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Regularity structures and paracontrolled calculus

We prove a general equivalence statement between the notions of models and modelled distribution over a regularity structure, and paracontrolled systems indexed by the regularity structure. This takes in particular the form of a parametrisation of the set of models over a regularity structure by the set of reference functions used in the paracontrolled representation of these objects. The construction of a modelled distribution from a paracontrolled system is explicit, and takes a particularly simple form in the case of the BHZ regularity structures used for the study of singular stochastic partial differential equations.

-Introduction

Two different sets of tools for the study of singular stochastic partial differential equations (PDEs) have emerged recently, under the form of Hairer's theory of regularity structures [START_REF] Hairer | A theory of regularity structures[END_REF][START_REF] Bruned | Algebraic renormalization of regularity structures[END_REF][START_REF] Chandra | An analytic BPHZ theorem for regularity structures[END_REF][START_REF] Bruned | Renormalising SPDEs in regularity structures[END_REF] and paracontrolled calculus [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF][START_REF] Bailleul | Space-time paraproducts for paracontrolled calculus, 3d-PAM and multiplicative Burgers equations[END_REF][START_REF] Bailleul | High order paracontrolled calculus[END_REF], after Gubinelli, Imkeller and Perkowski' seminal work. While Hairer's theory has now reached the state of a ready-to-use black box for the study of singular stochastic PDEs, like Cauchy-Lipschitz well-posedness theorem for ordinary differential equations, the task of giving a self-contained treatment of renormalisation matters within paracontrolled calculus remains to be done. It happens nonetheless to be possible to compare the two languages, independently of their applications to the study of singular stochastic PDEs. This task was initiated in our previous work [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF], where we proved that the set of admissible models M " pg, Πq over a concrete regularity structure equipped with an abstract integration map is parametrised by a paracontrolled representation of Π on the set of trees with non-positive homogeneity. Such a statement is concerned with models on regularity structures associated with singular stochastic PDEs. We step back in the present work and prove a general result giving a parametrization of any model M " pg, Πq on any reasonable concrete regularity structure, in terms of representations of the maps g and Π by paracontrolled systems. (All the words will be explained below.) Being reasonable means here satisfying assumptions (A-C) from Section 3 and Section 4. The result takes the following form. Given a concrete regularity structure T " `pT `, ∆ `q, pT, ∆q ˘, denote by M rap pT , R d q the space of models on R d decreasing rapidly at infinity. Given M " pg, Πq P M rap pT , R d q, denote by D γ rap pT, gq the space of modelled distributions taking values in the vector space T , with regularity exponent γ. (All function spaces are defined in Section 2.) Theorem 1. Let T be a concrete regularity structure satisfying assumptions (A-C). Then M rap pT , R d q is homeomorphic to the product space

ź σPG `C |σ| rap pR d q ˆź τ PB', |τ |ă0 C |τ | rap pR d q.
The set B ' above parametrizes part of a linear basis of the vector space T , while the set G `parametrizes part of a linear basis of the vector space T `. Assumption (A) is a harmless requirement on how polynomials sit within T and T `. Assumption (B) is a very mild requirement on the splitting map ∆ : T Ñ T b T `, and assumption (C) is a structure requirement on T `and ∆ `that provides a fundamental induction structure. The three assumptions are met by all concrete regularity structures built for the study of singular stochastic PDEs.

Given a model M " pg, Πq on a concrete regularity structure, natural regularity spaces are given by the Hölder-type spaces D γ pT, gq. The parametrization of D γ pT, gq by data in paracontrolled representations of elements of that space requires in general a structure condition on these data reminiscent of a similar condition introduced by Martin and Perkowski in [START_REF] Martin | A Littlewood-Paley description of modelled distributions[END_REF]; it is stated in Theorem 16. This non-trivial structure condition has a clear meaning in terms of an extension problem for the map g from the Hopf algebra T `to a larger Hopf algebra. It happens nonetheless to take a very simple form for special concrete regularity structures satisfying assumption (D).

Theorem 2. Let a concrete regularity structure T satisfy assumptions (A-D). Pick γ P R, and M " pg, Πq P M rap pT , R d q. Then D γ rap pT, gq is homeomorphic to the product space

ś τ PB', |τ |ăγ C γ´|τ | rap pR d q.
Unlike the other assumptions, assumption (D) is fundamentally a requirement on a linear basis of T , not on the concrete regularity structure itself. It may then happen that one basis of T satisfies it whereas another does not. Satisfying assumption (D) thus means the existence of a linear basis satisfying this assumption. It happens that the class of concrete regularity structures introduced by Bruned, Hairer and Zambotti in [START_REF] Bruned | Algebraic renormalization of regularity structures[END_REF] for the study of singular stochastic PDEs all satisfy assumption (D), despite the fact that their canonical bases do not satisfy it.

Theorem 3. The BHZ concrete regularity structures satisfy assumptions (A-D).

Like in our previous work [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF], we work here with the usual isotropic Hölder space rather than with anisotropic spaces. All results given here hold true in that more general setting, with identical proofs. The reader will find relevant technical details in the work [START_REF] Martin | A Littlewood-Paley description of modelled distributions[END_REF] of Martin and Perkowski. The above statements have counterparts with functional spaces with polynomial growth at infinity, rather than with spaces with fast decrease at infinity; we let the reader prove these statements on the model of proofs of the present work.

Section 2 is dedicated to describing different functional spaces and operators. Section 3 is dedicated to giving paracontrolled representations of models and the reconstruction of modelled distributions in terms of data in paracontrolled systems, proving part of Theorem 1. The later is proved in Section 4, where the main work consists in providing a parametrization of g-maps by paracontrolled representations, Theorem 12. Theorem 2 and Theorem 3 are proved in Section 4.2 and 4.3, respectively. Appendix A gives back the setting of concrete regularity structures introduced in [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF], while Appendix B gives a number of technical details that are variations on corresponding results from [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF].

Notations ' We use exclusively the letters α, β, γ to denote real numbers, and use the letters σ, τ, µ, ν to denote elements of T or T `.

' We agree to use the shorthand notation s p`q to mean both the statement s and the statement s `. ' We use the pairing notation x¨, ¨y for duality between a finite dimensional vector space and its dual space.

' We adopt the notations and terminology of the work [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF], and write in particular Π g x and

x g yx , for what is denoted by Π x and Γ xy in Hairer's terminology.

-Functional setting

We describe in this section different function spaces we shall work with and introduce a modified paraproduct. For x P R d , set

|x| ˚:" 1 `|x|, x P R d .
The weight function |x| ˚satisfies the inequalities |x `y| ˚ď |x| ˚|y| ˚, |x{λ| ˚ď |x| ˚, for any λ ě 1.

Let pρ i q ´1ďiă8 be a dyadic decomposition of unity on R d , and let ∆ i f :" F ´1pρ i Ff q. For j ě ´1, set S j :"

ÿ iăj´1 ∆ i .
Denote by Q i and P j the integral kernels associated with ∆ i and S j

∆ i f pxq :" ż R d Q i px ´yqf pyqdy, S j f pxq :" ż R d P j px ´yqf pyqdy.
-For any measurable function f :

R d Ñ R, set }f } L 8 a pR d q :" › › | ¨|a ˚f › › L 8 pR d q
, and define the corresponding space L 8 a pR d q of functions with finite } ¨}L 8 a pR d q -norm. Set

L 8 rap pR d q :" 8 č a"1 L 8 a pR d q, L 8 poly pR d q :" 8 ď a"1 L 8 ´apR d q.
-For any distribution ξ P S 1 pR d q, set }ξ} C α a pR d q :" sup

jě´1 2 jα }∆ j ξ} L 8 a pR d q .
and define the corresponding space C α a pR d q of functions with finite } ¨}C α a pR d q -norm. We have

C α 0 pR d q " C α pR d q. Set C α rap pR d q :" 8 č a"1 C α a pR d q, C α poly pR d q :" 8 ď a"1 C α ´apR d q.
-For any two-parameter function F : R d ˆRd Ñ R and α ą 0, set

|||F ||| C α a pR d ˆRd q :" sup x,yPR d p|x| a ˚^|y| a ˚q |F px, yq| |x ´y| α .
and define the corresponding space C α a pR d ˆRd q of functions with finite } ¨}C α a pR d ˆRd qnorm. Set also

C α pR d ˆRd q :" C α 0 pR d ˆRd q, C α rap pR d ˆRd q :" 8 č a"1 C α a pR d ˆRd q.
-For any R d -indexed family of distributions Λ " pΛ x q xPR d Ă S 1 pR d q on R d , and α P R, set

|||Λ||| D α a :" sup xPR d sup jě´1
|x| a ˚2jα ˇˇxΛ x , P j px ´¨qy ˇˇ.

Set

D α rap :"

8 č a"1 D α a .
(In Hairer' seminal work [START_REF] Hairer | A theory of regularity structures[END_REF], models are assumed to satisfy a (λ, ϕ)-uniform regularity condition ˇˇpΠ g x τ qpϕ λ x q ˇˇÀ λ |τ | , locally uniformly in x. Requiring pΠ g

x τ q xPR d P D |τ | is equivalent to the above uniform estimate -see Lemma 6.6 of Gubinelli, Imkeller and Perkowski' seminal work [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] on paracontrolled distributions.) For any f, g P S 1 pR d q, we define the paraproduct

P f g :" 8 ÿ j"1 pS j f qp∆ j gq,

and resonant operator

Πpf, gq :"

ÿ |i´j|ď1 p∆ i f qp∆ j gq.
For any g P S 1 pR d q, set Sg :" g ´P1 g " p∆ ´1 `∆0 qg P C 8 pR d q.

The following continuity result is an elementary variation on the classical continuity results for the paraproduct and resonant operators. We refer the reader to [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] for a reference.

Proposition 4. Let α, β P R, a, b P Z. ' If α ‰ 0, then C α a pR d q ˆCβ b pR d q Q pf, gq Þ Ñ P f g P C α^0`β a`b pR d q, is continuous. ' If α `β ą 0, then C α a pR d q ˆCβ b pR d q Q pf, gq Þ Ñ Πpf, gq P C α`β a`b pR d q, is continuous. ' If α, β ‰ 0 and α `β ą 0, then C α a pR d q ˆCβ b pR d q Q pf, gq Þ Ñ f ¨g P C α^β a`b pR d q, is continuous.
As a consequence of the last item, the product f g, of f P SpR d q and g P C α pR d q, belongs to C α rap pR d q, for any α P R -so the space C α rap pR d q is in particular not empty. We use a modified paraproduct in Section 3.1.3. Note that

|∇| m f :" F ´1`| ¨|m Ff ˘,
for m P Z, is well-defined for functions f P SpR d q whose Fourier transform have support in an annulus. For m P N and α P R, the map |∇| m sends continuously C α rap pR d q into C α´m rap pR d q. For m P N, we define the modified paraproduct

P m f g :" |∇| m `Pf |∇| ´mg ˘" 8 ÿ j"1 |∇| m `Sj f ¨|∇| ´m∆ j g ˘.
Note that P 0 " P. The first item of Proposition 4 also holds for the modified paraproduct P m .

-From regularity structures and models to paracontrolled systems

We introduce in this section assumptions (A) and (B), and show that they provide a framework where to represent models and reconstructions of modelled distributions by paracontrolled systems. We refer the reader to Appendix A and [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF] for details on concrete regularity structures.

A basic assumption

Let T " `pT `, ∆ `q, pT, ∆q ˘be a concrete regularity structure, with T `" À αPA `T ὰ and T " À βPA T β . Write 1 `for the unit of the algebra T `. Set β 0 :" min A.

Recall that we agree to use the shorthand notation s p`q to mean both the statement s and the statement s `.

Assumption (A) -The spaces T `and T have linear bases B `and B, respectively, with the following properties. pa 2 q The action of ∆ `on polynomials is characterised by its action on the monomials

∆ `Xi " X i b 1 ``1 `b X i ,
that holds for all 1 ď i ď d. Denote by B X the submonoid generated by X 1 , . . . , X d , and define T X :" spanpB X q. For any τ P B `and k P N d , there is no term of the form X k b X , with P N d , in the expansion of ∆ `τ . pb 1 q There exists a subset B ' Ă B, such that B is in bijection with N d ˆB' . An element pk, σq P N d ˆB' , is denoted by X k σ, and assigned a homogeneity

|X k σ| :" |k| `|σ|.
pb 2 q If B ' contains an element 1 with homogeneity 0, then it is unique and satisfies the identity

∆1 " 1 b 1 `. Write X k for X k 1. Set B X :" tX k u kPN d Ă B.
The coproduct ∆ on X k is characterised by its action on the monomials

∆X i " X i b 1 ``1 b X i ,
that holds for all 1 ď i ď d, and by requiring multiplicativity on B X . For general elements, one has the multiplicative formula ∆pX k σq " p∆X k q p∆σq.

For any τ P B ' and k P N d , there is no term of the form X k b X , with P N d , in the expansion of ∆τ .

For later use, denote by tτ 1 u τ PB the dual basis of B. Following [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF], for σ, τ P B p`q , write σ ď p`q τ , if σ appears in the left hand side of the tensor products in the expansion of ∆ p`q τ , so we have the unique representation ∆ p`q τ " ÿ σPB p`q σď p`q τ σ b pτ { p`q σq, where τ { p`q σ P T `. Write σ ă p`q τ , if σ ď p`q τ and σ ‰ τ . Write in particular, for τ P B `,

∆ `τ " ÿ σPB `zB X σ b pτ { `σq `ÿ k X k b pτ { `X k q ": ÿ σPB `zB X σ b pτ { `σq `ÿ k X k k! b D k τ
The notations τ { p`q σ and σ ă p`q τ are only used for τ and σ in B p`q . Be careful! The notations ď, ă, etc. are basis-dependent -like the matrix of a linear map. Extend by linearity the map D k from T ὰ to T ὰ´|k| , for all α P A.

Lemma 5. One has, for all k, P N d , (a)

D 0 τ " τ , (b) D k D τ " D k` τ , (c) D k X " k! p ´kq! X ´k, (d) D k pτ σq " ř k 1 `k k 1 ˘Dk 1 τ D k´k 1 σ -Leibniz rule.
Proof -Item (b) is a consequence of the coassociativity property p∆ `b Idq∆ `" pId b ∆ `q∆ òf the coproduct ∆ `. It gives indeed the identity

∆ `Dk τ " D k τ b 1 `ÿ µă `τ, µRB X D k µ b pτ { `µq `ÿ X ! b D k` τ, (3.1) 
We leave the proof of the other identities to the reader.

From models to paracontrolled systems

We recall in this section some of the results proved in [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF], stated here in the slightly more general setting of the present work. The proofs of these extensions are given in Appendix B.

Given Fréchet spaces E and F , denote by LpE, F q the space of continuous linear maps from E into F . Recall G `stands for the set of characters of the Hopf algebra T `. Given maps

g : R d Ñ G `, Π P L `T, S 1 pR d q ˘,
and x, y P R d , set

g yx :" pg y b g ´1 x q∆ `P G `, and 
Π g x :" pΠ b g ´1 x q∆ P L `T, S 1 pR d q ˘.
Recall T " À βPA T β , and β 0 " min A.

Definition 6. Let a concrete regularity structure T satisfying assumption (A) be given. We denote by M rap pT , R d q, the set of pairs of maps

g : R d Ñ G `, Π P L `T, S 1 pR d q ˘,
such that (a) one has g x pX k q " x k , for all x P R d , k P N d ; (b) for any τ P B `, the function x Þ Ñ g x pτ q belongs to L 8 rap pR d q, and the function px, yq Þ Ñ g yx pτ q, belongs to C This definition does not depend on the choice of bases for T `and T . Fix r ą |β 0 ^0|. We define metrics on the space of rapidly decreasing models on T setting

}g} a :" sup τ PB `ˆ}g ¨pτ q} L 8 a pR d q `› › g ¨¨pτ q › › C |τ | a pR d ˆRd q ˙,
and

}Π} g a :" sup σPB' ˆ}Πσ} C β 0 a pR d q `› › pΠ g ¨σqp¨q › › D |σ| a ˙.
With a slight abuse of notations, we write g x pτ q P L 8 rap pR d q, g yx pτ q P C |τ | rap pR d ˆRd q. Condition (b) from Definition 6 does not hold for τ P B X , instead one has g x pX k q P L 8 poly pR d q, g yx pX k q P C |k| pR d ˆRd q. Since one has L 8 poly pR d q ¨L8 rap pR d q Ă L 8 rap pR d q and C α pR d ˆRd q ¨Cβ rap pR d ˆRd q Ă C α`β rap pR d ˆRd q, for all non-negative α, β, condition (b) holds for any τ P B `zB X . The next statement is a variation on Proposition 12 of [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF], where we use now the usual polynomials and polynomial weights, and the modified paraproducts P m . Its proof is given in Appendix B. Theorem 7. Pick m P N. For any model M " pg, Πq P M rap pT , R d q, there exists a family

" ´rrτ ss m,g P C |τ | rap pR d q ¯τPB `zB X , ´rrσss m,M P C |σ| rap pR d q ˘σPBzB X *
such that one has, for any τ P B `zB X and σ P BzB X , the identities

gpτ q " ÿ 1ă `νă `τ νPB `zB X P m gpτ { `νq rrνss m,g `rrτ ss m,g , (3.2) 
Πσ "

ÿ µăσ µPBzB X P m gpσ{µq rrµss m,M `rrσss m,M . (3.3)
Moreover, the mapping

M Þ Ñ " ´rrτ ss m,g P C |τ | rap pR d q ¯τPB `zB X , ´rrσss m,M P C |σ| rap pR d q ˘σPBzB X * is continuous.
We write rrτ ss g and rrσss M instead of rrτ ss m,g and rrσss m,M , when m " 0. Given a model M P M rap pT , R d q on a regularity structure T , and γ P R, define the space D γ rap pT, gq of rapidly decreasing modelled distributions as the set of functions

f : R d Þ Ñ à βăγ T β ,
such that, for each τ P B, the function xτ 1 , f p¨qy belongs to L 8 rap pR d q, and the function

px, yq Þ Ñ @ τ 1 , f pyq ´x g yx f pxq D belongs to C γ´|τ | rap pR d ˆRd q.
We denote by Rf the reconstruction of a modelled distribution

f P D γ rap pT, gq; if γ ą 0, it is charcaterized by the condition ´Rf ´Πg x f pxq ¯xPR d P D γ rap .
The proper setting to get a paracontrolled representation of a modelled distribution is given by the following Assumption (B) -For each τ, µ P B with τ ă µ, either µ{τ P T X , or µ{τ P spanpB `zB X q.

The next statement was proved in [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF], Theorem 14, in the unweighted setting; its extension to the present setting is given in Appendix B.

Theorem 8. Let T be a regularity structure satisfying assumption (A) and assumption (B). Let a regularity exponent γ P R and a model M " pg, Πq P M rap pT , R d q on T be given. For any modelled distribution f "

ÿ |σ|ăγ f σ σ P D γ rap pT, gq, each coefficient f σ has a paracontrolled representation f σ " ÿ σăµ µ{σ P spanpB `zB X q P fµ rrµ{σss g `rrf σ ss g , (3.4) 
where rrf σ ss g P C γ´|σ| rap pR d q. Moreover, there exists a distribution rrf ss M P C γ rap pR d q such that Rf " ÿ σPBzB X P fσ rrσss M `rrf ss M .

(3.5)

The mapping

´f P D γ pT , gq ¯Þ Ñ ˜´rrf ss M , `rrf σ ss g ˘σPB ¯P C γ rap pR d q ˆź σPB C γ´|σ| rap pR d q is continuous.
A similar statement with P m used in place of P holds true. We end this section with three useful formulas involving g, that will be used in the proof of Theorem 12. The reader can skip this statement now and come back to it at the moment where it is needed. Recall D k τ " 0, for |k| ą |τ |. Let P X : T `Ñ T X , stand for the canonical projection map on T X , and set

f x pτ q :" ´pg x b g ´1 x qpP X ∆ `τ q " ´ÿ x ! g ´1 x pD τ q.
For τ ‰ 1, we also have

f x pτ q :" pg x b g ´1 x q `pId ´PX q∆ `τ " ÿ σď `τ,σRB X g x pσq g ´1 x pτ { `σq.
Lemma 9. For any τ P B `zB X , we have

g x pD k τ q " ÿ σď `τ, σRB X g x pτ { `σqf x pD k σq. (3.6)
and

g yx pD k τ q " ÿ σď `τ, σRB X g yx pτ { `σqf y pD k σq ´ÿ py ´xq ! f x pD k` τ q, (3.7) 
and

f x pD k τ q " B k y ! pg y b g ´1 x q `pId ´PX q∆ `˘τ ) ˇˇy"x " B k y " ÿ σď `τ, σRB X g y pσq g ´1 x pτ { `σq * ˇˇy "x . (3.8)
Note that one cannot interchange in (3.8) the derivative operator with the sum, as a given function g y pσq may not be sufficiently regular to be differentiated k times. Note that formula (3.7) does not have the classical feature of a Taylor-type expansion formula, which would rather involve an x-dependent term in front of g yx pτ { `σq, in the first term of the right hand side.

Proof -' Note first that formula (3.1) for ∆ `pD k τ q gives

f x pD k τ q " ÿ νď `τ,νRB X g x pD k νq g ´1
x pτ { `νq.

(3.9) Formula (3.6) is an inversion formula for the preceding identity. One obtains the former from the latter by writing

ÿ σď `τ, σRB X g x pτ { `σqf x pD k σq " ÿ νď `σď `τ, σ,νRB X g x pτ { `σqg ´1 x pσ{ `νqg x pD k νq " ÿ νď `σď `τ, νRB X g x pτ { `σqg ´1 x pσ{ `νqg x pD k νq " ÿ νď `τ, νRB X pg ´1 x b g x qpτ { `νqg x pD k νq " g x pD k τ q.
(In the second equality, we can remove the condition "σ R B X " because ν ď `X k implies that ν P B X . In the last equality, we use the property of the antipode.)

' Applying g y b g ´1 x to (3.1), we have

g yx pD k τ q " ÿ µď `τ, µRB X g y pD k µq g ´1 x pτ { `µq `ÿ y ! g ´1 x pD k` τ q " ÿ µď `νď `τ, µRB X g y pD k µq g ´1 y pν{ `µq g yx pτ { `νq ´ÿ 1 py ´xq 1 1 ! f x pD k` 1 τ q, (3.10) 
where we use the formula

∆ `pτ { `µq " ÿ µď `νď `τ pν{ `µq b pτ { `νq in the expansion of g ´1
x pτ { `µq. Identity (3.7) follows from (3.10) using (3.9). Note that µ ď `ν and µ R B X implies that ν R B X .

' Formula (3.8) comes from identity (3.9) by rewriting the terms g x pD k νq in an appropriate form. As a preliminary remark, notice that applying g yx b g x to the defining identity

∆ `ν " ÿ σď `ν,σRB X σ b pν{ `σq `ÿ k X k k! b D k ν,
for the D k ν, we have

g y pνq " ÿ σď `ν, σRB X g yx pσq g x pν{ `σq `ÿ k g x pD k νq py ´xq k k! .
Since one has B k y g yx pσq ˇˇy"x " 0, for any x P R d , whenever |k| ă |σ|, one then has

g x pD k νq " 1 |k|ă|ν| B k y " g y pνq ´ÿ σă `ν, σRB X |σ|ď|k| g yx pσq g x pν{ `σq * ˇˇy "x . (3.11)
At the same time, for ν R B X , one has

g y pνq " ÿ µď `νpg ´1
x ˚gx qpν{ `µq g y pµq "

ÿ µď `ν µRB X pg ´1 x ˚gx qpν{ `µq g y pµq " ÿ µď `σď `ν µ,σRB X g x pν{ `σq g ´1 x pσ{ `µqg y pµq, since µ ď `σ and µ R B X implies σ R B X . Furthermore, since µ ď `σ R B X and |σ| ď |k| implies µ R B X or µ ă `X k , we have ÿ µď `σď `ν µ,σRB X , |σ|ď|k| g x pτ { `σq g ´1 x pσ{ `µq g y pµq " ÿ σď `ν σRB X , |σ|ď|k| g x pν{ `σq g yx pσq `păk pyq,
where p ăk is a polynomial of degree less than k, hence B k y p ăk " 0. We thus obtain from formula (3.11), that

g x pD k νq " B k y " ÿ µď `σď `ν µ,σRB X , |σ|ą|k| g x pν{ `σq g ´1 x pσ{ `µq g y pµq * ˇˇy "x
.

Inserting this expression in formula (3.9) one gets, with |k| ă |τ |,

f x pD k τ q " ÿ µď `τ, µRB X g ´1 x pτ { `µq g x pD k µq " B k y " ÿ νď `σď `µď `τ ν,σ,µRB X , |σ|ą|k| g ´1 x pτ { `µq g x pµ{ `σq g ´1 x pσ{ `νq g y pνq * ˇˇy "x " B k y " ÿ νď `σď `τ ν,σRB X , |σ|ą|k| pg x ˚g´1 x qpτ { `σq g ´1 x pσ{ `νq g y pνq * ˇˇy "x " B k y " ÿ νď `τ, νRB X g ´1
x pτ { `νq g y pνq * ˇˇy "x .

-From paracontrolled systems to models and modelled distributions

We prove the main results of this work in this section. Theorem 1 gives a parametrization of the space of models by data in paracontrolled representations. Its proof requires that we introduce assumption (C), about the structure of the Hopf algebra pT `, ∆ `q. We prove Theorem 2 in Section 4.2 as a corollary of Theorem 12, giving a paracontrolled parametrization of g-maps. The case of BHZ regularity structures is investigated in Section 4.3.

From paracontrolled systems to models

The following claim is the same as Corollary 15 in [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF], with the modified paraproduct P m in the role of P. Recall from Proposition 7 the defnition of the reference distributions rrσss m,M , in the paracontrolled representation of the Π operator of a model M, using the modified paraproduct P m . rap pR d q, we conclude that Πτ is indeed another reconstruction of h τ . We refer the reader to the end of the proof of Corollary 15 in [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF] for the unique extension of Π to the whole of T . (There is no other element than 1 of zero homogeneity in the present setting.)

This proof makes it clear that the above parametrization of the set of Π maps is related to the non-uniqueness of the reconstruction map on the set of modelled distributions of negative regularity exponent. This statement leaves us with the task of giving a parametrization of the set of characters g on T `by their paracontrolled representation. We need for that purpose to make the following assumptions on the Hopf algebra pT `, ∆ `q and the basis B `of T `. Recall that D k : T ὰ Ñ T ὰ´|k| , is a linear map satisfying the recursive rules from Lemma 5.

Assumption (C)

(1) There exists a finite subset G `of B `such that B `is of the form

B `" ğ τ PG `!D k τ ; k P N d , |τ | ´|k| ą 0 ) .
For each α P R, denote by B `pα ´q the submonoid of B `generated by

X 1 , . . . , X d ( Y ğ σPG `, |σ|ăα ! D k σ ; k P N d , |σ| ´|k| ą 0
) .

(2) For each τ P G `, the coproduct ∆ `τ is of the form

∆ `τ " τ b 1 `ÿ σă `τ, σRB X σ b pτ { `σq `ÿ k X k k! b D k τ, (4.2 
)

with σ P B `p|τ | ´q and τ { `σ P span `B`p |τ | ´q˘,
for each σ in the above sum.

Note the disjoint union in the description of B `. Assumption (C-2) provides a useful induction structure.

Lemma 11. Formula (4.2), with the constraints on σ and τ {σ, holds for any τ P B `.

Proof -The proof is done by induction. Pick τ P G `, and assume that identity (4.2) holds for all τ 1 P B `p|τ | ´q. By the recursive rules in Lemma 5, (4.2) holds for all the elements of the form pD k τ qν, where k P N d and ν P B `p|τ | ´q. So (4.2) eventually holds for all τ 1 P B `pβ ´q, where β :" min

! |µ|; µ P G `, |µ| ą α ) ą α.
Recall from formula (3.11) that if we are given characters pg x q xPR d on T `as in Definition 6, then

g x pD k τ q " 1 |k|ă|τ | B k y " g y pτ q ´ÿ σă `τ, σRB X |σ|ď|k| g yx pσq g x pτ { `σq * ˇˇy "x . (4.
3)

The induction structure from assumption (C-2) restricts the above sum and shows that the family of all g x pD k τ q is uniquely determined by the preceding formula. It follows then from assumption (C-1) that the character g on T `is entirely determined by the datum of the gpτ q, for τ P G `. Order the elements of G `in non-decreasing order of homogeneity, so G `" tτ 1 , . . . , τ N u, with |τ 1 | ď ¨¨¨ď |τ N |. (An arbitrary order is chosen amongst those τ 's with equal homogeneity.) We have in particular

g y pτ 1 q " g yx pτ 1 q `ÿ |k|ă|τ 1 | py ´xq k k! g x pD k τ 1 q, since B `p|τ 1 | ´q " B X , so for |k| ă |τ 1 |, one has g x pD k τ 1 q " B k y g y pτ 1 q ˇˇy"x , (4.4) 
and f x pD k τ 1 q " g x pD k τ 1 q, and g yx pD k τ 1 q " g y pD k τ 1 q ´ÿ py ´xq ! g x pD k` τ 1 q. (4.5)

Recall that, given a concrete regularity structure T , T `" `pT `, ∆ `q, pT `, ∆

`qȋ s also a concrete regularity structure.

Theorem 12. Let T stand for a concrete regularity structure satisfying assumption (A) and (B). Assume that T `satisfies assumption (C). Then, for any family

! rrτ ss P C |τ | rap pR d q ) τ PG `,
there exists a unique model M g " pg, gq on T `such that gpτ q "

ÿ σă `τ σPB `zB X P gpτ { `σq rrσss M g `rrτ ss, @ τ P G `. (4.6)
The map

! rrτ ss P C |τ | rap pR d q ) τ PG `Þ Ñ M g P M rap pT `, R d q is continuous.
The injectivity of the above map is elementary, so Theorem 12 and Proposition 10, with Theorem 7, prove all together Theorem 1.

The remaining of this section is dedicated to proving Theorem 12. The proof is done by induction on i P t1, . . . , N u, where G `" tτ 1 , . . . , τ N u, with |τ 1 | ď ¨¨¨ď |τ N |.

Initialisation of the induction. Set gpτ 1 q :" rrτ 1 ss, and define gpD k τ 1 q and g yx pD k τ 1 q by (4.4) and (4.5). It is clear on these formulas that they define elements of the spaces C |τ 1 |´|k| rap pR d q Ă L 8 rap pR d q and C |τ 1 |´|k| rap pR d ˆRd q, respectively.

Induction step. Fix τ " τ n P G `, at the n th step of the induction, and assume that g has been constructed on the submonoid B `p|τ | ´q as a smooth function of the bracket data -so all the functions rrσss M g and gpτ { `σq make sense as elements of their natural spaces. Define gpτ q by identity (4.6), and define gpD k τ q by (4.3), for all k P N d with |k| ă |τ |. The induction step consists in proving that g x pD k τ q P L 8 rap pR d q and g yx pD k τ q P C |τ |´|k| rap pR d ˆRd q, as one can use the inclusions (α, β non-negative)

L 8
poly pR d q ¨L8 rap pR d q Ă L 8 rap pR d q and C α pR d ˆRd q ¨Cβ rap pR d ˆRd q Ă C α`β rap pR d ˆRd q, to get the regularity properties of g x pµ D k τ q and g yx pµ D k τ q, for µ P B `p|τ n | ´q.

We introduce for that purpose a regularity structure T m pτ q with Hopf algebra

T `p|τ | ´q :" span `B`p |τ | ´q˘,
and T -space only made up of elements with negative homogeneity. We build a model pg, Λq on T m pτ q, from g : T `p|τ | ´q Ñ R and rrτ ss, such that formula (3.8) giving f x pD k σq can be interpreted in terms of that model, under the form of identities

f x pD k σq " J k,m ´Λg
x pσ pmq q ¯pxq for operators J k,m on distributions -the symbols σ pmq are introduced below. The identity Λ g

x " Λ g y ˝x g yx δ is then used crucially to obtain estimates on f x pD k σq, that eventually give informations on g x pD k τ q and g yx pD k τ q via formulas (3.6) and (3.7).

Choose m P N, with m ą |τ |. Consider the formal symbols σ pmq indexed by σ P B `zB X , with homogeneity ˇˇσ pmq ˇˇ:" |σ| ´m.

Set

T m pτ q :" span ´σpmq

; σ P B `p|τ | ´qzB X such that |σ| ă |τ |, or σ " τ ¯,
so all elements of T m pτ q have negative homogeneity. We define a coassociative coproduct

δ : T m pτ q Þ Ñ T m pτ q b T `p|τ | ´q setting δpσ pmq q :" ÿ µď `σ, µRB X µ pmq b pσ{ `µq. Assumption (C-2) ensures that ∆ ``T `p|τ | ´q˘Ă T `p|τ | ´q b T `p|τ | ´q,

so

T m pτ q :" ´pT `p|τ | ´q, ∆ `q, pT m pτ q, δq īs a concrete regularity structure. For g P G `, set p g δ :" pId b gqδ Let |∇| m be the Fourier multiplier operator

|∇| m ζ " F ´1`| ¨|m Fζ ˘.
We define an operator Λ : T m pτ q Þ Ñ S 1 pR d q setting

Λpσ pmq q :" |∇| m gpσq.

Lemma 13. The pair pg, Λq is a rapidly decreasing model on the regularity structure T m pτ q.

Proof -Since we have the identity since all elements of T m pτ q have negative homogeneity.

Λpσ pmq q " |∇| m gpσq " ÿ µăσ,
Note that it follows from identity (3.8) in Lemma 9 that the model Π and the function fpD k σq are related by the identity

f x pD k σq " B k y " ÿ µď `σ, µRB X g ´1
x pσ{ `µqg y pµq * ˇˇy where the operators J k,m j are defined by J k,m j pζq :" B k |∇| ´m∆ j ζ, for an appropriate distribution ζ P S 1 pR d q. If j ě 0, since the Fourier transform of ∆ j ζ is supported on an annulus, the function J k,m j pζq is always well-defined; this is not the case of J k,m ´1 pζq. However, we only use in this section distributions ζ of the form ζ " |∇| m ξ (where such ξ is unique in the class of rapidly decreasing functions), so J k,m ´1 pζq " B k ∆ ´1ξ, in our setting. 

`Λg

x pσ pmq q ˘pxq ˇˇÀ |x| ´a ˚2´jp|σ|´|k|q , ˇˇJ k,m j

`Λg

x pσ pmq q ˘pyq ˇˇÀ |y| ´a ˚ÿ µď `σ |y ´x| |σ|´|µ| 2 ´jp|µ|´|k|q . Consequently, f x pD k σq P L 8 rap .

Proof -For the first estimate, since J k ´1`Λ g

x pσ pmq q ˘pxq P L 8 rap , by assumption, it is sufficient to consider the case j ě 0. By the property of ρ j , there exists a function r ρ with Fourier transform of r ρ supported on an annulus, and such that setting ρ j p¨q :" ρp2 ´j ¨q, one has r ρ j ρ j " ρ j . Set r Q k,m j :" B k |∇| ´mpF ´1 ρj q, and note the scaling property r Q k,m j p¨q " 2 jpd`|k|´mq r Q k,m 0 p2 j ¨q. We now use the fact that pg, Λq is a model to write

J k,m j `Λg x pσ pmq q ˘pxq " ż r Q k,m j px ´yq∆ j `Λg x pσ pmq q ˘pyqdy " ż r Q k,m j px ´yq∆ j `Λg y ˝x g yx δ pσ pmq q ˘pyqdy " ÿ µď `σ ż r Q k,m j px ´yq g yx pσ{ `µq ∆ j `Λg y pµ pmq q ˘pyqdy.
Recall that |x `y| ˚ď |x| ˚|y| ˚, for all x, y P R d . By Lemma 13, for any a P N we have

|x| a ˚ˇJk,m j `Λg x pσ pmq q ˘pxq ˇˇÀ ÿ µď `σ ż |x ´y| a ˚ˇr Q k,m j px ´yq ˇˇ|y ´x| |σ|´|µ| |y| a ˚ˇ∆ j `Λg y pµ pmq q ˘pyq ˇˇdy À ÿ µď `σ 2 ´jp|µ|´mq ż |z| a ˚ˇr Q k,m j pzq ˇˇ|z| |σ|´|µ| dz À ÿ µď `σ 2 ´jp|µ|´mq 2 jp|k|´m´|σ|`|µ|q ż |z| a ˚ˇr Q k,m 0 pzq ˇˇ|z| |σ|´|µ| dz À 2 ´jp|σ|´|k|q .
We get the second estimate from the first using once again the fact that pg, Λq is a model, writing J k,m j `Λg x pσ pmq q ˘pyq " J k,m j ´Λg y `x g yx δ pσ pmq q ˘¯pyq " ÿ µď `σ g yx pσ{ `µq J k,m j `Λg y pµ pmq q ˘pyq.

We can now prove that g x pD k τ q P L 8 rap pR d q and g yx pD k τ q P C |τ |´|k| rap pR d ˆRd q, and close the induction step. We use the formulas from Lemma 9 for that purpose. First, since g x pD k τ q " ÿ σď `τ, σRB X g x pτ { `σq f x pD k σq, with g x pτ {σq P L 8 poly pR d q and f x pD k σq P L 8 rap pR d q, from Lemma 14, we have indeed g x pD k τ q P L 8 rap pR d q. Second, one can rewrite the identity

g yx pD k τ q " ÿ σď `τ, σRB X g yx pτ { `σq f y pD k σq ´ÿ py ´xq ! f x pD k` τ q,
from Lemma 9, using identity (4.7) for the f-terms. This gives

g yx pD k τ q " ÿ j $ ' ' & ' ' % ÿ σď `τ |k|ă|σ| g yx pτ { `σq J k,m j `Λg y pσ pmq q ˘pyq ´ÿ |k` |ă|τ | py ´xq ! J k` ,m j `Λg
x pτ pmq q ˘pxq , / / . / / -": g j yx pD k τ q. Given x, y P R d , set j 0 " ´1, if |y ´x| ě 2, and pick otherwise j 0 ě ´1 such that |y ´x| » 2 ´j0 . One uses the first estimate from Lemma 14 to bound above the sum over j ě j 0 With no loss of generality, assume now that |y ´x| ă 2. Then, since pg, Λq is a model and

Λ g x pτ pmq q " Λ g y `x g yx δ τ pmq ˘" ÿ σď `τ g yx pτ { `σqΛ g y pσ pmq q,
we have for g j yx pD k τ q the formula J k,m j `Λg x pτ pmq q ˘pyq ´ÿ σď If the structure conditions

`τ |k|ě|σ| g yx pτ { `σqJ k,m j `Λg y pσ pmq q ˘pyq ´ÿ |k` |ă|τ | py ´xq ! J k` ,m j `Λg x pτ pmq q ˘pxq " rbs ÿ |k 1 |"rbs py ´xq k 1 k 1 ! ż 1 0 p1 ´tq rbs J k`k 1 j `Λg x pτ pmq q ˘`x `
f pkq τ " ÿ τ ďµ, µ{τ PT X |µ|ăγ c µ τ pkq f µ , (4.12) 
holds for any τ P B and k P N d , then

f " ÿ τ PB f τ τ P D γ rap pT, gq.
The structure condition is reminiscent of a condition introduced by Martin and Perkowski in [START_REF] Martin | A Littlewood-Paley description of modelled distributions[END_REF] to give a characterisation of modelled distributions in terms of Besov type spaces. Given that we see f τ as gpF τ q, formula (4.11) is nothing but a formula for gpD k F τ q -the analogue of formula (3.11) in the present setting.

Proof -Consider the extended Hopf algebra free T F freely generated by the symbols

B `Y ! D k pF τ q ; τ P B, γ ą |τ | `|k|
) .

It satisfies assumptions (A-C).

By Theorem 12 giving a paracontrolled parametrization of the map g by its definition on the gpτ q, with τ P G F ,˝: " G `Y F τ ; |τ | ă γ ( , there exists a unique model g on free T F that coincides with g on T `, and such that gpF τ q :" ÿ τ ďµ |µ|ă|γ| P gpF µq rrµ{τ ss g `rrf τ ss, for all τ P B with |τ | ă γ. Since T F is the quotient space of free T F by the relations (4.10), and

g `Dk F τ ˘" ÿ τ ďµ, µ{τ PT X |µ|ăγ c µ τ pkq gpF µ q,
from the structure condition (4.12), the map g is consistently defined on the quotient space, where it satisfies the estimates from Definition 6.

One can get rid of the structure condition in some cases.

Assumption (D) -For any τ P B ' , there is no term of the form σ b X k with k ‰ 0, in the formula for ∆τ .

Under assumption (D), given τ P B, the only µ ě τ such that µ{τ has a non-null component on X k is µ " X k τ , so one has D k F τ " k! F X k τ , and the structure condition (4.12) takes the simple form (4.13) below. Note that the data in the next statement is indexed by B ' , unlike in the general case of Theorem 16 where it is indexed by B. 

f σ σ " ÿ τ PB', kPN d |τ |`|k|ăγ f X k τ X k τ P D γ rap pT, gq.
Note that assumption (D) is an assumption about the basis B of T we choose to work with, not about the regularity structure itself. It is thus possible that a given basis satisfies assumption (D) whereas another does not. This flexibility is at the heart of the proof of Theorem 3 in the next section.

Modelled distributions over BHZ regularity structures

Bruned, Hairer and Zambotti introduced in [START_REF] Bruned | Algebraic renormalization of regularity structures[END_REF] class of regularity structures convenient for the study of singular stochastic PDEs. We call these structures BHZ regularity structures

T BHZ " `pT BHZ , ∆ BHZ q, pT BHZ , ∆ BHZ q ˘.
Although the canonical basis of these concrete regularity structures do not satisfy assumption (D) the following result holds true.

Theorem 18. One can construct a basis of T BHZ that satisfies assumption (D).

The remaining of this section is dedicated to proving this statement. We recall first the elements of the construction of BHZ regularity structures that we need here. These concrete regularity structures are indexed by decorated rooted trees.

Any finite connected graph without loops and with a distinguished vertex is called a rooted tree. For any rooted tree τ , denote by N τ the node set, by E τ the edge set, by τ P N τ the distinguished vertex, called root of τ . Let also L be a finite set of types. (Edges will be interpreted differently depending on their type, when given any model on T BHZ . Different types may for instance correspond to different convolution operators.) Let B be the set of rooted decorated trees. Each τ P B is a rooted tree equipped with the type map t : E τ Ñ L and with the decorations

' n : N τ Ñ N d . ' o : N τ Ñ Z d ' ZpLq. ' e : E τ Ñ N d .
Equivalently, the set B is generated recursively by the application of the following operations -see [START_REF] Bruned | Algebraic renormalization of regularity structures[END_REF]Section 4.3].

' One has X k P B for any k P N d , where X k is a tree with only one node ', with np'q " k, and op'q " 0 ' 0. ' If τ, σ P B then τ σ P B, where τ σ is called a tree product; τ σ is a graph τ \ σ divided by the equivalence relation " on N τ \ N σ , where x " y means x " y or x, y P t τ , σ u.

On the root τ σ , the decorations np τ σ q " np τ q `np σ q and op τ σ q " op τ q `op σ q are given.

' For any t P L and k P N d , τ P B ñ I t k pτ q P B, where the tree I t k pτ q is obtained by adding on τ one distinguished node 1 and one edge e " p τ , 1 q of type t, with decorations epeq " k and op 1 q " 0 ' 0. ' For any α P Z d ' ZpLq, denote by R α the operator on decorated rooted trees adding a value α on the decoration o on τ . Assume τ P B ñ R α pτ q P B.

By applying the operator R α with various α on each step as above, one can see that, if τ P B then the same decorated tree with any other o-decorartion is also an element of B. A noise-type object Θ is represented by I t 0 pτ q, with t of negative homogeneity. With each subcritical singular stochastic PDE is associated a notion of conforming and strongly conforming decorated tree. The basis of B BHZ is made up of the set of elements of B that strongly conforms with non-positive o-decorations, and one can identify T BHZ with a quotient of the algebra generated by the set of conforming trees with non-positive o-decorations by an equivalence relation. We do not need more details here and refer the interested reader to Section 5 of [START_REF] Bruned | Algebraic renormalization of regularity structures[END_REF]. We do not describe in particular the details of the definition of the splitting maps ∆ BHZ and ∆ BHZ ; we only record the following fact, where we write 1 for X 0 , and X i for X e i . Proposition 19. [START_REF] Bruned | Algebraic renormalization of regularity structures[END_REF]Proposition 4.17] The coproduct ∆ " ∆ BHZ : T BHZ Ñ T BHZ b T BHZ , satisfies the following identities

Each
∆1 " 1 b 1, ∆X i " X i b 1 `1 b X i , ∆pτ σq " p∆τ qp∆σq, ∆I t k pτ q " pI t k b Idq∆τ `ÿ | |`|k|ă|τ |`|t| X ! b I t k` pτ q, ∆R α pτ q " pR α b Idq∆τ.
The canonical bases B BHZ of BHZ concrete regularity structures do not satisfy assumption (D) since one has

∆I t 0 pX i Θq " I t 0 pX i Θq b 1 `It 0 pΘq b X i `ÿ |k|ă|Θ|`1`|t| X k k! b I t k pX i Θq,
for any edge type t with positive homogeneity, but the second term in the right hand side contradicts to assumption (D). Set T :" spanpBq.

The tree product pτ, σq Þ Ñ τ σ and the operators I t k and R α are linearly extended to T . For any t P L and k, P N d , we define the new operator I t k : T Ñ T , by

I t k pτ q :" ÿ mPN d ˆ m ˙Xm p´1q ´mI t k `X ´mτ ˘.
(An operator I k represents the convolution with a kernel x pB k Kqpxq.) If τ is homogeneous, then I t k pτ q is also homogeneous and

ˇˇ I t k pτ q ˇˇ" |t| ´|k| `| | `|τ |.
Lemma 20. Consider the subset r B ' Ă T generated by the following rules. It is sufficient to show that, if the coproduct of τ P r B ' has such a form, then I t k pτ q also satisfies the same condition. To complete the proof, we compute explicitly the coproduct ∆p I t k pτ qq. Since

∆I t k `Xa τ ˘" pI t k b Idq∆ `Xa τ ˘`ÿ X ! b I t k` `Xa τ " ÿ σďτ, bPN d ˆa b ˙It k `Xb σ ˘b X a´b pτ {σq `ÿ PN d X ! b I t k` `Xa τ ˘,
we have

∆ `aI t k pτ q ˘" ÿ bPN d ˆa b ˙`∆X b ˘p´1q a´b ∆I k `Xa´b τ " ÿ σďτ, b,c,dPN d p´1q a´b ˆa b ˙ˆb c ˙ˆa ´b d ˙Xc I t k `Xd σ ˘b X b´c X a´b´d pτ {σq `ÿ ,b,cPN d p´1q a´b ˆa b ˙ˆb c ˙Xc X ! b X b´c I t k`
`Xa´b τ ":

piq `piiq.

The term piiq does not contain any terms of the form σ b X k with k ‰ 0. The sum piq is equal to

ÿ σďτ a"c`c 1 `d`d 1 p´1q d`d 1 a! c!c 1 !d!d 1 ! X c I t k `Xd σ ˘b X c 1 X d 1 pτ {σq " ÿ σďτ a"α`β a! α!β! ˜ÿ α"c`d p´1q d α! c!d! X c I t k `Xd σ ˘¸b ˜ÿ β"c 1 `d1 p´1q d 1 β! c 1 !d 1 ! X c 1 X d 1 pτ {σq " ÿ σďτ a"α`β ˆa α ˙αI t k pσq b pX ´Xq β pτ {σq " ÿ σďτ a I t k pσq b pτ {σq " p a I t k b Idq∆τ.
Since τ is assumed in the induction step to have a coproduct (4.14), hence ∆p I t k pτ qq, enjoys the same property.

A -Concrete regularity structures

We recall in this appendix the setting of concrete regularity structures introduced in [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF], and refer the reader to Section 2 of that work for motivations for the introduction of that setting.

Definition -A concrete regularity structure T " pT `, T q is the pair of graded vector spaces An element τ of T p`q α is said to be homogeneous and is assigned homogeneity |τ | :" α. The homogeneity of a generic element τ P T p`q is defined as |τ | :" maxtαu, such that τ has a non-null component in T p`q α . We denote by T :" `pT `, ∆ `q, pT, ∆q ȃ concrete regularity structure.

One of the elementary and important examples is the Taylor polynomial ring. Consider symbols X 1 , . . . , X d and set T X :" RrX 1 , . . . , X d s. For a multi index k " pk i q d i"1 P N d , we use the notation

X k :" X k 1 1 ¨¨¨X k d d .
We define the homogeneity |X k | " |k| :" ř i k i , and the coproduct

∆X i " X i b 1 `1 b X i . (A.4)
Then `pT X , ∆q, pT X , ∆q ˘is a concrete regularity structure.

The set G `of nonzero characters g : T `Þ Ñ R, forms a group with the convolution product

g 1 ˚g2 :" pg 1 b g 2 q∆ `.

B -Technical estimates

We provide in this appendix a number of technical estimates that are variations on the corresponding results from [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF]. Proofs are given for completeness. Recall the two-parameter extension of the paraproduct, used in [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF]. For any distribution Λ on R d ˆRd , we define pQ j Λqpxq :" (a) For any Λ P S 1 pR d ˆRd q such that }Q j Λ} L 8 a pR d q À 2 ´jα for all j ě 1 and some α P R, one has PΛ P C α a pR d q and }PΛ} C α a pR d q À sup jě1 2 jα }Q j Λ} L 8 a pR d q .

(b) For any α ą 0 and F P C α a pR d ˆRd q, one has PF P C α a pR d q and }PF } C α a pR d q À |||F ||| C α a pR d ˆRd q .

Proof -For (2), it is sufficient to show that }Q j F } L 8 a pR d q À 2 ´jα . By Lemma 22, Recall from [START_REF] Bailleul | High order paracontrolled calculus[END_REF] the definition of the operator R ˝pf, g, hq :" P f P g h ´Pfg h.

|Q j F pxq| À ij |P j px
This operator is continuous from C α pR d q ˆCβ pR d q ˆCγ pR d q into C α`β`γ pR d q, for any α, β P r0, 1s and γ P R -see Proposition 14 therein.

Proposition 24. [4, Proposition 10] Consider a function f P L 8 poly pR d q and a finite family pa k , b k q 1ďkďN in L 8 poly pR d q ˆL8 poly pR d q such that f pyq ´f pxq "

N ÿ k"1 a k pxq `bk pyq ´bk pxq ˘`f 7 yx , x, y P R d ,
with a remainder f 7 yx . Let α ą 0, β P R, and a P N. Assume that either of the following assumptions hold.

(a) f P L 8 rap pR d q, a k b k P L 8 rap pR d q, f 7 P C α rap pR d ˆRd q, and g P C β poly pR d q.

(b) f 7 P C α pR d ˆRd q and g P C β rap pR d q.

Then one has the estimate

N ÿ k"1 R ˝`a k , b k , g ˘P C α`β rap pR d q.
Proof -As in the proof of Proposition 10 in [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF], recall that

ÿ k R ˝pa k , b k , gq " ´S pP f gq `Pf pS gq ´ÿ k P a k b k pS gq ´Px,y ´`P f 7 ¨x g ˘pyq ¯.
The first three terms belong to C ij P j py ´uqQ j py ´vqc ux Θ x pvqdudv ´SpΛ x q.

For the second term, where ' rνs g P C |ν| rap pR d q, if ν P B `zB X , ' rνs g P C 8

poly pR d q, if ν P B X . If τ " X k , then since ∆ `X k " ř `k ˘X b X k´ we have gpX k q " ÿ 0ă ăk ˆk ˙PgpX q rX k´ s g `rX k s g .

Since g x pX k q " x k is a function belonging to C 8 poly pR d q, by an induction we have rX k s g P C 8

poly pR d q. Now let τ P B `zB X . Recall the formula obtained in [4] rτ s g " S gpτ q `Px,y `gyx pτ q 8 ÿ n"1 p´1q n´1 ÿ 1ă `σn`1 ă `¨¨¨ă `σ1 ă `τ R ˝´gpτ { `σ1 q ¨¨¨gpσ n´1 { `σn q, gpσ n { `σn`1 q, rσ n`1 s g ¯.

  |τ | rap pR d ˆRd q; (c) one has pΠX k σqpxq " x k pΠσqpxq and pΠ1qpxq " 1; (d) for any τ P B ' zt1u, one has Πτ P C β 0 rap pR d q, and the R d -indexed family of distributions tΠ g x τ u xPR d belongs to D |τ | rap . The pair pg, Πq is called a rapidly decreasing model on the concrete regularity structure T .

Proposition 10 .

 10 Pick m P N, and assume we are given a map g : R d Ñ G `, such that conditions (a) and (b) in Definition 6 are satisfied. Then for any family rrτ ss P C |τ | rap pR d q ( τ PB',|τ |ă0 , there exists a unique model M " pg, Πq P M rap pT , R d q such that Πτ " ÿ σăτ σPB P m gpτ {σq rrσss m,M `rrτ ss, @ τ P B ' , |τ | ă 0. (4.1)The map ´g, !rrτ ss P C |τ | rap pR d q ) τ PB',|τ |ă0 ¯Þ Ñ M P M rap pT , R d q is continuous.Note that the distribution rrσss m,M in (4.1) is a distribution recursively defined by the application of Theorem 7 to the subspaceÀ βă|τ | T β . If σ P B ' ,then rrσss m,M " rrσss. Proof -This is a consequence of Theorem 8 that can be proved as follows. For τ of negative homogeneity, we need to prove a uniform bound tΠ g x τ u xPR d P D |τ | rap . This is equivalent to saying that Πτ is a reconstruction of the modelled distribution h τ pxq :" ř σăτ g x pτ {σqσ P D |τ | pT , gq -as |τ | ă 0, the reconstruction is not unique. But Theorem 8 already provides us with a reconstruction of h τ , of the form ÿ σăτ P m gpτ {σq rrσss m,M `rrh τ ss m,M , with rrh τ ss m,M P C |τ | rap pR d q. Since the latter differs from Πτ by `rrτ ss ´rrh τ ss m,M ˘P C |τ |

Lemma 14 .

 14 For any σ P `B`p |τ | ´q Y tτ u ˘zB X , k P N d , and a P N, we have ˇˇJ k,m j

a ˚ÿ jěj 0 ˇˇg j yx pD k τ q ˇˇÀ ÿ σď `τ |k|ă|σ| |y ´x| |τ |´|σ| 2

 2 |τ |´|σ| 2 ´jp|σ|´|k|q `ÿ jěj 0 ÿ |k` |ă|τ | |y ´x| | | 2 ´jp|τ |´|k|´| |q so |x| ´j0 p|σ|´|k|q `ÿ |k` |ă|τ | |y ´x| | | 2 ´j0 p|τ |´|k|´| |q À |y ´x| |τ |´|k| . (4.8)

Corollary 17 .

 17 Let T be a regularity structure satisfying assumptions (A-D), and a family `rrf τ ss P C γ´|τ | rap pR d q ˘τPB', |τ |ăγ be given. Pick a model pg, Πq P M rap pT , R d q. Set, for τ P B ' with |τ | ă γ, f τ :" ÿ τ ďµ, µ{τ RT X |µ|ăγ P fµ rrµ{τ ss g `rrf τ ss, and, for τ P B ' , k P N d zt0u with |k| `|τ | ă γ, f X k τ pxq :" B k y " f τ pyq ´ÿ τ ďµ, µ{τ RT X |µ{τ |ď|k|, |µ|ăγg yx pµ{τ q f µ pxq

''' 2 )

 2 The index set A `Ă R `contains the point 0, and A ``A `Ă A `; the index set A Ă R is bounded below, and both A `and A have no accumulation points in R. Set β 0 :" min A. The vector spaces T ὰ and T β are finite dimensional. ' The set T `is an algebra with unit 1, with a Hopf structure with coproduct ∆ `: T `Ñ T `b T `, such that ∆ `1 " 1 b 1, and, for τ P T ὰ , ∆ `τ P $ & % τ b 1 `1 b τ `ÿ 0ăβăα T β b T ὰ´β One has T 0 " spanp1q, and for any α, β P A `, one has T ὰ T β Ă T ὰ`β . ' One has a splitting map ∆ : T Ñ T b T for each τ P T α , with the right comodule property p∆ b Idq∆ " pId b ∆ `q∆. (A.3)Let B ὰ and B β be bases of T ὰ and T β , respectively. We assume B 0 " t1u. Set B

ij

  R d ˆRd P j px ´yqQ j px ´zqΛpy, zqdydz, pPΛqpxq :" ÿ jě1 pQ j Λqpxq. If Λpy, zq is of the form f pyqgpzq, then PΛ " P f g. Proposition 23. [4, Proposition 8 (a)] Let a P N.

'

  (a) Θ P D β rap and c P C γ´β pR d ˆRd q. (b) Θ P D β and c P C γ´β rap pR d ˆRd q. Moreover, assume that one can decompose pΘ x ´Θ z q again under the formΘ x ´Θ z " finite, R d -indexed distributions Ω mz , and a real-valued coefficients d m xz depending measurably on x and z. Assume that for each there exists β m ă β such that any one of the following conditions holds. (c) Under (a), one has Ω m P D β m rap and d m P C β ´β m pR d ˆRd q. (d) Under (a), one has Ω m P D β m and d m P C β ´β m rap pR d ˆRd q. (e) Under (b), one has Ω m P D β m and d m P C β ´β m pR d ˆRd q.Write PpΛq for P y,z `Λy pzq ˘below.' If γ ą 0, then there exists a unique function λ P C γ a pR d q such that ! `PpΛq `λ˘´Λx) xPR d P D γ rap . If γ ă 0, then PpΛq ´Λx ( xPR d P D γ rap .Consequently, PpΛq P C β 0 rap pR d q. If furthermore Λ P D γ rap , then PpΛq P C γ rap pR d q.Proof -In view of [4, Proposition 9], it is sufficient to show that sup xPR d |x| a ˚ˇ∆ j `PpΛq ´Λx ˘pxq ˇˇÀ 2 ´jγ (B.1) We write for that purpose PpΛqpyq ´Λx pyq "

À 2 |x ´y| β ´β m 2 " 1 |x ´y| β ´β m 2 PB xτ 1 , x g xy f pyq ´f pxqyΠ g x τ and Π g x τ ´Πg z τ " ÿ σăτ g

 22121σăτ SpΛ x qpxq ˇˇÀ 2 ´jr sup x |x| a ˚› › SpΛ x q › › C r ´jr sup x |x| a ˚}Λ x } C β 0 À 2 ´jr for any r ą 0. Note that ˇˇˇż Q j py ´vqΘ x pvqdv ˇˇˇ" ´jβ m for (c) and (d), or ˇˇˇż Q j py ´vqΘ x pvqdv ˇˇˇÀ M ÿ m´jβ m for (e). Hence we can conclude (B.1) by using Lemma 22. Corollary 26. Given a concrete regularity structure T satisfying assumptions (A) and (B) and given a rapidly decreasing model M " pg, Πq, we define the map R : D γ rap pT, gq Ñ C β 0 rap by Rf " P x,y `pΠ g x f pxqqpyq ˘. Then one has `Rf ´Πg x f pxq ˘xPR d P D γ rap . Proof -Let Λ x " Π g x f pxq. Since Λ y ´Λx " ÿ τ zx pτ {σqΠ g z σ, we can check (a)-(e) by definitions on the regularity structure T . Proof of Theorem 7 -Consider the first formula (3.2). First we show that, for each τ P B ẁe have gpτ q " ÿ 1ă `νă `τ, νPB `Pgpτ { `νq rνs g `rτ s g , (B.2)

  pa 1 q B `is a commutative monoid freely generated by a finite set B `and Taylor monomials X 1 , . . . , X d . Each element τ P B `has a positive homogeneity. For general elements in B `, homogeneities are defined by |X i | " 1, and multiplicativity |τ σ| " |τ | `|σ|.

  µRB X P m gpσ{ `µq |∇| m rrµss g `|∇| m rrσss g , for all σ P B `p|τ | ´qzB X with |σ| ă |τ |, ot σ " τ , from the intertwining relation defining P m and the induction assumption, the operator Λ is the unique model on T m pτ q associated by Proposition 10 to the inputs rrσ pmq ss :" |∇| m rrσss g P C |σ|´m

rap pR d q,

  Together with inequality (4.8), the preceding upper bound tells us that g yx pD k τ q P C

	and							
			f pkq τ pxq :" B k y	" f τ pyq	´ÿ τ ďµ, µ{τ RT	X	* ˇˇy g yx pµ{τ q f µ pxq	"x	.	(4.11)
							|µ|ăγ, |µ{τ |ď|k|
									that	ř ´1ďjăj 0 ˇˇg j yx pD k τ q ˇˇis bounded
	above by						
	ÿ jăj 0	ÿ |k 1 |"rbs	ÿ σď `τ |y ´x| |k 1 |`|τ |´|σ| |x| ´a ˚2´jp|σ|´|k|´|k 1 |q `ÿ jăj 0	σď ÿ `τ	|y ´x| |τ |´|σ| |y| ´a ˚2´jp|σ|´|k|q
									|k|ě|σ|
	À |x| ´a ˚ÿ σď					
									|τ |´|k| rap	pR d Rd
	q. This closes the induction step.			
	Remark. One can prove that Theorem 12 holds true in a parabolic setting r0, T s ˆRd , with the
	paraproduct						
			pP f gqpt, xq "	ˆż t	e pt´sq∆	´Pf `pB t ´∆qg ˘¯psq ˙pxq
					0			
	in place of P.					

tpy ´xq ˘dt ´ÿ σď `τ |k|ě|σ| g yx pτ {σq J k,m j `Λg y pσ pmq q ˘pyq, where b :" |τ | ´|k|, by the multivariable Taylor remainder formula. Since |y ´x| ă 2, |x `tpy ´xq| ˚» |x| ˚. It follows then from Lemma 14 `τ |y ´x| |k 1 |`|τ |´|σ| 2 ´j0 p|σ|´|k|´|k 1 |q `|y| ´a ˚ÿ σď `τ |k|ě|σ| |y ´x| |τ |´|σ| 2 ´j0 p|σ|´|k|q À `|x| ´a ˚`|y| ´a ˚˘|y ´x| |τ |´|k| .

  type t is assigned a nonzero real number |t|. One assigns a homogeneity |n|, |o|, |e|, |t| to the decorations and edge types of any decorated tree τ , and set |τ | :" |n| `|o| ´|e| `|t|.

  Lemma 22. If α ě 0 and a P Z, then ż |P i px ´yq||x ´y| α |y| ´a ˚dy À 2 ´iα |x| ´a ˚, ż |Q i px ´yq||x ´y| α |y| ´a ˚dy À 2 ´iα |x| ´a ˚. |P 0 pyq||y| α |y| a ˚dy À 2 ´iα . |P i px ´yq||x ´y| α |y| ´a ˚dy À |x| ´a ˚ż |P i px ´yq||x ´y| α |x ´y| ´a ˚dy À 2 ´iα |x| ´a ˚.

	"	ż	|P i pyq||y| α |y| a ˚dy "	ż	|P 0 pyq| ˇˇy 2 i ˇˇα ˇˇy 2 i ˇˇa ˚dy
			ż		
	ď 2 ´iα		
	If a ă 0,				
	ż				
					˚dy

Proof -If a ě 0,

|x| a ˚ż |P i px ´yq||x ´y| α |y| ´a ˚dy À ż |P i px ´yq||x ´y| α |x ´y| a

  8 rap pR d q, assuming either (a) or (b).For the case (a), there exists b P N such that|∆ i gpyq| À 2 ´iβ |y| b ˚. Since f 7 P C α a`b pR d ˆRdq, for any a P N one has ż |P i py ´uq||f 7 ´a ˚`|y| ´a ˚˘`2 ´iα `|y ´x| α by Lemma 22. Hence we have ˇˇQ j `pP f 7 ¨x gqpyq ˘pzq ˇÀ ÿ For the case (b), since |∆ i gpyq| À 2 ´iβ |y| ´a ˚for any a P N and ż |P i py ´uq||f 7 ux |du À ż |P i py ´uq||u ´x| α du À 2 ´iα `|y ´x| α , |P j pz ´xq||Q j pz ´yq||y| ´a ˚`2 ´iα `|z ´x| α `|z ´y| α ˘2´iβ dxdy À ÿ |i´j|ď4 |z| ´a ˚`2 ´iα `2´jα ˘2´iβ À |z| ´a ˚2´jpα`βq . By Proposition 23, we are done. Proposition 25. [4, Proposition 9] Let γ P R and β 0 P R be given together with a family Λ x of distributions on R d , indexed by x P R d . Assume one has sup xPR d|x| a ˚}Λ x } C β 0 ă 8for any a ą 0 and one can decompose pΛ y ´Λx q under the formΛ y ´Λx "for L finite, R d -indexed distributions Θ x , and real-valued coefficients c yx depending measurably on x and y. Assume that for each there exists β ă γ such that either of the following conditions holds.

						Consider the last
		term. Note that		
			Q j ´`P f 7 ¨x g ˘pyq ¯pzq "	ÿ |i´j|ď4	ż	P j pz ´xqQ j pz ´yqpS i f 7 L ÿ ¨xqpyqp∆ i gqpyqdxdy. c yx Θ x
						"1
				ż	
			ux |du À	´a´b ˚˘du ˚`|x| |P i py ´uq||u ´x| α `|u| ´a´b
				ż	
		À |P |i´j|ď4 ż |P j pz ´xq||Q j pz ´yq|| `Si f 7 ¨xqpyq||p∆ i gqpyq|dxdy
			ż		
	À	ÿ	|P j pz ´xq||Q j pz ´yq| `|x| ´a´b ˚`|y| ´a´b ˚q|y|	b ˚`2	´iα `|y ´x| α ˘2´iβ dxdy
		|i´j|ď4			
			ż		
	À	ÿ	|P j pz ´xq||Q j pz ´yq| `|x| ´a´b ˚|y| b ˚`|y| ´a ˚˘`2 ´iα `|z ´x| α `|z ´y| α ˘2´iβ dxdy
		|i´j|ď4			
	À	ÿ	|z| ´a ˚`2 ´iα `2´jα ˘2´iβ À |z| ´a ˚2´jpα`βq .
		|i´j|ď4			
		we have		
			ˇˇQ j `pP f 7 ¨x gqpyq ˘pzq ˇÀ
			ż		
			ÿ	|P j pz ´xq||Q j pz ´yq||pS i f 7 ¨xqpyq||p∆ i gqpyq| dxdy
			|i´j|ď4		
			ÿ		
			À		

i py ´uq| `|u ´y| α `|y ´x| α ˘`|u| ´a´b ˚`|x| ´a´b ˚˘du À `|x| |i´j|ď4 ż |P j pz ´xq||Q j pz ´yq||y| ´a ˚`2 ´iα `|y ´x| α ˘2´iβ dxdy À ÿ |i´j|ď4 ż

From paracontrolled systems to modelled distributions

We prove Theorem 2 in this section. Let T be a regularity structure satisfying assumptions (A-C). Pick γ P R, and M " pg, Πq P M rap pT , R d q.

The key observation is that proving Theorem 2 is equivalent to an extension problem for the map g. Consider indeed the commutative algebra T F generated by B `and new symbols pF τ q τ PB,|τ |ăγ . Define the homogeneity of the symbol F τ by

The coproduct ∆ F on T F extending ∆ `and such that ∆ `pF τ q " pF τ q b 1 `ÿ τ ďµ pµ{τ q b pF µ q, (4.9)

is coassociative and turns T F into a Hopf algebra. It satisfies assumptions (A-B) with

in the role of B `. Note that T F does not satisfy assumption (C) in general, since the D k F τ have no reason to be independent from the tF µ u µ . The elementary proof of the next statement is left to the reader.

Lemma 15. Given a family pf τ q τ PB of continuous functions on R d , set

Defining a modelled distribution f P D γ rap pT, gq is thus equivalent to extending the map g from T `to T F in such a way that the extended map on pT F , ∆ F q still satisfies the regularity constraints from Definition 6.

Recall from assumption (B) that either µ{τ P spanpB `zB X q or µ{τ P T X , for τ, µ P B. If µ{τ P T X , set µ{τ ":

and define

Then we have

Theorem 16. Let a concrete regularity structure T satisfying assumptions (A-C) be given, together with a family rrf τ ss P

Then r B is a linear basis of T , and there exists a basis r B " r

Proof -Assume that τ P B is expanded by the basis r

with a i P R, k i P N d , and σ i P r B ' . Since the commutative property R α pX k ¨q " X k R α p¨q holds by the definition, R α pτ q is also expanded by r B. By the inversion formula The set r B can be encoded as a set of rooted decorated trees using different decorations from the preceding decorations. Each τ P r B ' is represented by a rooted tree with o and e decorations, together with a new decoration

The map I t k : B' Ñ B' , is defined as follows. For any τ P r B ' with root , the tree I t k pτ q is obtained by adding to τ one node 1 and one edge e :" p , 1 q, with decorations epeq " k and fpeq " . Each τ " X k σ P r B is represented by a rooted tree with decorations n, o, e, f, where n vanishes at any node except the root, where it is equal to k. We call this tree representation of elements of r B the non-canonical representation.

Theorem 21. The basis r B of T BHZ satisfies assumption (D), where r

Proof -The proof is done by the induction on the number of edges on τ in its non-canonical representation. In fact, one can conclude a stronger claim; for any τ P r B ' , one has ∆τ "

Since τ P B `zB X , we have S gpτ q P C 8 rap pR d q and P x,y pg yx pτ qq P C |τ | rap pR d q. For the R terms,

we apply Proposition 24. Recall the expansion formula obtained in [START_REF] Bailleul | Paracontrolled calculus and regularity structures[END_REF];

ÿ σă `σnă `¨¨¨ă `σ1 ă `τ g x pτ { `σ1 q ¨¨¨g x pσ n´1 { `σn q ´gy pσ n { `σq ´gx pσ n { `σq ḡyx pτ { `σq.

If σ P B X , since τ { `σ P spanpB `zB X q, we have g yx pτ { `σq P C |τ |´|σ| rap pR d ˆRd q. For the sum over σ ă `σn ă `¨¨¨ă `σ1 ă `τ , we can see that at least one element among gpτ { `σ1 q, . . . , gpσ n´1 { `σn q, gpσ n { `σq belongs to L 8 rap pR d q. Indeed, if σ n R B X then gpσ n { `σq P L 8 rap pR d q. Otherwise, if σ n´1 R B X then gpσ n´1 { `σn q P L 8 rap pR d q. Since τ R B X , for at least one i we have gpσ i { `σi`1 q P L 8 rap pR d q. Since L 8 poly pR d q ¨L8 rap pR d q Ă L 8 rap pR d q, we can apply Proposition 24-(1) to get P gpτ { `X k q rX k s g .

The first term belongs to C 8 rap pR d q by assumption. For the second term, since rX k s g P C 8 poly pR d q and gpτ { `X k q P L 8 rap pR d q, we can complete the proof. One can obtain formula (3.3) in the similar way. The only difference is that we use Proposition 25 to get P x,y `pΠ x σqpyq ˘P C |σ| rap pR d q, for any σ P BzB X .

We define here the two-parameter extension P m of the modified paraproduct P m . Note that, there is an annulus A Ă R d such that the Fourier transform of the function x Þ Ñ P j px ´yqQ j px ´zq is contained in 2 j A (independently to y, z). Let χ be a smooth function on R d supported in a larger annulus A 1 and such that χ " 1 on A. Letting R j " F ´1`χ p2 ´j ¨q˘, we have

R j px ´wqP j pw ´yqQ j pw ´zqΛpy, zqdydzdw. If necessary, we emphasize the integrated variables by writing P m Λ " P m y,z `Λpy, zq ˘.

For the special case Λpy, zq " f pyqgpzq, we have the consistency relation