MV AL,

y=z

for an appropriate distribution ¢ € S'(R%). If j > 0, since the Fourier transform of A;( is
supported on an annulus, the function J?’m(g ) is always well-defined; this is not the case of
J’j{”(g) However, we only use in this section distributions ¢ of the form ¢ = |V|™¢ (where

such ¢ is unique in the class of rapidly decreasing functions), so J ’i{”({ ) = OFA 1€, in our
setting.

Lemma 14. For any o€ (BT (|7|7) u {r})\B%, ke N, and a € N, we have
‘J?m(/\%(a(m)))(x)‘ < |z);° 2—j(|0|—|k|)’

’J?’m(/\ggg(a(m)))(y)‘ < |ylz® Z |y — |11~ =gkl =1kD)

p<to

Consequently, f,(D*o) e LL

rap*

Proof — For the first estimate, since J* (/\%(U(m)))(m) € L7, by assumption, it is sufficient

to consider the case j > 0. By the property of p;, there exists a function p with Fourier
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transform of p supported on an annulus, and such that setting p;(-) := p(277-), one has
pir; = pj- Set -
Q" = IVITF ),

and note the scaling property

@?vm(.) — 9J(d+lkl=m) Gkm (97

We now use the fact that (g, A) is a model to write
35" (A8 (o f@’”" 2= A (A (0™)) (y)dy
= [ @ = )85 (08 0 85270 )y
~Nk,m m
= ¥ @@ - e/ 0 A () ).
p<to
Recall that |z + y|« < |2|4|yl«, for all z,y € R%. By Lemma for any a € N we have
a|gkm m k:m o|— a m
s (e @) £ 3 [l = w21 = )l — ol s () )
u<+0
< 3 gdlulom J|Z| G ()21
p<to

< E: 9—3(lnl=m)9i(|k|-m Ia%u‘[|z|‘(9k"l Hzﬂ”"“'dz
pu<to
< 9~ d(lol=Ik)

We get the second estimate from the first using once again the fact that (g, A) is a model,
writing

vam(/\g(o—(m)))(y) :vam(/\g(g/y}‘*(wﬂ))))(y): Z gyx(o'/+u)J?’m</\%(u(m))>(y).
p<to
>

We can now prove that g, (D*7) € LL (R?) and g, (D*7) € ClgL_‘k‘(Rd x R%), and close the

rap
induction step. We use the formulas from Lemma [J] for that purpose. First, since

gz(DkT) = 2 g ( T/+ (Dk )

o<, aéB;}
with g, (7/0) € Lgooly(Rd) and f, (Do) € Ls(R 4), from Lemma [14] we have indeed g, (D*7) €

% (R%). Second, one can rewrite the identity

_ ozt
gD = Y, eulr/ o) f,(Dro) - ;(y !

o<t aéB}

from Lemma [0} using identity (4.7) for the f-terms. This gives

rap

—x)¢
8 (057 =3 S ulr/ ) I (o) )~ Y T (g o) )

J o<tr |k+e]<|7]
|k|<|o|
— g, (D).
Given z,y € R?, set jo = —1, if |y —x| > 2, and pick otherwise jo > —1 such that |y — x| ~ 275,

One uses the first estimate from Lemma [I4] to bound above the sum over j > jo
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|2 Z ’gix(DkT)‘ < Z Z ly — x|ITI=lel g=(el=lkD Z Z |y — x|l 2= (rI=IkI=1¢)

J=jo iZjo o<tr 5=Jo |k+e|<]||
[kl<|o|
SO
a J (DF |=lo| 9g—jo(|o]—|k o o—jo(|7|—|k|—€
2|2 D gl (DR < D) Jy —afmTletamdolel=tk) Ny gl a0l IR=AD
=jo o<tr b+ <|7|
[kI<o] (4.8)

< |y — |11k
With no loss of generality, assume now that |y — x| < 2. Then, since (g, ) is a model and

Ne(7M) = A8 (g.°70™) = 3 gualr/To)NE(™),

o<tr

we have for gim(DkT) the formula

IEMNS () () = D) gyelr/T o) I (NE(@™)) ()

o<tr
|k[=o]
(y_l')g fm m
> g (ag () (o)
|k+£]<|T]| ’
(y—a)" * [B] Th+k' ( A8 (. (m)
=[o] > an T} (1= )PLITH (AL (7)) (2 + t(y — ) dt
IK/|=[b]
km m
- Z gyﬂc(T/U)Jj (A%(U( )))(y)7
o<tr
|k[=o]
where b := || — |k|, by the multivariable Taylor remainder formula. Since |y — x| < 2,

|a]co+ t(i — )| ~ [2|+. It follows then from Lemma |14f that >, ‘gix(DkT)’ is bounded
above by

Z Z Z ly — | K HITI=lol| g —a g =i (lol=kI=IFD 4 Z Z ly — |11ty @ 23 ol=1kD

J<jo |k'|=[bl o<t T Jj<jo o<tr
|k|=[o]

< lzf;e Z |y — | ¥ IHII=lol g=dollol=IkI=IK) y || —a 2 |y — x|/TI= 1ol g =dollel=Ik)

o<tr o<*tr
|k|=|o]|

< (lle + [yl )y — =7,
Together with inequality (4.8]), the preceding upper bound tells us that gy, (DFr) e CQ) ‘k|( X
R?). This closes the induction step.

Remark. One can prove that Theorem holds true in a parabolic setting [0,T] x Re, with the
paraproduct

ot = ([ 93 (- 219))0)) @

in place of P.
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4.2 From paracontrolled systems to modelled distributions

We prove Theorem [2]in this section. Let .7 be a regularity structure satisfying assumptions
(A-C). Pick v € R, and M = (g, M) € Myap(7,RY).

The key observation is that proving Theorem [2 is equivalent to an extension problem for
the map g. Consider indeed the commutative algebra Tl",f generated by B™ and new symbols

(FT)TEB,|T|<’Y‘
Define the homogeneity of the symbol F'. by

Frlim v — 7.
The coproduct A}, on T4 extending A and such that
AT(Fr) = (Fr) @1+ Y (1/7) ® (Fp), (4.9)
TS

is coassociative and turns T into a Hopf algebra. It satisfies assumptions (A-B) with
By i=BS v {F.;|r| <]}

in the role of BY. Note that T ; does not satisfy assumption (C) in general, since the D¥F,
have no reason to be independent from the {F,},. The elementary proof of the next statement
is left to the reader.

Lemma 15. Given a family (f;)res of continuous functions on R%, set

gac(FT) = fT(ac)
Then
(T F W) — g f (@) = gya(Fr).

Defining a modelled distribution f € D, (T, g) is thus equivalent to extending the map g
from T to Tj in such a way that the extended map on (T, A}) still satisfies the regularity
constraints from Definition [6l

Recall from assumption (B) that either u/7 € span(BT\B%) or u/7 € Ty, for ,u € B. If
p/T €T, set

Xk
/T =: ch(k) R
- !
and define
DFF, =) di(k)F,. (4.10)
T

Then we have
k

AP =F.@1+ Y (W @F.+ Y 0 @D,
k

I
<, p/TETY

Theorem 16. Let a concrete reqularity structure J satisfying assumptions (A-C) be given,
together with a family {[[ f-] € C?a;h'(Rd)} . Pick a model (g,M) € Mrap(T,R%). Define

TeB, |T|<y

fro= >, Prlw/IE+ 1540,
T, ,LL/T¢T;(—
|l <~y
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and

W= dln - L e @] (@)
<, p/TETY
<y, lp/TI<k|
If the structure conditions
= 3 ) fu (4.12)

T<p, p/TETY,
|l <y

holds for any T € B and k € N, then
f=> freD),(Tg).

TeB

The structure condition is reminiscent of a condition introduced by Martin and Perkowski in
[10] to give a characterisation of modelled distributions in terms of Besov type spaces. Given
that we see f, as g(F';), formula is nothing but a formula for g(D*F,) — the analogue
of formula in the present setting.

Proof — Consider the extended Hopf algebra freeT; freely generated by the symbols
Bty {Dk(FT); TeEB, v> ||+ |k:]}

It satisfies assumptions (A-C). By Theorem [12| giving a paracontrolled parametrization of
the map g by its definition on the g(7), with 7 € G, := G U {F;; |7| < v}, there exists
a unique model g on freeT;E that coincides with g on T'", and such that

g<F7') = Z Pg(FM)[[:U'/T]]g + [[fT]]a

TS

<yl
for all 7 € B with |7| < 7. Since T is the quotient space of T¢T% by the relations (£.10),
and

g(D*F.) = > (k) g(Fy),
T<p, /7T
<y

from the structure condition (4.12)), the map g is consistently defined on the quotient
space, where it satisfies the estimates from Definition [6] >

One can get rid of the structure condition in some cases.

Assumption (D) — For any 7 € B, there is no term of the form o @ X* with k # 0, in the
formula for AT.

Under assumption (D), given 7 € B, the only 1 > 7 such that p/7 has a non-null component
on X*is = X*7, so one has
DFF. = K\ Fyr,,
and the structure condition takes the simple form below. Note that the data
in the next statement is indexed by B,, unlike in the general case of Theorem [16] where it is
indexed by B.

Corollary 17. Let T be a regularity structure satisfying assumptions (A-D), and a family
([f-1 € C?a;‘T‘(Rd))TeB |y be given. Pick a model (g,1N) € Myap(T,RY). Set, for 7 € B,
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with |T] <7,

fri= >0 Prllw/IE+ 14D,
T<p, p/T¢TY
[l <y

and, for T € Ba, k€ NO\{0} with |k| + |7| <,

P =800 = X wan S| (4.13)
T<p, 1/ TETY .
l/TI< |kl |l <y

Then
f= Z foo = Z kaTXkTED;’ap(T,g).
oeB,|o|<y T€B., keNT
7| +1k[<vy

Note that assumption (D) is an assumption about the basis B of T" we choose to work
with, not about the regularity structure itself. It is thus possible that a given basis satisfies
assumption (D) whereas another does not. This flexibility is at the heart of the proof of
Theorem [3] in the next section.

4.3 Modelled distributions over BHZ regularity structures

Bruned, Hairer and Zambotti introduced in [6] class of regularity structures convenient for
the study of singular stochastic PDEs. We call these structures BHZ regularity structures

Tonz = (Tuz Apiz): (Teuz, Apnz))-

Although the canonical basis of these concrete regularity structures do not satisfy assumption
(D) the following result holds true.

Theorem 18. One can construct a basis of Tpuyz that satisfies assumption (D).

The remaining of this section is dedicated to proving this statement. We recall first the
elements of the construction of BHZ regularity structures that we need here. These concrete
regularity structures are indexed by decorated rooted trees.

Any finite connected graph without loops and with a distinguished vertex is called a rooted
tree. For any rooted tree 7, denote by N, the node set, by E, the edge set, by o, € N;
the distinguished vertex, called root of 7. Let also £ be a finite set of types. (Edges will be
interpreted differently depending on their type, when given any model on Zgpz. Different
types may for instance correspond to different convolution operators.) Let B be the set of
rooted decorated trees. Each 7 € B is a rooted tree equipped with the type map t: £, — £
and with the decorations

e n: N, — N
e0:N, -Z'®Z(2).
e ¢: B —> N

Equivalently, the set B is generated recursively by the application of the following operations
— see [6, Section 4.3].

e One has X* € B for any k € N¢, where X* is a tree with only one node e, with n(e) = k,
and o(e) =0®0.

e If 7,0 € B then 70 € B, where 70 is called a tree product; 7o is a graph 7 U ¢ divided
by the equivalence relation ~ on N; L N, where  ~ y means = = y or z,y € {0r, 0}
On the root o,r, the decorations n(g-,) = n(o;) + n(os) and 0(g-») = 0(o:) + 0(0s)
are given.
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e For any te £ and k e N¢,
reB = Ii(r)eB,

where the tree I}C (7) is obtained by adding on 7 one distinguished node ¢’ and one edge
e = (o0r,0') of type t, with decorations ¢(e) = k and o(¢') =0 0.

e For any o€ Z¢@® Z(£), denote by R, the operator on decorated rooted trees adding a
value o on the decoration o on o,. Assume

TeB = R.(r)eB.

By applying the operator R, with various « on each step as above, one can see that,
if 7 € B then the same decorated tree with any other o-decorartion is also an element
of B.

Each type t is assigned a nonzero real number |t|. One assigns a homogeneity |n|, |o], |e|, ||
to the decorations and edge types of any decorated tree 7, and set

7] := [n| + lo] — |e[ + [t].
A noise-type object © is represented by I{(7), with t of negative homogeneity.

With each subcritical singular stochastic PDE is associated a notion of conforming and
strongly conforming decorated tree. The basis of Bpyyz is made up of the set of elements of
B that strongly conforms with non-positive o-decorations, and one can identify T];HZ with a
quotient of the algebra generated by the set of conforming trees with non-positive o-decorations
by an equivalence relation. We do not need more details here and refer the interested reader
to Section 5 of [6]. We do not describe in particular the details of the definition of the splitting
maps Agyyz and AEHZ; we only record the following fact, where we write 1 for X°, and X; for
Xei,

Proposition 19. [6, Proposition 4.17] The coproduct A = Apnz : Tz — Tsuz ® Tayy.
satisfies the following identities
Al=1®1, AX;=X;®1+1®X;, A(ro)=(A1)(A0o),
XE
o
e+ Ik <|T|+1E

AIL(T) = (I} ® Id)AT + ®I;, (7)), ARL(T) = (Ry ® Id)AT.

The canonical bases Bpryz of BHZ concrete regularity structures do not satisfy assumption
(D) since one has

Xk
AL(X:0) = [(X®) @1+ [i(©)®X; + Y. ——®I(X;0),
|k|<|O+1+]t]
for any edge type t with positive homogeneity, but the second term in the right hand side

contradicts to assumption (D). Set
T := span(B).

The tree product (7,0) — 70 and the operators I;; and R, are linearly extended to T'. For
any te £ and k, £ € N¢, we define the new operator oI} T — T, by

PHGEEY (i) Xm0 (X mr).

meNd

(An operator (I} represents the convolution with a kernel z¢(0*K)(x).) If 7 is homogeneous,
then (I} (7) is also homogeneous and

eI (7)] = [t — K[ + €] + |7].

Lemma 20. Consider the subset B, = T generated by the following rules.
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leé.. N
T€Be = (I}(7) € B..
7€ By = Ro(1) € B..

7,0 € By = 70 € B,.

Set

B:= {XkT;k‘ eN re B.}

Then B is a linear basis of T, and there exists a basis B= gBHZ of Teuyz such that Bc B.

Proof — Assume that 7 € B is expanded by the basis l~3’, that is, 7 is of the form
T = Z aiXk" ag;
i

with a; € R, k; € N?, and o; € B,. Since the commutative property Rq(X*.) = X¥R,(-)
holds by the definition, R,(7) is also expanded by B. By the inversion formula

I(X%) = ) (Ti)Xm(—l)ﬁ‘me_mLi(a),

meNd

I} (7) is also expanded by B. Certainly, if 7,0 € span(f%’), then 7o € span(l%). We can
conclude that T' = span(B) by the induction on the number of edges on 7.
As in the definition of Bppyz from B, one obtains B by keeping only those elements from

B that strongly conform with non-positive o-decorations. >

The set B can be encoded as a set of rooted decorated trees using different decorations
from the preceding decorations. Each 7 € B, is represented by a rooted tree with o and e
decorations, together with a new decoration

f: B — N
The map (1} : B. — B., is defined as follows. For any 7 € B. with root o, the tree (I} (1) is
obtained by adding to 7 one node ¢’ and one edge e := (p, ¢’), with decorations ¢(e) = k and

f(e) = £. BEach 7 = X¥o € B is represented by a rooted tree with decorations n, 0, ¢, f, where n
vanishes at any node except the root, where it is equal to k. We call this tree representation
of elements of B the non-canonical representation.

Theorem 21. The basis B of Tguy satisfies assumption (D), where B. = B, N B.

Proof — The proof is done by the induction on the number of edges on 7 in its non-canonical
representation. In fact, one can conclude a stronger claim; for any 7 € B,, one has

Ar= > 0@ (4.14)
o€Be g Xk

It is sufficient to show that, if the coproduct of 7 € B. has such a form, then (I} (7) also
satisfies the same condition. To complete the proof, we compute explicitly the coproduct
A(eI}(7)). Since

XZ
AL(X7) = (L@ T)A(XT) + ) T ® Tye (X“7)
—~ !

a 0
_— <b>z,g(xba) ® X (r/o) + ) %@IM(X“T%

o<T,beNd LeNd
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we have

Atk = 3 (5) (A0 an e t)

beNd

= Y (- <‘b‘>< )( )Xclk (X90) @ XX 7/0)

o<T,b,c,deNd

ST olols S

£,b,ceNd
= (i) + (ii).

The term (ii) does not contain any terms of the form o ® X* with k& # 0. The sum (i) is

equal to
d+d’ a! c d d vd
C;T (1) C'C"d'd”X Ik(X )®X X%(r/o)
a=c+c +d+d
— a! XCI Xd 1 6 Xc Xd’
- Z alBl Z (_ ) ldl k( ) ® Z (_ ) /'d/' (7-/0-)
o<T a=c+d B=c'+d’
a=a+f
a
= % (8)elto) 0 (X - X (r/o)
O<T o
a=a+p
= Z di(0)® (1/0) = (oI} @ Id)AT.
O<T
Since 7 is assumed in the induction step to have a coproduct (4.14]), hence A([IIE(T)),
enjoys the same property. >

A — Concrete regularity structures

We recall in this appendix the setting of concrete regularity structures introduced in [4], and
refer the reader to Section 2 of that work for motivations for the introduction of that setting.

Definition — A concrete regularity structure 7 = (T'",T) is the pair of graded vector spaces

tf= P T, T=@1;
aeAt BeA
such that the following holds.

o The index set AT < Ry contains the point 0, and AT + AT < A*; the index set A< R
is bounded below, and both At and A have no accumulation points in R. Set

Bo := min A.
o The vector spaces T} and Ty are finite dimensional.
o The set T is an algebra with unit 1, with a Hopf structure with coproduct
AT TT S TTRTT,
such that AtT1 =1®1, and, for T € T,f,

Atredr@1l+1@7+ Y, Ti T , ¢, (A1)

0<fB<a
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e One has Ty = span(1), and for any o, B € A*, one has TjTgr c TC;:-,B'

e One has a splitting map
A:T->TQRTT,

of the form

ATedT®1+ Y ThRT) 4 (A.2)
B<a

for each T € Ty, with the right comodule property
(A®IDA = (Id® AT)A. (A.3)
Let B} and Bg be bases of T;" and Tg, respectively. We assume Bar = {1}. Set

B = ) Bi, B:=|]Bs

acAt BeA
An element T of T(g” is said to be homogeneous and is assigned homogeneity || := «. The
homogeneity of a generic element T € T™) is defined as |7| := max{a}, such that T has a

non-null component in To(f). We denote by
7 = ((T*,A%), (T, 1)
a concrete regqularity structure.
One of the elementary and important examples is the Taylor polynomial ring. Consider
symbols X71,..., Xy and set
TX = R[Xl, cee ,Xd].
For a multi index k = (k;)%_; € N, we use the notation
xk.=xkr. xhe
We define the homogeneity | X*| = |k| := Y, k;, and the coproduct
Then ((Tx,A), (Tx,A)) is a concrete regularity structure.
The set G of nonzero characters g : T +— R, forms a group with the convolution product

g1 % g2 := (91 @ g2) A™.

B — Technical estimates

We provide in this appendix a number of technical estimates that are variations on the
corresponding results from [4]. Proofs are given for completeness.

Lemma 22. [fa>0 andac€Z, then

f!Pm )l — ey < 27l
j Qule — )l — yl°lylzody < 27 el

Proof — If a > 0,

|z[% J |Pi(z —y)|lz —y|*|yl; “dy < JIPZ-(HJ —yllz —y|*|lz — yledy
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a

2i

_ f Byl |2y = j Po(w)l| 2

<o f Po(y)ly|° |2y < 275

*

If a <0,

f P — )l — yl®lyls%dy < |2l3® j P — )l — yl®le — ylz*dy

>
Recall the two-parameter extension of the paraproduct, used in [4]. For any distribution A
on R? x R%, we define

(QA)(x) = f f Py — )@Q3(x — 2)A(y, 2)dydz,

R4 xRd

(PA)(z) := ) (QA)().

j=1
If A(y, z) is of the form f(y)g(z), then PA = Pyg.

Proposition 23. [4, Proposition 8 (a)] Let a € N.

(a) For any A € S'(R? x RY) such that 1QjAll Lo rey < 27 i« for all j = 1 and some a € R,
one has PA e C2(RY) and

IPA|corey < sup QNHQJA”LOO Rd)-
j=1

(b) For any o > 0 and F € C(R? x R?), one has PF € C*(R?) and
IPFlcaray < [1Fllcorixre-

Proof — For (2), it is sufficient to show that |Q;F| 1z re) < 2772, By Lemma.
Q; F(x)| = J 1Pj(z = y)Qj(x = 2)[(lyli* + |2y — 2["dyd=

< [[1Pste = @it = 2wl + 1) = ol + 1o

z|*)dydz
< 2779

Recall from [3] the definition of the operator

Ro(f7ga h) = Pngh - Pfgh'

This operator is continuous from C%(R%) x C%(R?) x C7(R?) into C**+#*+7(R?), for any «, 5 €
[0,1] and v € R — see Proposition 14 therein.

Proposition 24. [4, Proposition 10] Consider a function f € Lpoly( ) and a finite family
(ak, br)1<k<n i L

poly(Rd) X Lgool RY ) such that

N
fly) = f(x) = Y an(@) (brly) = be(x)) + f

d
Yy T,y € R ’
k=1

/—\

with a remainder fgx Let o > 0, B € R, and a € N. Assume that either of the following
assumptions hold.

(a) f € Lrap( ); akbk €L

2.(RY), ff e, (RYx RY), and g e O (RY).
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(b) ffeC¥R? xR and g e Cgp(Rd).
Then one has the estimate

N
Z aka bkv € CI“O;;B(Rd)

Proof — As in the proof of Proposition 10 in [4], recall that
DR (abis) = = (Prg) + Py(9) = Y P (79) = P.y((Ps ) ).
k

The first three terms belong to Cpp, (R
term. Note that

QG(Pro®)@) = % [Pz =0 - (S w)(Bi) ey,

li—jl<4

For the case (a), there exists b € N such that |A;g(y)| < 27%|y[%. Since fie Co (RTxRY),
for any a € N one has

f\R(y—U)Ilfﬂxlduﬁ j Py — w)lu— 2| (Jul3" + J2]5%") du

< [1Pty = w)l(ju = ol + by = 1) (g™~ + Jol™ ) d

< (™ +1yle) (27 + [y — 2l7)
by Lemma [22] Hence we have

|Qj (P2 9)(1))(2)]
< 3 1P - 10 - IS W) ) idrdy

|Z Jjl<4

< D) J 1Pi(z — 2)[|Q;(z — ) (Iz1,* " + [yl )yla (27 + |y — z|*) 27 dady
li—jl<4

), assuming either (a) or (b). Consider the last

< 2 | 1B =Nz = w)l (el lylh + lyle®) (27 + |2 — 2| + [z —y|*) 27 dady
li—jl<4

< Z |Z’;a(27io¢ + ija) inﬂ < |Z’;a27j(a+ﬁ).
li—jl<4

For the case (b), since |A;g(y)| < 27%|y|;® for any a € N and

jmy W)\ fhaldu < f Py — w)lju — ofdu £ 27 + |y — 2],
we have

‘Qj an 9)(y ))(2)’
S J|P (z = 2)[Qj(z = »II(SifE) W)[[(Aig) ()| dady

li—jl<4

< 2 | IPGE=2)Q¢z — )l (27 + |y — 2[*) 27 dudy
li—jl<4
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< 3 [IPG - 0l = gl = al* 4 - o) 27 dady
li—jl<4
< D a7+ 279) 27 g faf a2 0,
li—j|<4
By Proposition [23] we are done. >

Proposition 25. [4, Proposition 9] Let v € R and By € R be given together with a family A,
of distributions on R, indexed by x € RY. Assume one has

sup [2[2]As g < 0
zeR

for any a > 0 and one can decompose (Ay — Ay) under the form

L
¢ Al
:chre

for L finite, R%-indexed distributions ©F,, and real-valued coefficients cy depending measurably
on x and y. Assume that for each ¢ there exists By < =y such that either of the following
conditions holds.

(a) ol e Dﬁfp and ¢t € CV*ﬂé(Rd x R%).
(b) ©f € DPr and ¢ € Clp (R? x RY).

Moreover, assume that one can decompose (@e — @E) again under the form
2 démgﬂm

for M* finite, R%-indexed distributions Q™, and a real-valued coefficients d“7 depending mea-
surably on x and z. Assume that for each { there exists Bpy < Be such that any one of the
following conditions holds.

(¢c) Under (a), one has Q™ e Dfa‘ff)" and d™ e CPt=Pim (R1 x RY),
(d) Under (a), one has Q™ e DPtm and d™ e CF;;%(Rd x R%).
(e) Under (b), one has Q™ € DPtm and d'™ e CPt=Pem (R4 x RY),

Write P(A) for Py . (Ay(2)) below.

e If v >0, then there exists a unique function A € Cq(R?) such that
P(A)+ )~ A, f _ €D}
[P +x-A}  eDy,
e I[fy <0, then
{P(A) — A}, i € Dl

Consequently, P(A) € CH%(RY). If furthermore A € Di,p, then P(A) € Clhp(RY).

Proof — In view of |4, Proposition 9], it is sufficient to show that
sup |z]¢|A; (P(A) — A) (z)] <277 (B.1)
zeR4

We write for that purpose

P(A)(y) Yy ﬂ Y — u)Q;(y — v)cl, O (v)dudv — S(A,).

j=—14=1

For the second term,
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supla[2] A, (Ar) (@)] < 27 sup af3 | S(A,)

C'r
< 277 sup [z Asfl o < 27
x
for any r > 0. Note that
Wi

\ [ @i vetw - p

gim j Qi(y — )L (v)dv

W
(2l + yl3) Y. Ja — y|Pe=Pemg=ibm

m=1

A

for (¢) and (d), or

Wi

[aitw-vetwal s ¥ 1o yprsmyie

m=1

for (e). Hence we can conclude (B.1)) by using Lemma >

Corollary 26. Given a concrete reqularity structure 7 satisfying assumptions (A) and (B)
and given a rapidly decreasing model M = (g, ), we define the map R : Dy (T, g) — C’rﬁa{)p by
Rf =Py ((MEf(2))(y)).

Then one has
(Rf - ngggf(x))xeRd € D;"Yap'
Proof — Let A, = MN&f(x). Since

Ay = Ae = Y 8oy Fy) — f(2)NET
TeB
and

NEr —Nér = > g.a(7/0)NEo,

o<T
we can check (a)-(e) by definitions on the regularity structure .7.

>
Proof of Theorem [7l— Consider the first formula (3.2). First we show that, for each 7 € B*
we have
g(T) = Z Pg('r/*u) [V]g + [T]ga (B'2)
1<tv<tr,veBt
where

o [V]E e CIEL(RY), if v e BH\BYE,
o [V]E € ;%Iy(Rd), ifve B}.
If 7 = X%, then since ATX* =3, (’;)X£®Xk*£ we have

k _
o) = 3 () PaxalX* e+ LY
0<t<k
Since g, (X*) = 2% is a function belonging to C’g%ly(Rd), by an induction we have [X*]e e
C’g%ly(Rd). Now let 7 € BY\B¥. Recall the formula obtained in [4]
[7]8 = S&(T) + Puy(gya(7))

£ 3 (-1t > R (8(7/*01) -+ 8(0n-1/0n), 80w/ " 7us1), [ons1 %),

n=1 I<toppi<t<tor<tr
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Since 7 € B*\BY, we have .g(7) € C’fgp(Rd) and P (gy.(7)) € Cgl‘;,(Rd). For the R°
terms, we apply Proposition Recall the expansion formula obtained in [4];

gy(7/70) —gu(7/70)

= Y (= > 8(7/*01) - 8a(0n-1/*00) (8(0n/*0) — 8u(0w/*0))

o<to,<t o <tor<tr
+ gya(T/T0).

If o € B, since 7/ o € span(BT\B%), we have gy,(7/70) € CQ{M(RCI x R?). For the sum
over o <t g, <7 ... <t g1 < 7, we can see that at least one element among

g(T/+01), ) g(0n71/+0n)7 (Un/+0)
belongs to L, (RY). Indeed, if o, ¢ By then g(on/"0) € LG (R?). Otherwise, if oy,—1 ¢

By then g(oyn—1/T0n) € L, (R d). Since 7 ¢ BY, for at least one i we have g(o;/T0i11) €
L, (R 4). Since Ly (RY) . L‘rgp(Rd) c L;’gp(Rd), we can apply Proposition [24+(1) to get

S0t R(g/ ) o/ o). glon/ o) 1) € CELRY

n= o<top,<t<tor<tr

If o ¢ BY, since [o]8 € Cllgr‘,(Rd) we can apply Proposition [24+(2) to get the same estimate.
Hence we obtain the required estimates in the formula (B.2))

To get (3.2]) from (B.2)), it is sufficient to show

[718 — [7]8 € C2,(RY) (B.3)
or any 7 € . ssume that all v € with |v| < |7| satis 9. en we
for any 7 € BY\Bf. A hat all v € B\BY, with |v| < || satisfy (B3). Th

have
[FIE—[rE = >, PyunlvlE- > Per/+n VI8

1<tu<tr 1<+z/<+7—,1/9_56+
- Z Pe(r/+u) ([VIE = [V]#) + Z Pe(r/+ x|l X"
1<tv<tr,v¢B} k#0

The first term belongs to ngp(Rd) by assumption. For the second term, since [X*]& e
Cg%ly(Rd) and g(7/*X%) e Lﬁgp(Rd), we can complete the proof.

One can obtain formula in the similar way. The only difference is that we use
Proposition [25[ to get vay((Hxa)(y)) € ClZL(Rd), for any o € B\Bx. >

We define here the two-parameter extension P™ of the modified paraproduct P". Note
that, there is an annulus A < R? such that the Fourier transform of the function

z = Pi(z —y)Qj(z — 2)

is contained in 2/ A (independently to y, z). Let x be a smooth function on R¢ supported in a
larger annulus A’ and such that y =1 on A. Letting Rj = F 1 (X(Q*]-)), we have

@ ”f Pj(w —y)Qj(w — 2)Aly, z)dydzdw.

RdxRdxRd
For m € Z, set

Q"= F (117" a)
R = F (|- "x(27);
then they are smooth functions such that Q;™ = [V|[7™Q; and R]" = [V|"R;.
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Definition 27. For any m € N and any two-variable distribution A on R* x R?, define

@@= [|[ RpE-wp - 0@ w - 9. Hdydzdv,

Rdx R xRd ’
(P™A)(w) := ) (QF'A) ().
j=1

If necessary, we emphasize the integrated variables by writing
P"A =P}, (Aly, 2)).
For the special case A(y, z) = f(y)g(z), we have the consistency relation
P™A =PYg.
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