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Laboratory experiments on the collapse of a liquid-saturated granular column on a
horizontal plane are reported. The trigger and the resulting dynamics of the collapse when
occurring, as well as the shape of the final deposit, are characterized and analyzed in light
of some dimensionless parameters, namely, the “column” Bond number Bo, the grain
diameter to capillary length ratio d/lc, the initial aspect ratio a, the Stokes number St,
and the initial volume fraction φ, by varying the properties of the interstitial fluid and
of the grains, the geometry, and the compaction of the initial granular column. The main
contribution of this study is to: (i) provide a diagram of the different regimes of collapse
shown to be mostly controlled by capillary effect, (ii) develop simple criteria that capture
the transitions between each regime in terms of critical values of the Bond number and
the ratio of the grain diameter to the capillary length, (iii) extend a predictive model of the
runout for dry collapses to the more general case of liquid-saturated granular collapses, and
(iv) quantify the influence of a, St, and φ on the collapse dynamics and the shape of the final
deposit in the capillary-free regime. A perspective description of the role of the interstitial
fluid on the spreading of the granular medium, and more particularly of the driving role of
the fluid, is discussed and argued on the basis of the present set of experiments.

DOI: 10.1103/PhysRevFluids.4.124306

I. INTRODUCTION

Gravity-driven debris flows, composed of water-saturated granular materials, are encountered in
many geophysical applications [1,2]. They are known to cause human and material damages due
to their highly energetic dynamics. A particular feature of debris flows is that they can spread on
longer distance than an equivalent dry situation [3]. The interstitial liquid then plays a major role on
the dynamics of this grain-liquid mixture.

To understand the physical processes involved and controlling the dynamics of granular flows,
laboratory experiments of canonical configurations turn out to be useful. For instance, the release
of a dry granular column, initially at rest in a reservoir, on a horizontal or inclined bottom plane,
referred to as the granular collapse, has shown to be a relevant configuration to mimic rockfalls,
including the triggering of the avalanche, the flow dynamics, and the jamming process [4–9]. These
dry granular collapses have been intensively studied through both axisymmetric [4,5] and quasi-2D
[6,7] geometries. In the latter configuration, the initial column is characterized by its length Li and
its height Hi. When the granular column is suddenly released, the granular material spreads rapidly
and then stops forming a final deposit characterized by its runout length L f and its final height Hf

(see Fig. 1). One of the remarkable feature of the granular collapse is that the length scales of the
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FIG. 1. Sketch of the experimental setup: A liquid-saturated granular column, defined by its initial length
Li and its initial height Hi, initially on the left side of a sluice gate, is released into air and eventually forms a
deposit characterized by the runout length Lf and the final height Hf .

final deposit, when using an appropriate dimensionless form, mostly depend on the initial aspect
ratio a = Hi/Li following simple power-laws.

In the present contribution, the configuration of the granular collapse in laboratory is extended
to the case of a liquid-saturated granular material to mimic the situation of debris flows. To our
knowledge, no study has considered this specific configuration contrary to the case of an unsaturated
granular column, the so-called pendular state [10]. However, even in this case, studies mainly
focused on the stability of the wet granular pile due to capillary effect as an analogy with the sand
castle configuration [11–13], while the dynamics of the collapse beyond threshold has only been
reported in a few studies [14–18]. In the latter case, these studies showed that the characteristics of
the deposit, as the runout length, the final height, and the top and toe angles of the final deposit, are
strongly dependent on the amount of liquid and the Bond number while time and velocity scales
remain fairly similar to the dry configuration. Configurations where the amount of liquid becomes
similar to the volume of grains, denoted capillary state and slurry state, still suffers from a lack of
studies.

Other configurations share some similarities with the present liquid-saturated granular column,
namely, the slumping of a neutrally buoyant suspension [19–23] and the fully immersed granular
collapse [24–30]. In the first case, the density of the interstitial fluid and that of the grains is similar
and hence the granular pressure is canceled. Contrary to a dry granular case, the collapse of a
neutrally buoyant suspension column does not stop in most of the cases. However, the presence
of the interface is shown to play a major role on the dynamics of the suspension, at least, at large
initial volume fractions φ [22,23]. In the case of a fully immersed granular collapse, the granular
pressure exists as grains are denser than the surrounding fluid, and the jamming process is recovered.
However, the interstitial liquid and the surrounding one are obviously the same and capillary effects
are absent. In this configuration, three granular flow regimes are usually defined, namely, the free-
fall, inertial, and viscous regimes. These regimes are shown to be controlled by (i) the Stokes number
St which prescribes the relative influence of the grain inertia and viscous dissipation of the fluid,
and (ii) the grain-fluid density ratio [28,31,32]. Moreover, in the viscous regime, the initial volume
fraction φ of the granular column has also been shown to play a significant role on the collapse as
opposed to the dry case [24].

The liquid-saturated granular collapse at the laboratory scale then deserves a specific attention
through an experimental study and some physical modeling. To highlight the similarities with
the above-mentioned configurations as well as the key differences which could be significant for
applications, the questions raised in the present contribution are the following. Is a liquid-saturated
granular column affected by capillary effect as the unsaturated case? For instance, can the column
support its own weight and remain static similar to the sand castle configuration? Can capillary effect
influence the dynamics of the collapse beyond the aspect ratio reported in the dry configuration?
Moreover, as capillary effect is expected to be strongly affected by the scale of the flow, can we
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then use the liquid-saturated granular configuration at the laboratory scale as a pertinent model for
geophysical applications? Finally, what is the influence of the initial aspect ratio, the Stokes number
and the volume fraction on the dynamics of a liquid-saturated granular collapse?

II. EXPERIMENTAL DETAILS

Laboratory experiments are performed in a horizontal transparent channel of rectangular cross-
section. The dimensions are 2 m long, 0.35 m high, and 0.20 m wide along the streamwise x,
vertical y, and spanwise z coordinates, respectively (see Fig. 1). The origin (x, y) = (0, 0) is set
at the bottom of a side wall of the channel. On this side, a finite volume reservoir is delimited by a
sluice gate located at x = Li. Four different reservoir widths are used, Li = 3 , 6.5, 10, and 15 cm.
The reservoir is filled up to a height Hi with a liquid-saturated granular material as explained in the
following paragraphs. The initial height of the column Hi is varied from 3 to 33 cm, leading to an
initial aspect ratio a = Hi/Li in the range a = [0.2 : 11].

The liquid-saturated granular column is composed of an interstitial fluid based on a mixture of
water and Ucon oil 75H90000 (a polyalkylene glycol soluble in water) and spherical glass beads
manufactured by Sigmund Lindner GmbH. The dynamic viscosity of the interstitial fluid depends
on the relative concentration of Ucon oil and water which is characterized by the mass fraction
cm = mo/(mo + mw ) with mo and mw the mass of oil and water, respectively. The mass fraction cm

is varied from 0% (pure water) to 40% which corresponds to a variation of viscosity in the range
η f = [1 : 350] cP. The viscosity of the fluid mixture is obtained by rheometric measurements using
a cone-plate geometry in a Haake Mars III rheometer with an accuracy of 5%. The corresponding
fluid density is in the range ρ f = [1000 : 1064] kg m−3, measured by a DMA 35 Anton Paar
electronic densimeter with an accuracy of ±0.5 kg m−3. In some experiments, the influence of
surface tension σ has been investigated in the case of a pure water liquid, i.e., cm = 0, using
0.5 ml of Triton X-100 per liter of water. This leads to a decrease of surface tension from σ =
0.07 N m−1 to σ = 0.03 N m−1, whose values have been measured before the experiments using an
electronic tensiometer DSA 100 with an accuracy of 5 %. Note that some dusty environment could
slightly reduce the effective value of the surface tension during the experiments [33]. However,
the quantitative bias would be similar for all experiments presented, which does not change the
interpretation of the results. The grain density is ρp = 2500 kg m−3, the grain to interstitial liquid
ratio being roughly constant and of order one. Its influence will thus be disregarded in the following.
Different grain sizes are also investigated, the grain diameters ranging from d = 0.120 mm to
d = 10 mm. The corresponding angle of avalanche θa and angle of repose θr are given in
Appendix A.

To prepare the initial liquid-saturated granular column, grains are poured in the reservoir
previously filled with the liquid. The granular suspension is then mixed with a propeller driven by a
drill motor. Then, the reservoir is gently kicked with a rubber mallet to compact the granular material
[24,34]. The maximum volume fraction of the initial column obtained here is φ = 0.64 ± 0.02, i.e.,
a dense packing configuration. Even if most of the results presented in the following correspond
to this dense packing configuration, some results will be presented for a range of volume fraction
φ = [0.616 : 0.643]. Finally, the excess of fluid standing above the granular column is removed
by a valve located under the reservoir. The valve is closed when the height of the liquid is equal
to that of the top of the granular column. Note that the volume of interstitial liquid varies with
φ as (1 − φ)HiLiW with W = 0.2 m the width of the channel. This procedure suggests that the
liquid-saturated granular column is at the frontier between the slurry state and capillary state as
top surfaces of the grains are just in contact with the liquid interface. The range of dimensionless
parameters, associated with the properties of the liquid-saturated granular mixture together with the
ambient air and covered in the present study, are given in Table I.

At time t = 0, the sluice gate is removed manually at a roughly constant speed of 2 m s−1

and the initial liquid-saturated granular column is released on a smooth bottom plane. In all
of the experiments, the corresponding opening time of the sluice gate was less or equal to the
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TABLE I. Dimensionless parameters associated with the properties of the liquid-saturated granular column,
used in the present work. Note that the indices p, f , and a denote the grain, the interstitial liquid, and the
ambient air, respectively. Vgrains and Vcolumn denote the volume of grains and the total volume of the column,
respectively.

Dimensionless parameter Definition Covered range

Grain-liquid density ratio ρp/ρ f ≈2.5
Liquid-air density ratio ρ f /ρa 103

Liquid-air viscosity ratio η f /ηa [55 : 2 × 104]
Initial aspect ratio a = Hi/Li [0.2 : 11]
Initial volume fraction φ = Vgrains/Vcolumn [0.616 : 0.643]

column free-fall timescale TFF = (2Hi/g)1/2 which ensures that the initial condition does not affect
significantly the collapse, as shown by Ref. [35] (see their Sec. 4.1). Once released, the material
deforms then, it slumps in the majority of cases. Its shape is characterized by the height profile
h(x, t ), extracted from image analysis using a classical shadowgraphy method. For this purpose,
the 2D-flow in the (x, y) plane is recorded using a Basler 2048 × 2048 pixels camera or a sCMOS
Lavision 2560 × 2160 pixels camera and a backlight source on the opposite side of the channel.
The obtained resolution is about 400 μm/pixel and the acquisition rate is between 10 and 200 Hz,
depending on the timescale of the flow.

III. PRELIMINARY OBSERVATIONS: FLOW REGIMES

A. The different flow regimes in a water-saturated case

The typical evolution of a water-saturated granular collapse for various grain diameters, namely,
d = 120 μm, d = 500 μm, and d = 5 mm, is presented in Fig. 2. Here, the initial aspect ratio and
the initial volume fraction are identical for all cases, with a ≈ 1.3 (Hi = 20 cm, Li = 15 cm) and
φ ≈ 0.64, respectively. Movies of these experiments are also available in the Supplemental Material
[36]. One can clearly observe that the collapse dynamics and the morphology of the final deposit
are strongly dependent on the size of the grains.

At small d = 120 μm [Fig. 2(a)], the liquid-grain column remains static after the sluice gate
is opened (even after several hours). This observation has already been reported in the case of a
neutrally buoyant suspension, with a = 1, φ > 0.61, and d < 230 μm [23]. This configuration will

FIG. 2. Snapshots of some water-saturated granular collapses for various grain diameters: (a) d = 120 μm,
(b) d = 500 μm, and (c) d = 5 mm. In Fig. 2(b), the failure angle θ f with respect to the horizontal plane is
indicated. In all cases, the initial aspect ratio is a ≈ 1.3 and the initial volume fraction is φ ≈ 0.64 (i.e., initially
densely packed).
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FIG. 3. Diagram of the different regimes of collapse of an initially densely packed water-saturated granular
column in the parameter space (d, Hi ) with Li = [3 : 15] cm.

be referred to as the static regime. At larger d = 300 μm (not shown here), the granular column
remains roughly static while the interstitial liquid flows out of the porous granular medium. This
induces a slight erosion at the bottom of the granular column, while the upper part maintains its
initial shape. This configuration will be referred to as the fluid-leaking regime. A movie of this
regime is available in the Supplemental Material with a ≈ 2 [36]. At even larger d = 500 μm
[Fig. 2(b)], the granular material cannot be maintained in its initial shape and the upper part of the
column collapses as a block. This leads to a non-monotonous height profile of the final deposit.
This configuration will be referred to as the block-avalanche regime. Note that, in this case, a
failure angle (w.r.t. the horizontal plane) can be defined [see Fig. 2(b)]. It is observed to be roughly
constant, namely, θ f = 56 ± 3◦, independently of the grain diameter d and the initial height Hi

in the range of parameters considered here. At the largest d = 5 mm presented here [Fig. 2(c)], the
water-saturated granular column collapses, the motion being initiated at the bottom of the column as
usually observed in the dry configuration. The granular column then rapidly spreads in the horizontal
direction and then stops forming a final deposit. This configuration will be referred to as the
continuous-avalanche regime. Even if the two latter regimes highlight significant differences, they
can be both considered as a collapse regime as, in both cases, part of the material slumps and spreads
over the horizontal bottom. Note that the block-avalanche regime and the continuous-avalanche
regime have already been observed for cohesive granular collapses [16].

These different regimes are summarized in the (d, Hi ) plane in Fig. 3. In particular, the
static regime, fluid-leaking regime, block-avalanche regime, and continuous-avalanche regime are
represented by red squares ( ), orange diamonds ( ), gray triangles ( ), and blue circles ( ),
respectively.

B. Dimensional analysis

Results obtained in the literature with an equivalent dry configuration did not report the different
regimes observed here, suggesting that the initial aspect ratio a and the initial volume fraction φ are
not the pertinent dimensionless parameters to explain these observations. Then, the interstitial fluid
has to be accounted for to explain these regimes. Three dimensionless parameters, involving the
properties of the interstitial fluid and of the interface between the interstitial liquid and the ambient
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air, can be defined for this configuration, namely, the Stokes number St, the length ratio d/lc (with
lc the capillary length, defined later in this section), and the Bond number Bo.

The Stokes number is defined as St = (1/18
√

2)[ρp(ρp − ρ f )gd3]1/2/η f , and it prescribes the
relative influence of the grain inertia and fluid dissipation. Here, this number is in the range St =
[0.2 : 200]. Note that with the present values of (St, ρp/ρ f ) the dynamics of the collapse may be
in the transition region between the viscous regime and the inertial regime, characterized in fully
immersed granular flows [28,31].

The length ratio d/lc and the Bond number Bo account for possible capillary effects at the
interface between the interstitial liquid and the ambient air. In the present case, these contributions
can only take place close to the free-surface of the liquid-saturated granular medium, contrary to
the pendular state configuration for which capillary bridges can also induce cohesion in the bulk
of the granular medium. To activate a capillary pressure on the granular material in the present
configuration, the liquid-air interface has to be deformed at a length scale which is similar to the
capillary length lc. This might occur on a relatively short timescale, as such deformation is not
present in the initial configuration. This suggests an initial decompaction of the granular column
just after removing the sluice gate, leading to a so-called capillary state for which deformation of
the liquid-air interface occurs on a scale imposed by the grain diameter. Note that this decompaction
only occurs for initially dense configuration, typically φ � 0.6, for which the granular media need
to expand before flowing [24]. Due to this initial deformation of the system, a capillary pressure
induced by the curvature of the liquid-air interface between two consecutive grains at the surface
of the granular medium can prevent extra grain motion. A first dimensionless parameter that can
be built accounting for this capillary effect is based on the ratio between the grain diameter
d and the capillary length lc = √

σ/ρ f g, i.e., d/lc = d
√

ρ f g/σ . Here, it is found in the range
d/lc = [0.04 : 4], which suggests that capillary effects could affect the grain motion at the interface.
To compare the macroscopic scale Hi and the microscopic scale d highlighted in Fig. 3, another
dimensionless number can be built upon the pressure due to the weight of the initial column and
the capillary pressure. The capillary pressure induced by the interface deformation and driven at the
grain scale can be estimated as Pc ≈ εσ/d, where ε quantifies the size of the meniscus compared
to the diameter d . Additionally, the driving mechanism for the collapse of the column is the static
pressure of the grain-fluid mixture. Considering the effective medium, this pressure can be estimated
as Ph ≈ ρgHi, where ρ = φρp + (1 − φ)ρ f is the effective density of the grain-fluid column. The
ratio of these two pressures gives Ph/Pc = ρgHid/εσ . This ratio is analogous to a Bond number,
which includes both the “small” and the “large” scales of the problem, namely, the grain diameter
d and the initial height of the column Hi. In the following and for the sake of simplicity, we
withdraw ε from the previous expression and here define the so-called “column” Bond number
as Bo = ρgHid/σ . In this work, the Bond number is in the range Bo = [1 : 600] which suggests
that capillary effects could affect the collapse.

The definitions of St, d/lc, and Bo all involve d , suggesting that they could be associated with
the existence of the different regimes as highlighted by the dimensional transition map in Fig. 3.
However, previous results on fully immersed granular collapses did not report these regimes. Yet,
fully immersed collapses also involve St even when no liquid-air interface is present. Actually,
viscous dissipation can affect the dynamics of the flow but cannot explain plastic transition as
fluid viscosity does not involved an extra pressure contribution. This suggests that St is probably
not the pertinent parameter to provide a physical interpretation to the regime transitions, even if
it can play a significant role on the dynamics of the system within a specific regime, as discussed
later. Moreover, note that these regimes remind of the sand castle configuration often reported for
unsaturated granular column [11–13]. These observations suggest that capillarity, i.e., d/lc and Bo,
controls the different regimes and more particularly their transition.

To conclude, the transition between the different regimes can only be due to capillary effect and
thus involves d/lc and Bo. The role of d/lc and the “column” Bond number Bo regarding these
transitions of regimes is thus discussed through simplified models, in Sec. IV. Then, the dynamics
of the collapse regimes can be analyzed with respect to the above-mentioned dimensionless
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FIG. 4. Diagram of the different regimes of collapse of an initially densely packed water-saturated granular
column in the parameter space (d/lc, Bo): static; fluid-leaking; block-avalanche; continuous-
avalanche. Red dashed line: Eq. (1) with ε = 5.5 ± 0.5; gray band: Eq. (2) with ε = 5.5, φ = 0.64 and
22◦ � δ � 28◦; blue area: region where dc/lc � d/lc � d ′

c/lc with dc/lc and d ′
c/lc given by Eqs. (3) and (4),

respectively.

parameters, namely, Bo, a, St, φ. For the sake of clarity, the description of the dynamics of the
collapse regimes, i.e., block-avalanche regime and continuous-avalanche regime, in which capillary
action can remains significant at least close to the transition between these two regimes, will first
be discussed with respect to the Bond number Bo and the initial aspect ratio a in the case of a
water-saturated configuration (Sec. V). Then, a deeper investigation of the continuous-avalanche
regime, when capillary effect becomes negligible, is presented in Sec. VI, with a specific attention
on the influence of the aspect ratio a, the Stokes number St and the initial volume fraction φ. For
this purpose, the water-saturated configuration is extended to the liquid-saturated granular collapse
for which the viscosity of the interstitial liquid is varied from the water one. In Fig. 3, shaded areas
summarize the regimes associated to the following sections.

IV. TRANSITIONS OF REGIMES: ROLE OF THE BOND NUMBER AND OF THE GRAIN
DIAMETER TO CAPILLARY LENGTH RATIO

Capillary effect is assumed to be at the origin of the different regimes observed in Fig. 3
as explained in the previous section. We therefore report the experimental data of Fig. 3 in the
parameter space (d/lc, Bo) in Fig. 4. These two dimensionless numbers have been discussed
in the previous section, and basically characterize the capillary effect at the grain and column
scales, respectively. In Fig. 4, one observes that d/lc and Bo are indeed the relevant dimensionless
parameters controlling the transitions. More particularly, Bo shows to be the control parameter
which prescribes the transition between the static regime and others regimes. This transition is
therefore based on an equilibrium state at the column scale. In contrast, d/lc delineates the two
collapsing regimes, which transition is thus controlled by the grain length scale. To provide simple
scalings highlighting the influence of capillary effect on the transitions between the different
regimes, we first assert that the static regime can exist as long as capillary effect at the interface
between the interstitial liquid and the surrounding air prevents from the initial decompaction of
the granular medium that would be necessary for motion. In return, the static granular medium
holds the interstitial fluid back due to the same capillary effect. Therefore, motion can be initiated
either by the fluid (fluid-leaking regime) or both the grains and the fluid (avalanche regimes). It is
found here that both situations are obtained even if collapsing regimes cover a wider zone in the
parameter space (d/lc, Bo), while the fluid-leaking regime is only observed in a delimited area (see
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Fig. 4). In the present work, the above-mentioned motions can only be initiated by a driving pressure
associated with gravity.

A. Static regime versus fluid-leaking regime

Let us consider the only liquid phase inside the column to address the transition from the static
regime to the fluid-leaking regime. Here, the granular phase can be regarded as a static porous
medium filled with water as the granular materials remain at rest, unlike collapsing regimes. Its
presence is thus mostly reduced to the existence of a capillary pressure on the interstitial fluid
phase at its interface with the ambient air, i.e., top and right of the column in Fig. 1. The hydrostatic
pressure of the liquid P f

h is maximum at the bottom wall and one can write P f
h = ρ f gHi. In the static

regime, this pressure is not large enough to overcome the capillary pressure Pc, which prevents
the liquid from flowing out of the granular column, or the equivalent static porous media in the
present model. As mentioned in the previous section, this pressure is estimated as Pc = εσ/d where
ε = O(10) [12,37]. Now, we assume that a rough criterion for the transition between the static
regime and the fluid-leaking regime is when P f

h = Pc. Using this equality together with the definition
of the Bond number Bo = ρgHid/σ , one obtains the following criterion for the transition between
the static regime and the fluid-leaking regime as

Bo = ε
ρ

ρ f
≡ BoF . (1)

We find that a value of ε = 5.5 ± 0.5 allows to delimit the transition obtained experimentally. With
the present set of liquid and grains, it corresponds to BoF = 11. In Fig. 4, the dashed red line
corresponds to ε = 5.5, while the light red area around this value indicates the sensitivity of the
transition with the parameter ε in the range ±0.5. From now on and unless stated otherwise, we
therefore set ε = 5.5.

B. Static regime versus block-avalanche regime

Let us now consider the only granular medium. The fluid phase is reduced to the only existence
of a capillary pressure at the interface of the granular medium with the ambient air, as well as a
buoyancy contribution to the weight of the granular material. We propose a simple model based on
a failure criterion determined by the Mohr-Coulomb theory. For this purpose, one assumes that
the granular column is subjected to a vertical stress σy and a horizontal stress σx which obey
the following failure relation σ c

y = [(1 + sin δ)/(1 − sin δ)]σx, where the exponent c stands for
“critical” and δ is the friction angle of the granular material. In the case of a liquid-saturated
granular column, both the granulostatic pressure Pg = φ(ρp − ρ f )gHi and the capillary pressure
Pc = εσ/d located at the interface of the column, induce a stress at the base of the granular column.
In the horizontal direction, this reads σx = εσ/d, while in the vertical direction, one can write
σy = φ(ρp − ρ f )gHi + εσ/d , at the bottom wall. Note that we have assumed here that the capillary
stress is fully transmitted to the granular media. It then leads to the following criterion for the
transition between the static regime and the block-avalanche regime,

Bo = ερ

φ(ρp − ρ f )

(
2 sin δ

1 − sin δ

)
≡ BoG. (2)

In Fig. 4, the gray band indicates the location of the critical Bond number BoG given by Eq. (2). The
thickness of the line represents the range of BoG considering a friction angle included in the range
θr � δ � θa, with θr and θa the repose and avalanche angles of the granular material, respectively.
Note that these angles are d-dependent as accounted for by Eq. (A1) (see Appendix A), leading to a
variation of the transition with d/lc in the parameter space (d/Lc, Bo) (Fig. 4). Equation (2) allows
us to delineate the block-avalanche regime fairly well. It is worth mentioning that for small d/lc,
this transition occurs at larger Bo. It therefore allows the emergence of a fluid-leaking regime zone
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in the parameter space (d/lc, Bo), as observed in Fig. 4 and described previously. To finish with,
note that the Mohr-Coulomb theory gives an estimate of the failure angle θ f of the granular column
(w.r.t. the horizontal direction), which reads θ f = π/4 + δ/2. Assuming that the friction angle δ is
between θr = 22◦ and θa = 28◦, for 500 μm � d � 1.15 mm, we obtain 56◦ � θ f � 59◦, which is
in agreement with experimental observations, i.e., θ f = 56 ± 3◦ [see Fig. 2(b), for instance].

C. Block-avalanche regime versus continuous-avalanche regime

The above-mentioned criteria are based on the scale of the entire granular column. The key idea
in the following is to suppose that a continuous-avalanche regime, in contrast to the block-avalanche
regime, can only be obtained when capillary forces cannot influence any longer the grain motion.
Thus, considering a simple balance at the grain scale between gravitational forces, of the order of
ρpgd3, and capillary forces, of the order of σd , leads to a criterion based on a critical diameter to
capillary length ratio dc/lc as

dc

lc
=

(
ρ f

ρp

)1/2

, (3)

which here gives dc/lc ≈ 0.6. A more “refined” analysis consists in considering the academic
problem of a local capillary bridge between two grains. In the specific case of two identical spheres
in contact, a reasonable estimate of the capillary force is Fc ≈ πσd [38]. Equating Fc with the weight
of one sphere Fg = πρpgd3/6 gives a second criterion for existence of a continuous-avalanche
regime in terms of a slightly different critical length ratio d ′

c/lc as

d ′
c

lc
=

(
6ρ f

ρp

)1/2

, (4)

which here gives d ′
c/lc ≈ 1.6 . In Fig. 4, the blue area represents the range dc/lc � d/lc � d ′

c/lc and
shows a fair prediction of the transition between the block-avalanche regime and the continuous-
avalanche regime. Note that the critical diameter has been shown to be dependent on other
parameters, such as the grain roughness, the liquid content or the meniscus shape, for instance,
which are not consider here [39,40].

To conclude, the simple scaling analyses proposed here and based on a significant contribution
of capillary effects at the column [Eqs. (1) and (2)] and grain [Eqs. (3) and (4)] scales allowed to
explain the transition between the different observed regimes, from static to avalanche dynamics.

V. AVALANCHE REGIMES: BEYOND THE INITIAL ASPECT RATIO

In the block-avalanche and the continuous-avalanche regimes, i.e., in any collapse regime, one
may attempt to characterize the deposit in terms of final runout length L f /Li and height Hf /Hi, as
done in the case of dry granular collapses.

Figure 5 presents the corresponding L f /Li [Fig. 5(a)] and Hf /Hi [Fig. 5(b)] as a function of the
initial aspect ratio a = Hi/Li. Note that, in the present work, L f is defined as the mean value of
four estimates obtained with various criteria presented in Appendix B. The observed general trend
here is an increase of L f /Li and a decrease of Hf /Hi with a. However, one can observe a significant
dispersion of results, unlike the equivalent dry case. In the latter case, the data fall reasonably well on
some master curves which indicates that the final runout length and height follow simple power-laws
over a (see cross symbols in Fig. 5, corresponding to the dry results). This dispersion is, among
others, related to capillary effect via the specific value of the Bond number being varied here either
through Hi or d . This statement is confirmed by the coherent evolution of L f /Li and Hf /Hi with
respect to Bo, as highlighted by the gray levels attributed to symbols. In particular, L f /Li and Hf /Hi

are shown here to increase and decrease with Bo, respectively. Note that L f /Li roughly increases by
a factor of 3 when a is increased over a decade and Bo is increased by about three decades. Similar
conclusions can also be drawn with the final height Hf /Hi.
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FIG. 5. (a) Runout length Lf /Li and (b) final height Hf /Hi as a function of the initial aspect ratio a =
Hi/Li. Symbols correspond to experiments performed in the block-avalanche regime (�) and in the continuous-
avalanche regime (�), while colors indicate the value of the Bond number Bo = ρgHid/σ (see color bar). Cross
symbols correspond to the dry case with the same set of grains.

Using an approach similar to Lajeunesse et al. [7] who predicted the power-law dependence
between L f and a for a dry granular collapse, we develop a model accounting for Bo-effects in
the case of a liquid-saturated granular configuration. For conciseness, the detailed derivation of the
model is given in Appendix C.

Briefly, we first perform a force balance on the liquid-saturated granular column, including (i)
the friction force at the bed level, (ii) a force related to the granulostatic pressure, and (iii) the
capillary force at the grain scale. Note that such force balance model provides a description of the
fluid-particle mixture but it neglects the relative motion of the two phases and the viscous dissipation
induced by the liquid. We further assume the shape of the final deposit to be triangular, which can be
anticipated to be a crude assumption, in particular, to described the block-avalanche regime. Using
mass conservation, we finally obtain the following equation:

L f − Li

Li
= 4λ2a2

(
L f

Li

)−2

− 2λ2μφ
ρp − ρ f

ρ
a − 2ελ2μ

a

Bo

(
L f

Li

)
, (5)

which predicts the final runout length L f as a function of the density ratio (ρp − ρ f )/ρ, the initial
aspect ratio a, the initial volume fraction φ, the “column” Bond number Bo and two extra parameters
μ and λ. The parameter μ is the friction coefficient between the granular material and the bottom
plane and λ is an empirical parameter defined as the ratio of the characteristic time of the collapse
to the free-fall time. In particular, we found λ ≈ 4.8 (for more details, see Appendix C). Note that,
at Bo � 1 and a 	 1, Eq. (5) gives (L f − Li )/Li ∝ a, while at Bo � 1 and a � 1, Eq. (5) gives
(L f − Li )/Li ≈ L f /Li ∝ a2/3. We thus recover Lajeunesse et al. [7]’s scaling laws obtained for a
dry granular collapse.

The experimental results, already given in Fig. 5(a), are compared to Eq. (5) in Fig. 6(a). In
particular, the final runout L f /Li is shown in the parameter space (a, Bo). Symbols and full lines
correspond to experimental data and solutions of Eq. (5), respectively, and colors indicate ranges
of L f /Li. In Fig. 6(b), L f /Li is also plotted as a function of Bo, with a = 2, to provide a more
quantitative comparison. To highlight the influence of the different terms in Eq. (5) and to adjust
fitting parameters of the model (λ, μ, and ε) when needed, partial solutions corresponding to
different balance of the terms in Eq. (5) are presented in Fig. 6 (dash-dotted and dashed lines).
First, dash-dotted lines correspond to a balance of the driving pressure term [first term on the
right-hand side of Eq. (5)] and the friction term induced by the capillary pressure [third term on the
right-hand side of Eq. (5)]. Here, εμ = 2.2, or equivalently ε = 5.5 and μ = 0.4, has been chosen
according to the results obtained in the previous section. Dashed lines correspond to the balance of
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FIG. 6. (a) Runout length Lf /Li in the parameter space (a, Bo). Experiments: (�) block-avalanche regime,
(�) continuous-avalanche regime. (b) Runout length Lf /Li as a function of Bo, with a = 2. The Bond number
is varied through the grain size d (d increasing from light to dark gray), the initial height of the granular column
Hi = [20, 30] cm (circles and diamonds, respectively) and the surface tension σ ∼ [0.03, 0.07] N m−1

(closed and opened symbols, respectively). Predictions of Eq. (5): (- · - · -) balance of the driving pressure
term and the friction term induced by capillary pressure [first and third terms on the right-hand side of Eq. (5)]
with εμ = 2.2, i.e., ε = 5.5 and μ = 0.4 (≈ tan θr ); (- - -) inertialess solution with λ → ∞, εμ = 2.2 and
μ = 0.04; (—) full solution with λ = 4.8, εμ = 2.2, and μ = 0.04. The initial volume fraction is set to
φ = 0.64.

the right-hand side of Eq. (5), corresponding to λ → ∞, i.e., an inertialess solution. Here, μ has to
be set to μ = 0.04, while keeping εμ = 2.2 as previously, to adjust the solution with experimental
data [see the dashed lines in Fig. 5(b), in particular]. To finish with, solid lines correspond to the
full solution of Eq. (5) keeping parameters of the right-hand side terms the same as previously and
setting λ = 4.8.

The present model is in qualitative agreement with experiments. In particular, the increase of
L f /Li with a and Bo is captured by the present model. However, the parametric study (dashed,
dash-dotted and solid lines, in Fig. 6) shows that the values of the parameters have to be adjusted to
reasonably fit the experimental solutions. Here, we chose to modify only the friction term associated
with the weight of the column [μ = 0.04 in the second term on the right-hand side of Eq. (5)] and to
keep εμ = 2.2 and λ = 4.8 as found in the previous section and from the estimation of the collapse
timescale (Appendix C), respectively. Choosing this set of parameters allows to capture most of the
dynamics of the collapse, as observed in Fig. 6. However, adding the inertial term does not provide
better results than a simple balance of the right-hand side terms in Eq. (5). Better adjustment of
the fitting parameters λ, μ, and ε could give better agreement between the model and experimental
data. Regarding the simplicity of the model, we preferred to keep most of the parameters as the one
obtained through other methods for the sake of clarity. In any case, the value of λ = 4.8, as obtained
in Appendix C, does not provide satisfactory solution whatever μ and ε. This can be attributed to
the simplicity of the model and, in particular, the relatively gross modeling of the inertial term.
Moreover, other physical ingredients included in St and φ have been disregarded so far. These
parameters probably influence the dynamics of the collapse, and could also explained some of the
discrepancies between the model and the experimental data. These parameters will be discussed in
detail in the next section for which capillary effects can be disregarded, allowing to distinguish their
specific influence from Bo.

Overall, the present results show that the simple model Eq. (5) is able to predict the general
evolution of the final deposit shape of a liquid-saturated granular collapse as a function of a and Bo,
meaning that most of the physical mechanisms is included in the model. However, caution must be
exercised when using Eq. (5) for a quantitative prediction, since it is sensitive to the specific value
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FIG. 7. Sketch of the temporal evolution of the granular front position x f − Li for a liquid-saturated
granular collapse in the continuous-avalanche regime. The dynamics is decomposed into five stages: three
stages where the front of the column is at rest (I , III, and V ) and two stages where the front is spreading (II
and IV ). Indices t and r used in the definition of the transition times and distances denote “trigger” and “rest”,
respectively.

of the parameters λ, μ and ε. Improvement of the model would deserve a specific attention which
is beyond the scope of the present paper.

VI. CONTINUOUS-AVALANCHE REGIME: THE CAPILLARY-FREE REGIME

In previous sections, the influence of capillary effects has been shown to play a major role on the
dynamics and the characteristics of the final deposit of a water-saturated granular collapse. These
observations and descriptions are of interest for many applications as well as for improving our
knowledge on the physical processes involved in liquid-grain mixture flows. However, in many
geophysical applications, the flow is generally not affected by the capillary effects highlighted here,
which are likely to be observed due to a scale effect. In this section, we thus focus on the continuous-
avalanche regime in which capillary effects are negligible (Bo � 1 and d > dc). In this case, beyond
the initial aspect ratio a, the Stokes number St and the initial volume fraction φ could also influence
the flow dynamics as observed and reported in different studies on immersed granular collapses
[24,28]. In particular, in the case of debris flows, Rickenmann [3] reported that the presence of
liquid could enhance mobility compared with an equivalent dry situation. This is probably one of
the key issue to be addressed for prediction purpose. The spreading length will thus be compared
with the dry configuration and the influence of the different dimensionless parameters will discussed
in this section. As often reported in the literature, its corresponding dry runout length, denoted here
Ld

f , will be assumed to be only dependent on a and not affected by St or φ. This latter statement will
nevertheless be discussed in the following.

Recall that the liquid-saturated granular collapse belongs to the continuous-avalanche regime at
the laboratory scale if the grain diameter is larger than a critical value (see Sec. IV). To observe and
quantify the influence of the Stokes number, different liquid viscosities have thus to be explored
to reach small values of St for large enough d to remain in the continuous-avalanche regime. A
first observation when St is varied in the continuous-avalanche regime is a modification of the
front evolution on a relatively large timescale compared to the case of a water-saturated granular
column presented so far. A sketch of the temporal evolution of the front position x f − Li is shown
in Fig. 7. First, the front remains nearly frozen from t = 0 to t = Tt1 referred to as the trigger
time (phase I). At t = Tt1, the granular column collapses until reaching a first runout length Lr1,
at t = Tr1 (phase II). For Tr1 � t � Tt2 (phase III), the granular material remains frozen, with a
front position equal to the location of the first stop x f = Lr1. More surprisingly, and contrary to
other collapse configurations as the dry or the fully immersed one, at t = Tt2, the granular front
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FIG. 8. (a) Runout length Lf /Li and (b) final height Hf /Hi as a function of the initial aspect ratio
a = Hi/Li for liquid-saturated granular collapses in the continuous-avalanche regime ( ). Note that here, the
Stokes number St and the initial volume fraction φ were varied. Inset: selected experiments where St = 42
and φ = 0.63 ± 0.01. For comparison, we also plot the results of dry collapses (×) performed with the
same experimental setup and the same grains (d = 3.15 and 5.0 mm). (—) Lf /Li = λ1a2/3, with λ1 = 4 and
Hf /Hi = λ2a−2/3 with λ2 = 0.7; (- - -) λ1 = [2.5 : 6.5] and λ2 = [0.5 : 0.9].

spreads again due to liquid flowing out of the porous granular medium (phase IV ). This liquid
leaking dynamics leads to a modification of the shape of the deposit characterized by a second
runout length x f = Lr2, at t = Tr2 (phase V ). Note that the runout length considered in previous
sections corresponds to L f = Lr2. In the following, the different times Tt,r are defined as the time
for which we have dx f (Tt,r − �t )/dt < ζ and dx f (Tt,r )/dt � ζ where �t is the time step between
two consecutive images and ζ is a small threshold parameter of about 10% of

√
gHi.

A. Role of the initial aspect ratio

Figure 8 presents the runout length L f /Li [Fig. 8(a)] and the final height Hf /Hi [Fig. 8(b)]
as a function of the initial aspect ratio a = Hi/Li for liquid-saturated granular collapses in the
continuous-avalanche regime (closed circles). For comparison, we also plot experimental results of
dry collapses performed with the same experimental setup and the same grains (crosses). One first
observes that L f /Li and Hf /Hi follow the same global trend over a compared to the dry case, even
if a significant dispersion in the results is observed. To highlight the origin of this dispersion, which
cannot be longer attributed to capillarity as in previous sections, the same characteristic lengths are
shown in the insets of Fig. 8 for a limited set of experiments where St = 42 and φ = 0.63 ± 0.01.
In this case, the dispersion is significantly reduced. This supports the fact that St and φ play a role
on the characteristics of the final deposit, and thus explain the dispersion observed in the obtained
measures of L f /Li and Hf /Hi shown in Fig. 8.

Moreover, the solid lines correspond to the scaling laws L f /Li = 4a2/3 [Fig. 8(a)] and Hf /Hi =
0.7a−2/3 [Fig. 8(b)] in line with the usual scalings found for the dry situation [7]. Note that a best
fit of the dry case gives L f /Li ∝ a0.73 and Hf /Hi ∝ a−0.70. Results obtained for the characteristic
lengths of the final deposit of liquid-saturated granular collapses, when St and φ are varied, spread
in an interval which remains bounded in the range of parameters considered here. In particular, this
interval can be delimited by two scaling laws which share common features with the scaling laws
obtained for the dry case, only the prefactor being modified (see the dashed lines in Fig. 8). More
surprisingly, L f /Li and Hf /Hi can be either larger or smaller than in the dry case. This indicates the
ambivalent role of the interstitial fluid on the granular material dynamics.

We can conclude that, beyond the initial aspect ratio a, for which the trend obtained in the dry
case can be extrapolated to the present configuration, St and φ also play a role on the dynamics,
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FIG. 9. Trigger time Tt1 normalized by (a) the free-fall time τff = [2ρpd/(ρp − ρ f )g]1/2 and (b) the viscous
time τv = 18η f /(ρp − ρ f )gd as a function of the Stokes number St (a = 2 and φ = 0.64). Insets: (a) Time
evolution of the front position x f − Li of the corresponding experiments. Colors indicate the range St = [0.2 :
42] from light to dark gray. (b) Dimensionless trigger time Tt1/τvg(φ), with g(φ) = (1 − φ)−2.8 and φ = 0.64,
as a function of St. (- - -) Tt1/τff = Tt1/τvg(φ) = 1; (- · - · -) Tt1/τv = 20. The gray area represents the range of
St for which no second spreading phase was observed.

thus modifying quantitatively the characteristic lengths of the final deposit. Their influences are
characterized independently in the following sections.

B. Role of the Stokes number

To assess the influence of St, the other dimensionless parameters, a, φ, and Bo are kept constant
here. The variation of St is here obtained by varying the viscosity of the interstitial fluid η f while
the other physical parameters are kept constant, namely, d = 3.15 mm, ρp = 2500 kg m−3 and ρ f ≈
1000 kg m−3. We then set a = 2, φ = 0.64 and Bo = 160. The influence of St is discussed in the
following in terms of the timescales of the collapse (Figs. 9 and 10) and the shape of the final deposit
(Figs. 11 and 12).

FIG. 10. Characteristic times of the front dynamics as a function of St (a = 2 and φ = 0.64): (�) Tr1–first
stop, (�) Tt2–second start, (�) Tr2–second stop. We substracted from these times the first trigger time Tt1 and
scaled them by the column free-fall timescale TFF = (2Hi/g)1/2. (- - -) (T − Tt1)/TFF = λ = 4.8, (- · - · -)
(T − Tt1)/TFF ∝ St−1. The gray area represents the range of St for which no second spreading phase was
observed. The inset shows (Tr2 − Tt2)/TFF as a function of St.
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FIG. 11. Location of the first arrest Lr1 (�) and the second arrest Lr2 ≡ Lf (�) relative to that of the
corresponding dry collapse Ld

f as a function of St (a = 2 and φ = 0.64). (+) Results of the runout length
Li

f for fully immersed dense granular collapses, extracted from Bougouin and Lacaze [28]. The gray area
represents the range of St for which no second spreading phase was observed.

We first observe that a trigger lag time Tt1 has to be reached prior collapse [see inset of Fig. 9(a)].
Tt1 may correspond here to the time for the granular medium to expand prior to collapse, since the
granular column is initially densely packed (recall that φ = 0.64). Such an observation has already
been reported in the case of a fully immersed granular collapse [24,28,41]. The trigger time Tt1

is plotted as a function of the Stokes number St in Fig. 9. Here, Tt1 is normalized by the free-fall
timescale at the grain scale, namely, τff = [2ρpd/(ρp − ρ f )g]1/2, which corresponds to the time that
a grain needs to travel over a diameter d , starting from rest and submitted to gravity [Fig. 9(a)].
Tt1/τff decreases for St increasing until reaching a limit value Tt1/τff ≈ 1 (- - -). This observation is
consistent with the idea that there is some viscous dissipation during the expansion of the granular
media. This effect becomes negligible, at large St, where the trigger time Tt1 is similar to the free-fall
timescale τff. Here, one can reasonably say that, for St � 1.5, the expansion of the granular material
is controlled by viscous dissipation while, otherwise, viscous dissipation can be neglected on the
initial dynamics of the collapse.

Using a similar approach, a viscous timescale can be defined as τv = 18η f /(ρp − ρ f )gd , which
corresponds to the time that a grain needs to travel over a diameter d under the action of gravity and

FIG. 12. (a) Mean angle θm as a function of the Stokes number St (a = 2 and φ = 0.64). The gray area
represents the range of St for which no second spreading phase was observed. (b) Height profile h/Hi as a
function of (x − Li )/Li for St � 1.5 (top) and St � 7 (bottom).
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submitted to a viscous drag force. Figure 9(b) shows Tt1/τv as a function of St. At low St, Tt1/τv is
actually constant and equal to Tt1/τv ≈ 20 (- · - · -). It supports that the trigger time Tt1 scales with
a viscous time τv at the grain scale. Note that a better scaling is obtained considering an effective
viscosity accounting for the local volume fraction. In particular, an effective viscosity of the form
ηeff = η f g(φ) with g(φ) = (1 − φ)−2.8 leads to Tt1/τvg(φ) ∼ 1, at sufficiently low St [dashed line
in the inset of Fig. 9(b)]. The function g(φ) used here was obtained by Gibilaro et al. [42] in the
case of a fluidized bed configuration. The initiation of the collapse is therefore controlled by the
local interaction of the grain with the surrounding fluid, in particular, through an effective viscosity
including both the viscosity of the surrounding fluid η f and the volume fraction φ. From now on,
Tt1 is considered as the initial time of the collapse dynamics and timescales will thus be discussed
accordingly.

We now focus on the time for the granular medium to reach its final rest state. As mentioned
previously, a simple characterization of this timescale is more complicated than in the dry case as the
final state is reached on different stages characterized by three different distinct times Tr1, Tt2, and
Tr2 (see Fig. 7). Figure 10 shows these different timescales as a function of St. Here, the quantities
are made dimensionless using the free-fall timescale defined at the column scale TFF = (2Hi/g)1/2.
The dimensionless total time prior rest state (Tr2 − Tt1)/TFF, i.e., the total time of the dynamics
inducing grain motion, scales as St−1 (upward triangles and diamond). This indicates that the total
time of motion scales with a viscous timescale since TFFSt−1 ≡ 2(TFF/τff )τv . Moreover, for St ≈ 0.2
(diamond), no second spreading phase (phase IV in Fig. 7) was observed, i.e., Tr1 and Tr2 cannot be
distinguished, and the collapse dynamics is mostly controlled by viscous dissipation (gray area).
Otherwise, at larger St, the dynamics splits into two distinguished front motions, phase II and
phase IV as labeled in Fig. 7, that will be referred to as “first collapse” and “second collapse”,
respectively. The dimensionless time of the “first collapse” presents a sharp transition around St ≈
1.5 (downward triangles). More specifically, for St � 1.5, (Tr1 − Tt1)/TFF rapidly decreases with
increasing St while, for St � 1.5, the time of the phase II is roughly constant and scales as the
free-fall timescale TFF, as usually obtained for dry granular collapses and dam-break flows with a
single fluid phase [7,28,43]. In particular, we find (Tr1 − Tt1)/TFF ≈ λ = 4.8 (- - -). Interestingly,
for St � 1.5, the duration of the “first collapse” slightly increases for increasing St which suggests
a possible influence of the interstitial fluid yet (we elaborate on this in the following). In the inset
of Fig. 10, the “second collapse” timescale (Tr2 − Tt2)/TFF decreases with St on the whole range
considered here, i.e., for St � 102. This second dynamics is therefore always controlled by viscous
dissipation supporting that the final time of the collapse scales with a viscous time. Finally, it is
likely that, for St � 102, Tr1 and Tr2 cannot be distinguished and the collapse dynamics is only
controlled by inertia. No “second collapse” will be observed in agreement with the fact that viscous
dissipations are neglected.

The different spreading lengths corresponding to these different timescales are now considered.
For this purpose, one defines the spreading lengths of the “first collapse” and “second collapse”
relative to that of the corresponding dry collapse in their dimensionless form, i.e., (L − Ld

f )/Ld
f

with L ≡ Lr1 and L ≡ Lr2 for the “first collapse” and the “second collapse”, respectively. Figure 11
presents (L − Ld

f )/Ld
f as a function of St. For comparison, the case of the fully immersed granular

collapse, L ≡ Li
f , for initially densely packed column (i.e., φ = 0.64), extracted from Bougouin and

Lacaze [28], is also shown (crosses). A first observation is that Li
f � (Lr1, Lr2) � Ld

f for the range
of St considered here. Also, both spreading lengths basically increase with increasing St, which
is consistent with the decrease of viscous dissipation due to the interstitial fluid. Additionally, at
St ≈ 1.5, a sharp transition of the evolution of Lr2 with St is obtained, which corresponds to the
range for which the “first collapse” timescale switches from a viscous regime to an inertial regime
(see Fig. 10). More specifically, for St � 1.5, Lr1 ≈ Lr2, indicating that the fluid flow draining out of
the granular medium during the “second collapse”, does not significantly modify the runout length
of the granular material. Most of the granular medium thus spreads during the “first collapse”. In
contrast, for St � 1.5 (diamond in Fig. 11), Lr1 decreases with decreasing St down to St ≈ 0.2,
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under which no second spreading phase was observed, i.e., Lr1 = Lr2, while Lr2 remains constant,
such as (Lr2 − Ld

f )/Ld
f ≈ −0.2. A significant difference between the “first collapse” and the “second

collapse”, i.e., between the “first collapse” and the final rest state, is therefore obtained in the range
0.5 � St � 1.5. To finish with, it is worth noticing that even if (Lr1, Lr2) � Ld

f for the range of St
considered here, i.e., 0.2 < St < 42, the observed trend seems to indicate that Lr1 = Lr2 reaches Ld

f

at around St ≈ 102.
The transition from a viscous regime to an inertial regime with increasing St can also be observed

in the morphology of the deposit which may be characterized by the angle of the deposit. The
mean angle θm of the height profile is observed to get two distinct values depending on St, with in
particular, θm ≈ 5◦, at large St, and θm ≈ 9◦, at low St [see Fig. 12(a)]. These values are smaller than
the angle of repose and they may depend on the initial aspect ratio a, as already reported in dry and
fully immersed granular collapses [5,24,28]. Moreover, at low St, the liquid-saturated case leads to
a smaller value of the mean angle, i.e., θm ≈ 9◦, compared to the corresponding fully immersed case
for which θm ≈ 17◦ (from [28]), supporting, once again, the very different influence of the liquid
phase between these two configurations. While the viscous-inertial transition is clearly obtained
around St ≈ 1.5 when considering the St-evolution of θm, the St-effects reported previously in each
regime is hardly observed. To highlight the different shapes of the deposit in these two regimes,
Fig. 12(b) shows the height profile h/Hi as a function of (x − Li )/Li, for St � 1.5 (top) and for
St � 7 (bottom). The deposit is thinner and longer at large St in line with the results of Fig. 11.

We can thus summarize the above-mentioned results as follows. For St < Stc1 with Stc1 ≈ 0.2, a
single viscous-dominated collapse is obtained. Otherwise, for St > Stc1, the dynamics splits into
two “collapses”, leaving a “transitory rest state” between them. For St < Stc2 with Stc2 ≈ 1.5,
both the “first collapse” and the “second collapse” are mostly controlled by viscous dissipation.
As a consequence, the timescales and the first spreading length are strongly dependent on St,
while the final deposit is roughly unchanged. This suggests a complex influence of the interstitial
fluid which can act both as a dissipative process on the granular flow, as in the case of the fully
immersed situation, and as a driving force on the granular material when the latter stops in a state of
non-equilibrium for a liquid phase (i.e., with an inclined height profile). Stc2 has been highlighted
to be a dominant critical value of the transition from a viscous-dominated regime towards an
inertial-dominated regime, with in particular, a sudden change of the mean angle of the height profile
observed on the final deposit. For St > Stc2, the “first collapse” is mostly inertial, while the “second
collapse” remains in a viscous regime. However, the “second collapse” does not affect significantly
the granular deposit and the granular material is therefore spread during the “first collapse”. In
contrast to the dry case, the timescale of the “first collapse” and the final spreading length slowly
evolve with St. The latter observation is a signature of an inertial-type (by opposition to viscous)
contribution of the interstitial fluid phase. Finally, for larger St, say St > 102, it is expected to
recover a single inertia-dominated collapse for which the timescale and the final deposit are similar
to the dry case, i.e., for which the dynamics is only controlled by the granular phase.

C. Role of the volume fraction

As observed in Fig. 8(a), the spreading length of a liquid-saturated collapse can overcome that
of the dry collapse. However, the range of parameters used in the previous section (by only varying
St for an initially dense packing, i.e., φ = 0.64) did not allow to observe such a situation, even
if the trend at large St suggested that such situation could be reached. As the influence of φ can
be significant for the immersed configuration, we now focus on the influence of the initial volume
fraction φ of the granular column, at a relatively large St ≈ 42, i.e., close to a possible change of
sign of L f − Ld

f , with L f being the final spreading length. In particular, we investigate the dynamics
and the final deposit of the granular material. Here, the properties of the liquid and the grains are
fixed and only the initial volume fraction φ is varied. More particularly, the interstitial fluid is water
and the size of grains is d = 3.15 mm.
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FIG. 13. Temporal evolution of the height profile h/Hi as a function of (x − Li )/Li for a water-saturated
granular collapse (a = 2 and St = 42) with two different volume fractions, i.e., φ = 0.616 (top) and φ = 0.643
(bottom). The time step between each profile is 0.02 s.

Figure 13 shows the temporal evolution of the height profile h/Hi as a function of (x − Li )/Li for
a = 2 and St = 42 with two different volume fractions, φ = 0.616 and φ = 0.643. Both deposits
are of triangular shape [24]. Moreover, for φ = 0.616, the final deposit is more elongated with a
runout length L f (≡Lr1 ≡ Lr2, here) which is larger than in the case with φ = 0.643.

We provide here the same quantification of mobility of the granular medium as in the previous
section, i.e., (L f − Ld

f )/Ld
f . Note that, at this value of St, no difference is obtained between the

“first collapse” and “second collapse”, and then L f corresponds to the only final spreading length.
Moreover, the dry case is performed with the same experimental setup and the same grains, for
φ ∼ 0.64 as no such significant influence of φ has been reported so far in the dry case [44]. Note
that experiments performed with the present apparatus, varying φ with smaller grains (as the initial
volume fraction φ can hardly be modified in a dry configuration with d = 3.15 mm), suggests that
the dry spreading length indeed remains roughly constant (not shown here). (L f − Ld

f )/Ld
f is plotted

as a function φ for two initial aspect ratios, namely, a = 1 and 2, and St = 42, in Fig. 14. (L f − Ld
f )

is observed to increase with decreasing φ, with in particular, (L f − Ld
f ) changing sign for a critical

FIG. 14. Runout length Lf relative to that of the corresponding dry collapse Ld
f as a function of φ (St = 42):

(•) a = 1, (�) a = 2. Inset: corresponding final height Hf relative to that of the dry collapse Hd
f .
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volume fraction φc ≈ 0.635. The inset presents the final height Hf as a function of φ relative to
the dry case. Despite a larger dispersion, the same trend is obtained for a = 1 with a change of
sign around φc ≈ 0.627. However, at a = 2, Hf > Hd

f for the whole range of φ investigated here.
According to the previous observations and discussions, the difference of final shape obtained for
the water-saturated configuration is attributed to the presence of the interstitial fluid. An influence of
φ on the spreading length has also been reported in a fully immersed configuration [24]. However,
in this case, the difference between the fully immersed case and the dry case is typically smaller
than the difference observed here between the liquid-saturated case and the dry case. Moreover,
this was only observed at smaller φ and at small St, i.e., in the viscous regime. Indeed, in the fully
immersed configuration, the influence of φ on the collapse was mostly initiated during the first phase
of the collapse, i.e., the triggering phase I . Here, for St = 42, the first phase is roughly nonexistent
and the process inducing the difference of final length scales is therefore different, even if is also
linked to the interstitial fluid. In particular, it occurs during the ‘first collapse’, i.e., phase II . We can
then conclude that the difference of the final length scales, obtained here for St = 42, can only be
attributed to the specific configuration of the water-saturated granular spreading.

VII. CONCLUSION AND DISCUSSION

Laboratory experiments of a liquid-saturated granular collapse in air have been investigated, in
which various parameters were varied: the properties of the interstitial fluid and of the grains, the
geometry of the initial column, and the initial compaction. Both the dynamics of the collapse and
the morphology of the final deposit were characterized via the temporal evolution of the granular
height profile.

First, we show that the trigger of the collapse and the shape of the final deposit are mostly
controlled by the “column” Bond number, defined as Bo = ρgHid/σ , and the ratio between the
grain diameter and the capillary length d/lc. In particular, four different regimes are observed: static,
fluid-leaking, block- and continuous-avalanche regimes. The transition between these regimes are
analyzed through some criteria which take capillary effects at the granular interface into account, as
follows:

(1) Static regime: Bo < BoF [see Eq. (1)]
(2) Fluid-leaking regime: BoF < Bo < BoG [see Eq. (2)]
(3) Block-avalanche regime: BoG < Bo and d/lc < dc/lc [see Eq. (3)]
(4) Continuous-avalanche regime: d/lc > dc/lc [see Eq. (3)] or d/lc > d ′

c/lc [see Eq. 4]
The fundamental mechanism controlling these regimes is here attributed to the surface tension.

However, the possible quantitative evolution of the transitions could also depend on φ and St, which
cannot be addressed here with the set of experiments available. Further work is therefore needed to
investigate their possible influence on each transition.

Second, we extend Lajeunesse et al. [7]’s analysis, which predicts the runout length for a dry
granular collapse, to the present case of a liquid-saturated granular collapse. In particular, the present
model gives an estimate of the runout length of the granular deposit as a function of the Bond number
and the initial aspect ratio. The model is able to capture the main trend of the observed experimental
results and the asymptotic behavior at large Bond numbers and aspect ratios. However, quantitative
agreement is more difficult since the present model is derived from an order of magnitude analysis,
which was already the case for dry granular collapses [7].

Finally, an investigation of the specific effect of the initial aspect ratio, the Stokes number and
the initial volume fraction is performed in the continuous-avalanche regime, in which capillary
effects can be disregarded. In general, the observed dynamics and final deposit of a liquid-saturated
granular collapse is similar to that of a fully immersed granular collapse. A specific behavior is the
split of the dynamics into two distinct front motions, referred to as “first collapse” and “second
collapse”, for St > Stc1 with Stc1 ≈ 0.2, while a single viscous-dominated granular collapse is
obtained, otherwise. The duration of the “first collapse” rapidly decreases for increasing St, up to
St > Stc2 with Stc2 ≈ 1.5, for which it roughly scales with the free-fall timescale TFF = (2Hi/g)1/2,
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FIG. 15. Hypothetical sketch of the evolution of the final runout length Lf ≡ Lr2 relative to that of the
corresponding dry collapse Ld

f as a function of St/g(φ), with g(φ) = (1 − φ)−2.8, for liquid-saturated granular
collapses in air (ρp/ρ f ≈ 2.5 and ρ f /ρa = 103). Triangles and circles correspond to the runout length Lf ≡ Lr2

of experiments shown in Figs. 11 and 14 with a = 2, respectively. The gray area represents the range St/g(φ) �
2 × 10−2 for which no second spreading phase was observed.

usually used for dry granular collapses and dam-break flows [7,28,43]. More specifically, the
dynamics of the “first collapse” is considered as a viscous-dominated regime, for St < Stc2, and
an inertia-dominated regime, for St > Stc2. The “second collapse” corresponds to a phase in which
the fluid flow drains out of the granular medium and its duration is therefore controlled by viscous
dissipation. It also plays a role on the runout length of the deposit, at low St, while it can be
disregarded, at large St. In any case, the characteristics of the final deposit, i.e., the runout length
and the final height, follow simple power-laws over a with a prefactor depending on St and φ.

More surprisingly, we show that the interstitial fluid can either play a dissipative or a driving
role on the collapse depending on both the Stokes number St and the initial volume fraction φ. In
particular, a driving role of the interstitial fluid on the runout of the granular media is observed for
φ < 0.635 and St = 42. Note that to discuss in details the influence of St and φ in the previous
sections, we kept other dimensionless parameters constant in each case to avoid misinterpretation
of the results. Some set of experiments performed here have thus been disregarded so far.

We propose in the following a discussion on the driving role of the interstitial fluid that could
be of interest for geophysical applications and that would unify the entire set of experiments in
the continuous-avalanche regime. Results obtained in the previous sections suggest that viscous
dissipation decreases for St increasing and/or φ decreasing. While the viscous dissipation is
overcome, the interstitial fluid could play a driving role, which has only be observed so far varying
φ at St = 42. To consider both St and φ on this influence, Fig. 15 shows the dimensionless final
runout length (L f − Ld

f )/Ld
f ≡ (Lr2 − Ld

f )/Ld
f as a function of St/g(φ), for the set of experiments

corresponding to the results shown in Fig. 11 (triangles) and Fig. 14 (circles) and another set of
experiments which have not been reported yet. The function g(φ) = (1 − φ)−2.8, already mentioned
and used in Sec. VI B, allows to account for φ into an effective viscosity of an equivalent surrounding
fluid seen by an individual particle into the liquid-saturated medium [42]. Then, St/g(φ) is nothing
but a Stokes number based on this effective viscosity instead of the fluid viscosity η f . In this
scenario, φ only affects the dynamics through a modification of the viscous dissipation term.

The runout length (L f − Ld
f )/Ld

f is shown to increase with increasing St/g(φ). More specifically,
(L f − Ld

f ) changes sign, for St/g(φ) ≈ 1, which indicates a transition from a dissipative role to a
driving role of the interstitial fluid on the collapse of the granular material. A possible explanation
is that, at low St/g(φ), namely, St/g(φ) < 1, the granular material is slowed down by the interstitial
fluid due to viscous dissipation leading to (L f − Ld

f ) < 0. Conversely, at larger St/g(φ), i.e.,
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St/g(φ) > 1, the fluid may even make easier the granular flow through a drag force in the direction
of the flow or a decrease of frictional contacts.

Finally, the proposed trend is represented in Fig. 15 with a dotted line. Other dedicated
experiments, beyond the scope of the present paper, would be useful to verify the pertinence of
the proposed evolution of the liquid-saturated granular collapse induced by a driving role of the
interstitial fluid. In particular, the existence of a local maximum of the spreading length at a critical
value of St/g(φ) has to be investigated. Note that the grain-fluid density ratio ρp/ρ f is also an
important parameter in this problem, which has not been varied in the present work (recall that
ρp/ρ f ≈ 2.5 and ρ f /ρa = 103). Further work is therefore necessary to assess the influence of this
parameter on the dynamics of the collapse and the shape of the final deposit.
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APPENDIX A: MEASUREMENTS OF THE AVALANCHE AND REPOSE ANGLES

The angle of avalanche θa and the angle of repose θr of grains (except for d = 5.0 and 10.0 mm)
were estimated from the variations of the slope of an initially horizontal plane granular bed in a
box (20 × 10 × 5 cm3) which is slowly tilted. Note that the box width to particle diameter ratio
was always >30 which ensured that there was no lateral wall effect [45]. Figure 16 presents the
angles θa and θr as a function of the grain diameter d . A similar trend is observed for both angles.
In particular, θ decreases while d is increased and then, for d � D = 550 μm, it reaches a constant
value 〈θ〉 (dashed lines). In the following, the d-dependency is approximated by a relation of the
type θ/〈θ〉 = f (d/D) (inset of Fig. 16). In the present work, we propose

θ

〈θ〉 =
∣∣∣∣1 − 0.2 ln(d/D) for d/D < 1,

1 otherwise, (A1)

where the averaged value of the avalanche and repose angles are set to 〈θa〉 = 28◦ and 〈θr〉 = 22◦,
at large d . Note that the choice of this relation is arbitrary and other relations could be used.

FIG. 16. Angle of avalanche θa (�) and angle of repose θr (•) as a function of the grain diameter d; (- - -)
Mean values 〈θa〉 = 28◦ and 〈θr〉 = 22◦, for d > D = 550 μm, used in Eq. (A1). Inset: Avalanche and repose
angles scaled by the mean angle as a function of d/D; (—) Eq. (A1).

124306-21



BOUGOUIN, LACAZE, AND BONOMETTI

FIG. 17. Sketch of the final deposit of a liquid-saturated granular collapse with different estimates of the
runout Lf (≡Lr2 defined in Fig. 7): height front of two grain diameters, quasi-2D front and all grains in
contact, quasi-2D front, and • farthest grain.

APPENDIX B: DETERMINATION OF THE RUNOUT LENGTH IN THE EXPERIMENTS

In this work, a specific attention has been drawn to the estimation of the runout length of the final
deposit. In particular, four criteria have been defined (Fig. 17): a height front of two grain diameters
( ), a quasi-2D front and all grains in contact ( ), a quasi-2D front ( ), and the farthest grain (•). In
the paper, the runout length L f (≡Lr2 defined in Fig. 7) corresponds to the mean of values obtained
with these different criteria. Note that, for d � 1.15 mm, the four criteria of the runout length are
strictly equivalent and this specific procedure can be omitted. Same conclusions can also be done
for the determination of the rest length Lr1 (Fig. 7 for the definition).

Figure 18 shows the dimensionless runout difference (L f − Ld
f )/Ld

f , where Ld
f is the runout length

of the equivalent dry collapse, as a function of the Stokes number St [Fig. 18(a)] and the initial
volume fraction φ [Fig. 18(b)] using different criteria defined in Fig. 17. It can be observed that
trends are respected for each criterion. In particular, (L f − Ld

f )/Ld
f increases for St increasing and

for φ decreasing, according to previous conclusions. However, some quantitative differences are
obtained between different criteria showing the difficulties to define the runout length, precisely, in
the liquid-saturated granular configuration. In particular, it can be noted that the inaccuracy is more
important at low φ.

FIG. 18. Runout length Lf (≡Lr2 defined in Fig. 7) relative to that of the corresponding dry collapse Ld
f as

a function of (a) the Stokes number St and (b) the initial volume fraction φ using different criteria defined in
Fig. 17.
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FIG. 19. Sketch of the collapse of a liquid-saturated granular mass on a horizontal plane at an arbitrary time.

APPENDIX C: EXTENDING LAJEUNESSE ET AL. [7]’S MODEL

Let us first consider a liquid-saturated granular mass spreading on a horizontal plane (Fig. 19).
In line with experimental observations, the shape of the height profile is assumed to be triangular
which is in fairly good agreement in the continuous-avalanche regime and, at least at first order,
in the block-avalanche regime. During the collapse, momentum conservation reduces to a force
balance on the fluid-granular mixture in the horizontal direction x, in particular, with a force FS1

induced by gravity on the vertical surface S1 and a friction force FS2 applied to the bottom surface S2.
For simplicity, the air pressure is neglected here [note that we verified that the solution of Eq. (C5)
remains unchanged if one takes the air pressure into account]. One therefore obtains

ρHiLi
d2x f (t )

dt2
= FS1 − FS2 , (C1)

where x f (t ) represents the instantaneous front position. Note that the triangular shape leads to
the expression h(x, t ) = h(0, t )[1 − x/x f (t )]. Assuming that the force FS1 corresponds to the
hydrostatic pressure of the grain-fluid mixture on surface S1, one gets

FS1 =
∫ h(0, t )

0
ρg[h(0, t ) − y]dy = ρgh(0, t )2

2
. (C2)

The friction force FS2 is assumed to be induced by the normal granular stress on the bottom
surface S2 through the Coulomb law. This normal stress includes both the local granulostatic
pressure Pg = φ(ρp − ρ f )gh and the capillary pressure Pc ≈ εσ/d . This reads

FS2 =
∫ x f (t )

0
μ

[
φ(ρp − ρ f )gh(x, t ) + ε

σ

d

]
dx = μ

[
φ(ρp − ρ f )gh(0, t )

2
+ ε

σ

d

]
x f (t ), (C3)

where μ is the friction coefficient between the granular material and the bottom plane. It can be
noted that we assumed that the capillary pressure is fully transmitted to the granular material.
Using Eqs. (C2) and (C3) and the mass conservation to eliminate h(0, t ) in Eq. (C1), i.e.,
2HiLi = h(0, t )x f (t ), one obtains the following differential equation for x f (t ):

d2x f (t )

dt2
= 2gHiLi

x2
f (t )

− μφ(ρp − ρ f )g

ρ
− μεσ

ρHiLid
x f (t ). (C4)

This equation can be viewed as an extension for a liquid-saturated granular collapse of
Lajeunesse et al. [7]’s analysis done for a dry collapse, because of the presence of the last term
in Eq. (C4) which is proportional to surface tension. Following Lajeunesse et al. [7] instead of
solving Eq. (C4), we rather perform a scaling analysis of the different terms.

We take as timescale the following free-fall time τc ≡ λTFF, where TFF = (2Hi/g)1/2 is the free-
fall timescale defined at the column scale and usually used in dry granular collapses and dam-break
flows [7,28,43]. The parameter λ is an empirical constant, which can be viewed as a dimensionless
collapse time. This constant is estimated from the present experiments of a water-saturated granular
collapse (Fig. 20). More specifically, we first estimate the time Tr1 as the time when the granular
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FIG. 20. Collapse time λ = Tr1/TFF (defined in Fig. 7) as a function of the initial aspect ratio a for (�)
d = 3.15 mm and (•) d = 5.0 mm. Here, time is normalized by the free-fall timescale TFF = (2Hi/g)1/2. The
dashed lines corresponds to the mean value of λ = 4.8.

front reaches the runout length Lr1 defined in Fig. 7. Note that, for large St, we have Lr1 ≡ Lr2 ≡ L f

and the time Tr1 corresponds to the timescale of the granular collapse. Figure 20 shows the time Tr1

of a water-saturated granular collapse normalized by the free-fall timescale TFF = (2Hi/g)1/2 as a
function of the initial aspect ratio a = Hi/Li, for d = 3.15 mm (opened circles) and d = 5.0 mm
(closed circles). Recall that the time TFF is the time that a single grain need to travel over a distance
length Hi in free-fall. Figure 20 indicates that Tr1 ∝ TFF, in particular, we find Tr1/TFF ≈ 4.8 and we
will therefore set this value.

Let us thus assume that the collapse occurs during a time t ≈ τc and use as length scale for
the front location and the front displacement L f and L f − Li, respectively. One can write x f (τc) ≈
L f and d2x f (τc)/dt2 ≈ (L f − Li )/τ 2

c . Using these approximations and the definition of the initial
aspect ratio a = Hi/Li and that of the Bond number Bo = ρgHid/σ , Eq. (C4) can be rewritten so as
to give the proposed model,

L f − Li

Li
= 4λ2a2

(
L f

Li

)−2

− 2λ2μφ
ρp − ρ f

ρ
a − 2ελ2μ

a

Bo

(
L f

Li

)
. (C5)
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