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Abstract 

     The contribution of this paper is twofold. First, this paper aims at developing an intelligent system that 

emulates the decision-making ability of a botanist expert in the recognition of tree species from their leaves and 

bark. The main challenges of this recognition problem are related to the high diversity of trees in nature, the 

interspecies similarity and the intra-species variability. Therefore, similarities between species cause several 

confusions during recognition. The proposed decision system is designed to solve this complex problem of tree 

species recognition by reasoning with knowledge sets where the inference engine is based on belief functions 

theory, which reduces confusion between species and achieves greater accuracy. Secondly, this paper proposes a 

practical solution that can be embedded in the user’s smartphone without any need for an internet connection. 

Therefore, our approach is adapted for smartphone limits, i.e. limits related to memory and computation 

capacity. Once in nature, everybody should appreciate the idea of having a mobile application that reflects the 

skills and know-how of a botanist. Building an application to make the potential of tree species recognition 

accessible and easy to use is a challenging problem. From methodological perspectives, the suggested method is 

a two-step recognition approach that identifies the leaf in a first step and refines the results using the bark in the 

second step. In fact, the first step is used to reduce the dimensionality of the problem through the identification 

of a subset of most probable species. The second step is performed using a modified evidential k Nearest 

Neighbors (EkNN) algorithm that recognizes the bark from the output of the first step. A set of experiments on 

real-world data is presented in order to study the accuracy of the proposed solution against existing ones. 

Keywords: Tree species recognition, two-step classification, theory of belief functions, mass estimation, 

k nearest neighbors. 

 

1. Introduction 

Tree species recognition is the problem of identifying the species of a given tree. This task may 

be easy for a botanist who has strong knowledge about trees. However, a novice or a lover of the trees 

universe may have difficulties. This paper is part of the ReVeRiES project that seeks to develop a 

mobile application that recognizes tree species without needing an internet connection. Indeed, the 

application will be used in nature, forests, mountains where an internet connection is not available.  

Such a condition makes an application like Pl@ntNet (Goëau et al., 2013), for example, unusable as it 

is connected to a web server where all the computations are done. We note that the computation 

capacities of a smartphone are not yet fully developed, this specificity imposes some conditions on the 

proposed approach. In fact, it must be light, fast and give results with a good recognition rate. Besides, 

the application must be able to explain all recognition steps and the characteristics used to identify the 
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tree, which makes this task challenging. Consequently, the main purpose of this paper is to develop an 

approach that has all the properties listed above. 

The tree species recognition from leaves and bark is a challenging task. In fact, there is a large 

variety of tree species in nature. Furthermore, we find trees belonging to different species, but they 

look very similar which make their identification more delicate. In addition, we find trees in the same 

species but that look different. Let us consider some examples. Fig. 1 presents three leaves photos, 

leaves (a) and (b) are different, but they belong to the Broussonetia papyrifera L'Héro Vent species. 

Leaves (b) and (c) look similar, but they belong to two different species, Broussonetia papyrifera 

L'Héro Vent and Carpinus betulus L respectively. These problems are present for bark too. Fig. 2 

presents similar bark belonging to four different species which are (from left to right) Acer campestre 

L., Acer opalus Mill., Aeculus hippocastanum L. and Liquidamber styraciflua L. respectively. Fig. 3 

presents different bark belonging to the same species, the Acer Campestre L. species. The interspecies 

similarity problem generates conflict between similar species, which leads to misclassification. Also, 

the intraspecies variability is a crucial problem as it makes the recognition more delicate. In this paper, 

we use the theory of belief functions (Dempster, 1967; Shafer, 1976) to manage the confusion between 

the species. 

(a)  (b)  (c)  

Fig. 1: Leaves (a) and (b) are different but they belong to the Broussonetia papyrifera L'Héro Vent species, leaves (b) and (c) 

are similar but they belong to two different species, (c) belongs to the Carpinus betulus L species 

 
Fig. 2: Similar bark belonging to four different species which are (from left to right) Acer campestre L., Acer opalus Mill., 

Aeculus hippocastanum L. and Liquidamber styraciflua L. respectively  

 
Fig. 3: Different bark belonging to the same species, Acer Campestre L. species 

In literature, several recognition techniques like deep neural network (Joly et al., 2014), SVM 

(Horaisová & Kukal, 2016; Lin & Herold, 2016), kNN (Novotný & Suk, 2013), Random Forest 

(Harrison et al., 2018; Othmani et al., 2013), etc. have been used. Deep neural networks are not 

applicable in our case. In fact, they need high computational capacities that are not provided by 

smartphones. SVM is a classification technique that searches to identify linear separators between the 

species. However, the interspecies similarity generates many confusions between species, which make 

them non-linearly separable. kNN is a simple classification technique that identifies the species 

through its similarities with the k nearest labeled trees. The problem with this classifier is that the 

selected nearest neighbors have almost the same distance from the unknown species with different 

labels. We consider this problem as an indicator of the kNN confusion in identifying the right species. 

Random Forest is an ensemble classifier composed of a set of decision trees. The output of the random 

forest classifier is a list of species ordered according to a probability distribution that associates a 

probability that it is the right one to each species. Usually, the species with the greatest probability is 
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the right one. However, in most cases we have a subset of species with almost the same probability 

value, this is due to the confusion of the classifier in identifying the right species. To remedy these 

issues, we use the theory of belief functions. In fact, it is useful to manage confusion and to make a 

more reliable decision. 

The theory of belief functions, also called evidence theory, provides a mathematical framework 

for imprecise, uncertain and conflictual information. In fact, it supplies a set of tools for imperfect 

information modeling and fusion in order to reduce the impact of the imperfection and to make a more 

reliable decision. Furthermore, the theory of belief functions is efficient in managing confusion. 

Indeed, it allows the modeling of all the confusions the system can have while identifying species due 

to its similarities with other species. This confusion between species is translated to the system 

ignorance in the process of specie identification. This theory models such information through the 

consideration of the union of the hypothesis (possible species in this case) instead of considering them 

separately.  

The main objective of this paper is to describe how Dempster-Shafer’s (DS) theory of belief 

function can be used for managing uncertainty in a decision system, which can be seen as an expert 

system. Therefore, the practical criteria (interpretation, imprecision/uncertainty, consistency, 

computation and calculus) which are necessary if an expert system is to be implemented in practice are 

present in our methodology. For more details about the theoretical foundations of the relevance of 

belief functions theory in expert systems framework, the reader is invited to consult the following 

references (Gordon & Shortliffe, 1985) and (Shafer, 1987). 

To provide an overview of the work that is presented here and to explain the reasoning behind 

our approach, we begin by detailing the motivation for the proposed approach. The developments that 

are inherent to our methodology will be detailed in the next sections. In this paper, a more viable 

methodological and implementation approach is proposed for the design of a decision system for the 

recognition of tree species. From a methodological point of view, due to the presence of conflict 

information, the originality of the proposed decision system that imitates a botanist expert is not based 

on conventional “If-Then” rules, but on belief function concepts for treating and combing the available 

conflictual information. From an implementation point of view, the recognition tree species system 

must be embedded in a smartphone (real-time operations with limited on-board computational 

resources and without an Internet connection). In this framework, the proposed solution must be 

adapted for smartphone capacities and improves the running time compared to the existing solutions.  

To achieve these methodological and implementation goals, an evidential two-step classification 

approach for tree species identification from leaf and bark is proposed. The first step uses a random 

forest classifier to recognize the leaf characteristics and select a small set of most probable species. 

This step is useful to reduce the dimensionality of the problem. The second classification step uses a 

modified EkNN to recognize the bark from the result of the first step. Then, a mass distribution 

estimation process is introduced.  The idea of the two-step classification exists in literature. However, 

it was used to extend the training set. We find the work of (Lian et al., 2015) that introduces an 

evidential two-step classification strategy. Indeed, they partitioned the testing set into two subsets. 

Next, they used their approach to classify the first subset, then they injected the recognized samples 

into the training set. Finally, they used the resulting training set to recognize the rest of the samples. 

Their solution consists of enriching the training set with part of the testing examples to better 

recognize the rest of the training set. It is not applicable in our case as it does not address any of the 

problems mentioned above. The novelty of our approach is that it models the confusions between 

similar species and considers them as a partial ignorance between these species, thus it puts them in 

the same focal element. This solution considers that there is confusion between two or more species if 

their distance to the unknown species is almost the same. This methodology of conception reduces the 

computing recognition time and allows its adaptability to be run with the limited capacities of 

smartphones.  

The remainder of this paper is organized as follows: Section 2 states and discusses the related 

works. Section 3 presents a background on the theory of belief functions. Section 4 details the 
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proposed two-step recognition system. Section 5 discusses the experiments and the results. Finally, 

Section 6 concludes the paper. 

2. Related works 

In this paper, a tree species recognition approach from leaf and bark is introduced. The main 

purpose is to get a light and efficient approach that can be run on a smartphone. Consequently, 

smartphones running capacities create some constraints on the proposed approach. Besides, the 

proposed solution treats the confusion between species in order to obtain accurate recognition. In this 

section, we present some related works that searches to recognize tree species. 

2.1. Tree organ identification 

The problem of tree species recognition is widely studied in literature. Most of the existing 

works focuses on attribute extraction from the tree organs photos to which they then apply a 

classification technique like kNN  (Novotný & Suk, 2013), SVM (Horaisová & Kukal, 2016; Lin & 

Herold, 2016), Random Forest (Harrison et al., 2018; Othmani et al., 2013), Neural Network (Yang et 

al., 2017; Horaisová & Kukal, 2016), etc. Table 1 presents a summary of some existing tree organ 

identification approaches. 

Many works seek to identify the tree species using attributes extracted from its leaf photo. Then, 

(Harrison et al., 2018) used long-wave infrared to extract parameters from the leaves of twenty-six 

species. These attributes were later used as input for a random forest classifier. The authors achieved a 

good error rate of less than 10%. However, long-wave infrared technique cannot be run on a 

smartphone.  

The authors of (Horaisová & Kukal, 2016) worked on 2D binary leaf images. They proposed 

two methods for parameter extraction based on the 2D Fourier power spectrum. Then, they applied a 

kernel SVM and a self-organizing neural network for leaf recognition. Besides, they used a dataset 

containing 13 leaf species having a uniform background photo from ImageCLEF 2013 dataset. They 

obtained a classification rate of about 85%. In the work of (Yang et al., 2017), the authors extracted 7 

features from leaf photos using the 2-level wavelet transform. Next, they used a back-propagation 

neural network classifier for leaf recognition. They tested their solution on a dataset containing 90 

images of leaves from three different species and they achieved a recognition rate of 90%. These 

solutions were shown to be performant on datasets containing just a few species and there is no 

guarantee that they work on a larger scale where several species similarities may appear and create 

confusion. 

Table 1 : A comparison between tree organs identification approaches 

Approach Technique Parameters Organ Recognized species 

(Harrison et al., 

2018) 

Random forest Long-wave infrared Leaf 26 species 

(Horaisová & 

Kukal, 2016) 

Kernel SVM and a 

self-organizing 

neural network 

2D Fourier power 

spectrum 

Leaf 13 species, uniform 

background 

(Novotný & Suk, 

2013) 

kNN Fourier descriptors Leaf 153 species, uniform 

background 

(Yang et al., 2017) Back-propagation 

neural network 

2-level wavelet 

transform 

Leaf 3 species 

(Othmani et al., 

2013) 

Random forest Terrestrial laser 

scanning technique 

Bark 5 species 

(Lin & Herold, 

2016) 

SVM Static terrestrial 

laser scanning 

Tree 

structure 

4 species 
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The authors of (Novotný & Suk, 2013) used Fourier descriptors to extract parameters from leaf 

photos. They then applied a kNN classifier for the recognition step. They tested their approach on a 

dataset that included 153 species with solid white background. They obtained classification rates of 

88%. However, this solution is performant on solid white background leave photos and there is no 

guarantee that it works with natural background photos. Besides, they did not treat the confusions 

between similar species. 

Few works search to recognize tree species from bark photos. We find for example the work of 

(Othmani et al., 2013). They used a terrestrial laser scanning technique to extract a 3D description of 

the bark texture. Subsequently they applied a random forest classifier on the extracted attributes. They 

tested their approach on a dataset containing samples from five species. They obtained an error rate 

less than 2%. Some other works search to recognize tree species from the hole tree structure, like the 

work of (Lin & Herold, 2016). In fact, the authors used the static terrestrial laser scanning to extract 

features describing the tree structure. Next, they applied a classification model based on SVM. 

However, these approaches are not suitable to be run on a mobile. In fact, these works use feature 

extraction techniques that cannot be run on a mobile like the terrestrial laser scanning technique. 

2.2. Leaf and Bark information fusion to identify the tree 

Some works are focused on multimodal trees identification. They studied the tree species 

recognition from the leaf and bark through information fusion techniques (Ben Ameur et al. 2017; 

Bertrand et al. 2018). The authors of (Ben Ameur et al. 2017) introduced an interesting fusion system 

that recognizes the leaf and the bark, then they fuse the results to obtain a more reliable identification. 

In fact, they have a set of characteristics extracted from leaves and bark. Next, they apply a random 

forest classifier on each characteristic separately. Then they use the theory of belief functions to 

combine the classification results of these characteristics. We note that they propose a hierarchical 

system based on a cascade fusion to combine leaf characteristics results in parallel to a second cascade 

fusion to combine bark characteristics results. Next their system fuses these two modalities together. 

Finally, their system recognizes the tree species from the output of the hierarchical modalities fusion. 

This solution is interesting, but it may be optimized. In fact, using a random forest classifier for each 

characteristic makes the time consumption relatively high. Besides, it did not consider the confusion 

between species. Indeed, it uses the consonant transformation operator (Aregui & Denoeux, 2008) to 

generate mass distributions from the outputs of the random forests. However, this operator is not 

adapted to consider a partial ignorance when we have two or more confused. We consider their 

solution as a baseline in our experiments.  

An extension of the work of (Ben Ameur et al. 2017) was recently introduced (Jendoubi et al., 

2018). This last solution has the same cascade fusion strategy as (Ben Ameur et al. 2017). The novelty 

of (Jendoubi et al., 2018) is that it uses an adapted evidential k nearest neighbors classifier for each 

characteristic. This changing reduced the complexity of the system which reduced the response time. 

However, it did not improve the recognition rates. Besides, this solution did not consider the confusion 

between species. We consider this solution as a baseline in our experiments.  

Leaf and bark fusion systems was studied by (Bertrand et al. 2018). In fact, they introduced 

various strategies to fuse the features extracted from leaf and bark to recognize the tree. They proposed 

two main categories of fusion systems. The first one is the “a-priori fusion”. This solution consists of 

concatenating the feature vector of the leaf with a feature vector of the bark. Next, they classify the 

concatenated vector using a 1-vs-all Support Vector Machine classifier (SVM) with a Radial Basis 

Function kernel. The second one is the “a-posterior fusion”. It consists of classifying the leaf features 

and the bark features separately using two 1-vs-all SVM. To fuse the output of the two classifiers, they 

defined a weighted multiplicative fusion function of the confidence values of each species. Their 

function allows to sort the species using the information from the leaf and the bark. According to their 

experiments, this second solution is more accurate than the first one. However, this accuracy is not 

satisfying. Then the proposed solution improves these results the proposed two set classification 

principle and the processing of the confusion between species. We consider the a-posterior solution as 

a baseline in our experiments. 
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2.3. Mobile applications 

Many studies provide an implementation of the tree species recognition approaches they 

propose. Then we find mobile applications (Cerutti et al., 2013; Phyu et al., 2012; Kumar et al., 2012; 

Goëau et al., 2013), web services (Goëau et al., 2013; Joly et al., 2014) and desktop applications 

(Hossain & Amin, 2010). Characteristics of these applications are summarized in Table 2. In this 

paper, we are interested in mobile application. In fact, such an application makes the species 

identification more accessible and easier task for the general public. Besides, the user just needs a 

smartphone equipped with a camera and an internet connection for some application to identify the 

tree species.  

We identify some works that provide an online service, such an application needs a large 

computational power. Then, all the computations are done on a distant server. Thus, the user uses his 

smartphone to take a photo of the tree organ. Next, the photo is sent to the server for processing and 

recognition. Finally, the server sends its response to be displayed to the user. Such an application 

requires a reliable internet connection. However, tree species recognition applications are generally 

used in remote area where an internet connection may be unreliable or even unavailable. Then, the 

major limitation of such an application is its dependence on the internet. As an example of these 

applications we find Pl@ntNet (Goëau et al., 2013), CLOVER (Nam et al., 2016), LeafSnap (Kumar 

et al., 2012) and MOSIR (Phyu et al., 2012). 

On the other hand, we find some other works that choose to run the recognition process on the 

device without need to any internet connection or server. We note that smartphones have some 

computational power limitation which limits algorithmic choices. Then the challenge of such an 

application is the recognition algorithm that must be efficient and fast. We note that such applications 

still have some classification performance limitations especially related to the recognition accuracy. 

Folia (Cerutti et al., 2013) and LeafView (Belhumeur et al. 2008) are two examples of these 

applications. 

Table 2: Tree species recognition applications and their characteristics (Waldchen & Mader, 2017)  
 

Name Application type Organ Background Recognized species Analysis 

LeafView 

(Belhumeur et al. 

2008) 

Mobile Leaf Plan About 500 Offline 

LeafSnap (Kumar 

et al., 2012) 

Mobile Leaf Plan 184 Online 

Folia (Cerutti et 

al., 2013) 

Mobile Leaf Natural 108 Offline 

CLOVER (Nam 

et al., 2016) 

Mobile Leaf Plan - Online 

MOSIR (Phyu et 

al., 2012) 

Mobile Flower Plan - Online 

Pl@ntNet (Goëau 

et al., 2013; Joly 

et al., 2014) 

Web/Mobile Multi 

organ 

Plan 16,675 Online 

Chloris (Hossain 

& Amin, 2010) 

Desktop Leaf Plan 32 Offline 

 

Another classification of the existing mobile application can be done according to the 

recognized tree organs. We note that most applications are used to recognize the leaf of the tree 

(Cerutti et al., 2013; Kumar et al., 2012). Few applications recognize the flower like MOSIR (Phyu et 

al., 2012). Finally, we find Pl@ntNet (Goëau et al., 2013) that recognizes all tree organs. 
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Pl@ntNet (Goëau et al., 2013; Joly et al., 2014) is a robust application that gives good 

recognition rates. It uses a convolutional neural network (CNN) to select a set of most likely species. 

In a second step, they apply a k nearest neighbors classifier in order to reject less likely species from 

the result of the CNN. However, this application needs high computational capacities that are done on 

a distant server. Then it is dependent to the internet connection, but the internet is not always given in 

the nature where the application will usually be used. We consider their solution as a baseline in our 

experiments.  

In the literature, there is only one mobile application that explains how to recognize tree species 

in a natural environment to the user, which is Folia (Cerutti et al. 2011; 2013). This application 

imitates the botanists’ strategy and uses the same characteristics they use to recognize trees. However, 

the current version of Folia recognizes only photos of leaves. Besides, the recognition rate of Folia 

does not exceed 50% for the first returned species. Then, we are looking to improve the recognition 

rate through the consider of the bark modality and the reduction of the confusion between similar 

species. We consider the Folia classifier as a baseline in our experiments.  

3. Background  

The theory of belief functions, also called Dempster-Shafer theory or Evidence theory, was first 

introduced by Dempster (Dempster, 1967) in 1967 and then it was detailed by Shafer (Shafer, 1976) in 

1976. This theory attracted a great of attention as it presents flexibility in information modeling and 

fusion. Besides, it is useful to model the uncertain and imprecise information. 

The theory of belief functions is used in this paper to model the confusion that can appear 

between species due to the interspecies similarity. Furthermore, it can reduce the impact of these 

problems. In fact, this theory is useful to represent the confusion that may appear between similar 

species. Besides, it allows fusing information from many sources to obtain a more reliable one which 

allows taking a good decision about the species. 

Let { }, , ,1 2c c cnΩ = L  be a frame of discernment of n possible decisions. The mass function m is 

defined on subsets of Ω  and verifies: 

                                                                 ( ) 1
A

m A
⊆Ω

=∑                                              (1) 

It allows representing the pieces of information coming from a given source and describing a given 

problem. The subset A is called a focal element if ( ) 0m A > . When A=Ω, then A models the total 

ignorance. Indeed, the total ignorance helps to model the cases where we have no information or we 

have several confusions, then all the hypotheses in the frame of discernment are possible. Besides, 

when A⊂Ω and A is not a singleton then we say that A models partial ignorance. It is useful when we 

have some information about a disjunction of the hypothesis, but we are not able to have a preference 

between them. Then we can represent the case where we have a confusion between some similar 

species through the definition of a focal element on the union of them. 

The theory of belief functions provides a mathematical framework for information fusion. 

Besides, it proposes a wide variety of tools adapted for many types of information having distinct 

sources or even indistinct ones. Furthermore, some information fusion tools are useful to reduce partial 

ignorance (confusion). Then, as a result, we obtain refined information with less confusion and more 

confidence. 

To fuse information from distinct sources, the theory of belief functions presents many 

combination rules among them the Dempster's Rule (Dempster, 1967) defined as: 

                                  ( )
( ) ( )

( ) ( )
1 2

,
1 2 1 1 2

0

m B m C
B C A

A
m A m B m C

B C

if A

∑
∩ = ∅ ≠ ⊆ Ω

=⊕ − ∑
∩ =∅

= ∅







                                   (2) 
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through this rule, the conflict value, i.e. empty set mass, is proportionally distributed on the focal 

elements of the resulting BBA. Also, we find the conjunctive rule of combination (CRC) (Smets, 

1993) defined as: 

                                        ( ) ( ) ( ) ,1 2 1 2m A m B m C A
B C A

= ∀ ⊆ Ω∑⊗ ∩ =
                                            (3) 

The CRC does not distribute the conflict. The CRC is useful to reduce partial ignorance while 

combining pieces of information. Indeed, it used to consider the intersection of the focal elements 

which leads to more refined and certain information. In the next section, we detail the proposed two-

step tree species recognition approach. 

4. Recognition System 

In this paper, we present a solution for tree species recognition from photos of leaves and bark 

taken with a smartphone. Besides, we follow the recognition process of the botanist and we consider a 

set of morphological features that he uses to identify the tree species. Then, from leaf photo, we have a 

feature vector that describes the polygonal model, the apex, the base and the margin of the leaf. From 

the bark photo, we extract a second vector that describes the color hue H of the HSV space, the texture 

(Gabor) space and the vertical and the horizontal orientation of the bark texture. These feature vectors 

were described in more details in some previous works (Bertrand et al. 2018; Cerutti et al., 2011; 

2013). 

 
Fig. 4: Accuracy of leaves recognition compared to bark recognition using a random forest classifier 

The high species diversity in nature is an important challenge among the challenges of the tree 

species recognition problem. For example, in France there are about 140 species2, in Australia, there 

are 24,000 species3. In fact, this is a real issue for most existing machine learning techniques as most 

of them are adapted for a smaller scale. Then, comes the idea behind the proposed two-step 

recognition system. It consists of applying a first classification step to reduce the problem 

dimensionality. In fact, this step selects a small set of N species having a high probability that the good 

species is among them.   Next, the second classification step refines the output of the first 

classification step in order to identify the good species from the set of N species. This system allows 

the consideration of two different organs, in this paper we used the leaf and the bark.  

  To identify the best tree organ to be used in the first step of the proposed system, we made the 

experiment of  Fig. 4 that compares the accuracy of the leaves in recognizing the tree to the bark using 

                                                      
2IGN Institut National de l’information Géographique et forestière. https://inventaire-

forestier.ign.fr/spip.php?rubrique87 
3https://www.australia.com/en/facts-and-planning/australias-plants.html 
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the random forest classifier. We fixed N to 10, then, the system returns the most probable ten species 

(horizontal axis). According to Fig. 4, the leaf photo is more discriminant to recognize the tree. In fact, 

using the leaf characteristics, the probability that the good species is among the first ten returned 

species is about 93%. However, this probability is less than 70% when we use bark characteristics. 

Thus, using the leaf characteristics, we can select a reduced set of most probable species that has the 

minimum loss probability. In fact, it is generally harder to identify the tree from its bark only, because 

similarities between bark are extremely present, e.g. the reader can refer to Fig. 2 for example, which 

makes their identification from a set of attributes extracted from their photo non-discriminating. 

Consequently, we consider the leaf characteristics to reduce the search space in the first step and the 

bark characteristics to refine the results of the second step of the proposed two-step classification 

approach. 

The proposed recognition system is presented in Fig. 5. It recognizes the tree from its leaf and 

bark characteristics in two main steps. The first step uses the leaf characteristics to reduce the problem 

dimensionality. This step is performed using a trained random forest classifier that was previously 

trained on a labeled dataset containing a set of leaves characteristics. Then, this first step runs the 

trained random forest classifier to recognize the new leaf characteristics. The result of this step is a set 

of N most likely species. Each species is associated with a probability that it is the right species. Thus, 

the number of possible species is reduced to N. This output is used in the second classification step. 

The random forest classifier is adapted for this first step. It is an ensemble classifier composed of a set 

of decision trees and it gives accurate results compared to other tested classifiers like SVM and kNN.  

 

Fig. 5: Proposed tree species recognition model 

We studied the output of the random forest classifier and we noticed in many cases that the 

returned species have almost the same probability to be the good species. Besides, the searched 

species is not always in the first position. Fig. 6 illustrates this problem. Indeed, in this example, the 

good species is the second position. Such results are obtained because there are similarities between 

the selected species which generate confusion between them and leads to the confusion of the random 

forest classifier in identifying many species. This problem leads to erroneous recognition results in 

many cases. The classifier predicts a similar species instead of the good one. Furthermore, the good 

species is selected in a later position with an almost similar probability.  

The result of the first step is used to reduce the bark dataset and to adapt it to the current 

unknown tree. The second step uses a kNN based classification technique that needs a data sample of 

similar species to the unknown one. Then, we use the N most likely species obtained from the output 

of the first step to reduce the bark dataset. The idea here is to keep only the samples of the most likely 

species. 
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In the second step, we use the bark characteristics of the unknown tree to refine the result of the 

leaf characteristics (results of the first step of the system). Here we use a k nearest neighbors (kNN) 

based technique for classification. The idea is to select the most similar bark to the unknown bark from 

the sampled bark dataset. In this step, a distance-based classifier is the most adapted. In fact, the 

training dataset, i.e. the bark dataset, is updated from the result of the first step which makes a model-

based classifier inappropriate for this step. A model-based classifier needs a learning step to create the 

classifier. However, the training dataset is variable, then it is not adaptable to use a pre-trained model. 

Thus, a distance-based classifier is the most adapted. 

The proposed kNN technique in this second step is an adapted evidential kNN (EkNN) classifier 

to our problem. In fact, from the results of the random forest classifier, we get the set of most likely 

species and each of those is associated with the probability that it is the right species. Then the 

proposed EkNN uses this information to adjust its results. We present this algorithm, in more detail, in 

the next section. 

5. Mass distribution estimation 

As shown in Fig. 5, the proposed EkNN takes three inputs which are the bark characteristics of 

the unknown tree, the N most likely species associated with a probability distribution (output of the 

first step) and the filtered bark dataset. Let us consider 1 2{ , ,..., }NS S SΓ=  and 1 2Pr { , ,..., }Np p p=  the 

output of the first step of our system where Γ  is the set of N species and Pr is their associated 

probabilities, i.e. ip  is the probability that iS  is the right species Pr( )i iS p= . Let us, also, consider B 

to be the unknown bark and 1 2{ , ,..., }Mb b bΛ=  be the sampled bark dataset that contains M labeled 

bark sample belonging to the N species. Then each ib ∈Λ is associated with label iθ ∈Γ such that 

Pr( ) Priθ ∈ . The EkNN starts by estimating the distance, ( , )iB bδ , between B and the set of labeled bark 

ib ∈Λ. The distance ( , )iB bδ  can be estimated using the Euclidian Distance. Next, we adjust the 

distances ( , )iB bδ  using the probability Pr( ) Priθ ∈  as follows: 

                                                                   
( , )

( , )
Pr( )i

B bi
d B bi

δ
θ

=                                                            (4) 

Next, the algorithm selects the k nearest neighbors to the unknown object (the bark in the case of our 

application), B, according to their updated distances d.  

From the selected nearest neighbors and their distance with the unknown bark, a set of mass 

functions is estimated. The existing EkNN (Denoeux, 1995) estimates a mass distribution for each 

nearest neighbor. In fact, it calculates a mass value, x, on the class of the nearest neighbor and it puts 

the rest of the mass, 1-x, on the frame of discernment. However, this estimation method does not 

consider the partial ignorance between neighbors. The partial ignorance is important as it models the 

ignorance about a subset of the frame of discernment. It is essential to consider partial ignorance in the 

tree’s recognition problem. In fact, this problem presents the main issue which is the interspecies 

similarity. This issue is the origin of many confusions the system can have between several species 

which makes their differentiation harder. Consequently, partial ignorance allows us to model these 

confusions and to put an amount of belief on the union of confusing species. In this case, the system is 

abler to model such confusion. 

In this paper, we introduce a new mass distribution estimation algorithm for the evidential 

kNN. The novelty of this solution is that it models the confusions that may appear between similar 

neighbors through partial ignorance. In fact, when the distance between two or more neighbors is 

almost the same, we consider that we are not able to distinguish these neighbors and we define a focal 
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element with their union. Algorithm 1 details the proposed method to estimate mass distributions from 

the selected nearest neighbors set on subsets of the frame of discernment. The algorithm takes four 

inputs which are: Neighbors: an ordered table of nearest neighbors according to their distance with the 

unknown object (bark). Distances: list of the nearest neighbor’s distances values with the unknown 

object. T: Maximum allowed value of distance difference between neighbors, and Γ: the set of N 

species. The result of the algorithm is the set of estimated mass distributions, BbaSet. 

The algorithm starts by looping over the Neighbors in order to detect all sets of neighbors 

having almost the same distance value, i.e. the absolute difference between their distances is less than 

or equals to T. Next, for each obtained set of neighbors it estimates a simple mass distribution having 

as main focal element the union of classes of these neighbors which allows the system to model the 

confusion between these neighbors to process it in the next steps. 

Algorithm 1: Mass distributions estimation 

Input: 
Neighbors: Selected nearest neighbors sorted in ascending order according to their distance to the 

unknown object 

Distances: Table of nearest neighbors distances values (sorted in ascending order) with the 

unknown object 

T: Maximum allowed value of distance difference between neighbors to put them in the same focal 

element 

1 2{ , ,..., }NS S SΓ= : the set of N species 

Output:  

BbaSet: Set of mass distributions 

Algorithm: 

Begin 
For each neighbor i in Neighbors Do 

 

 

 

j � i+1 /*next neighbor*/ 

A�{} /*the focal element*/ 

Add the neighbor i to A 

While (abs(Distances[i] – Distances[j]) ≤ T && j ∉ A) Do 

 Add the neighbor j to the focal element A 

j�j+1 /*next neighbor*/ 

 End While 
 Estimate the mean distance D of the neighbors in A 

Estimate a BBA distribution having two focal elements A and Γ and add it to BbaSet 

     End For 

End  

 

Let us consider Ω  to be the set of all possible species that our system can recognize, 

1 2, { , ,..., }NS S SΓ⊆Ω Γ=  the set of N species selected by the first step of our system, let A⊆Γ  be a 

focal element obtained using Algorithm 1 and let D be the mean distance value of the neighbors in A. 

Next, we estimate a mass distribution as follows:  

                                                                
( ) ( )
( ) ( ){ *

1

m

m m

A D

A

α= Φ

= −Γ
                                                             (5) 

where [ ]0,1α ∈  is a discounting parameter and ( )DΦ  is a decreasing function that can be 

defined as follows: 

                                                                   ( ) D
D e

βγ−Φ =                                                                 (6) 
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where 0γ >  and [ ]0,1β ∈ . The result of the Algorithm 1 is the set of mass distribution BbaSet.  

6. Mass fusion & decision making 

In the previous two sections, a two-step classification approach for tree species recognition was 

introduced. The proposed approach recognizes the tree species from two modalities which are the leaf 

and the bark. The first step recognizes the leaf characteristics and determines a set of N most probable 

species for the characterized leaf. This step uses a random forest classifier. The second step identifies 

the bark characteristics from the N species selected in the first step. In fact, it applies an adapted 

evidential nearest neighbor algorithm introduced in the previous section. At the end of the second step, 

we obtain set mass distributions. In this section, we detail the fusion of the masses and the decision-

making. 

The theory of belief functions provides a wide variety of combination rules like Dubois and 

Prade’s rule (Dubois Prade, 1988), Dempster’s rule, CRC, etc. The choice of an adapted rule depends 

on the information to fuse and to its source. For example, if the sources are dependent, we can use the 

cautious combination rule (Denoeux, 2006). If we have conflicting information coming from sources 

unreliability, we can use an adapted rule that distributes the conflict on the union of conflictual 

elements like Dubois and Prade’s rule for example. 

In the case of the proposed tree species recognition approach, the mass distributions have 

independent sources. However, they have a special particularity in that, they are defined on a subset of 

the frame of discernment { }1 2
, , ,...,

N
S S SΓ⊆ΩΓ= , such that Γ  is obtained from the output of the first 

step. It is the set of the selected N species returned by the random forest classifier. The set Γ  might be 

non-exhaustive. This particularity has some influence on the obtained set of mass distributions. In fact, 

it can be the origin of some conflict, ( )m ∅ , that may appear between the mass distributions while 

combining them. Then, the conflict in this case is considered as an indicator on the exhaustiveness on 

the referential set Γ . Indeed, the higher ( )m ∅  is, the less exhaustive Γ  is. Consequently, we need a 

combination rule that does not distribute the conflict. Hence, the most adapted combination rule in 

such cases is the conjunctive combination rule, CRC. The CRC combines the pieces of evidence 

coming from independent sources and puts the total conflict amount on ( )m ∅ . Besides this rule 

reduces partial ignorance as it puts the combined mass value on the intersection of focal elements. 

Thus, the resulting mass distribution is refined and more reliable. 

After the mass fusion, we obtain a mass distribution, m , defined on Γ  that summarizes the 

information we have about the species. Then, we need to decide on the species. In fact, the main 

purpose of the proposed approach is to give the user a prediction about the species of the tree that he 

wants to identify. For that purpose, we use the maximum pignistic criteria (Smets, 1990) for decision-

making. Then, we transform the mass distribution, m , to a pignistic probability using the following 

equation: 

                                                       
( )

( )1
( )

1
i

i

S A

m A
BetP S

m A∈
=

− ∅ ∑                                                 (8) 

 

Where A ⊆ Γ . As a result we obtain ( )iBetP S  which is a probability distribution defined on Γ  those 

attributes to each species, i
S  , the probability that it is the good species. 

7. Experiments & performance analysis 

In this section, we evaluate the proposed solution. Besides, we study the parameters and their 

impact on the results of the recognition rate.  
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The system in our experiments returns the set of ten most likely species and estimates the 

accuracy that the good species is one of these species. In fact, many existing solutions in the literature 

have the same kind of output that allows the system to handle the problem of interspecies similarity 

which allows the user to have a set of possible species and their descriptions. The reader can find the 

executable version of the system and the data on the following link: https://projects.listic.univ-

smb.fr/reveries/RF_EkNN.zip 

This section is organized as follows: first we detail the used dataset and its characteristics, next, 

we introduce an example to illustrate the proposed approach and finally we present a set of 

experiments to compare the proposed approach to existing solutions. 

7.1. Dataset description 

In this paper, we use a dataset from the challenge ImageClef 20154. Indeed, the dataset is a part 

of the PlantClef task data in which we have photos of leaves and bark of 72 different tree species from 

mainland France. Besides, it is a collaborative dataset where photos are taken in nature by non-

professional users using their own camera or smartphone camera. Then, this dataset is adapted to 

evaluate the proposed tree species recognizer. In fact, the quality of the photos is similar to the photos 

taken by the users of our system. We remind that in this paper, we seek to develop a tree species 

identification approach to be used through a mobile application by a novice or a lover of the trees 

universe. 

In the data set, there is 5104 leaves photos and 1938 bark photos unequally distributed on 72 

species. In fact, we have some species that are well presented in the dataset. However, we have some 

other species that are less presented and some species that have only two exemplary. We used 2572 

leaves photos and 971 bark photos for training and the rest for testing. In our experiments, we need 

couples of leaf and bark from the same species to evaluate the proposed tree species recognition 

approach. Then, we generate a set of couples from our testing data using the following steps: 1) for 

each species, we take its leaves and bark photos, 2) we associate each leaf photo with the bark photo 

having the same order, i.e. we associate the first leaf to the first bark and the second leaf to the second 

bark, etc. 3) If we have more leaves than bark of more bark than leaves, we loop again on the fewest 

sample until associating each photo at least once. Using these steps, we obtained 2792 couples of 

leaves and bark for testing.  

From each photo we extract a feature vector that describes the leaf or the bark morphological 

characteristics. Indeed, to describe the leaf photo we have a characteristic vector composed of: 

• Nine parameters to describe the polygonal model 

• Ten parameters to describe the apex and the base 

• Ten parameters to describe the margin of the leaf 

To describe the bark photo, we have a characteristic vector composed of: 

• Two hundred and fifty-five parameters to describe the color hue H of the HSV space 

• Three parameters to describe the texture (Gabor) space 

• Sixty-nine parameters to describe the vertical orientation of the bark texture 

• Forty-nine parameters to describe the horizontal orientation of the bark texture 

These morphological characteristics are used by botanists to identify tree species. These feature 

vectors were described in more detail in some previous works (Bertrand et al. 2018; Cerutti et al., 

2011; 2013). Then using them allows us to identify the tree and to explain the results as a botanist do.  

7.2. Illustrative example 

In this section, we present an example to illustrate the proposed approach. 

Step 1: Fig. 6 illustrates the impact of the confusion on the output of the random forest 

classifier. We note that it selects four species having similar leaves to the unknown one. Besides, the 

                                                      
4 https://www.imageclef.org/lifeclef/2015/plant 
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selected species have almost the same probability to be the good species. Furthermore, we notice that 

the good species Viburnum tinus L. (S4 in this case) appears in the second position. Then, if the system 

chooses the most probable species (Rhamnus cathartica L., S3), its response will be wrong. 

Consequently, the second step of the proposed approach is used to reduce the impact of such cases of 

confusion and to refine the results.   

Step 2:  The first step of the system selected four tree species that have similar leaves to the 

Viburnum tinus L. species. In this second step, we consider the bark of these selected species.  Fig. 7 

presents the bark of the four species selected in the first step. The photos of the bark of trees are 

positioned according to their distance to the unknown bark X (in the middle). In this example, we 

consider k = 4, then the system selects the four nearest neighbors as shown in the Fig. 7. 

 

Fig. 6 : Impact of the species similarities on the output of the random forest classifier 

 

 

Fig. 7: Illustrative example of the selected 4-nearest neighbors using the Euclidean Distance. 

 

We have four selected bark from two species were two among them belong to Rhamnus 

cathartica L species (S3) and the two others belong to Viburnum tinus L. species (S4). At this stage, we 

reduced the search space to the half (we have two possible species instead of four). The selected bark 

are ordered according to their similarity according to (Eq. 4) with the unknown bark X from 1 to 4 and 

their distances with X are respectively: 1 2 3 4d d d d> > >  where ( )1 2Abs d d T>− , 
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( )2 3Abs d d T>−  and ( )3 4Abs d d T− ≤ , where T is the maximum allowed value of distance 

difference between neighbors to put them in the same focal element. Next, we obtain the following 

three mass distributions:  

 

( )
( ){ 1 4

1
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m S

m

=
Γ =
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=
Γ =

 
{ }( )
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3

, 0,15

0.85

m S S

m

=
Γ =

         (9) 

Where { }1 2 3 4, , ,S S S SΓ = . The first mass distribution 1m  models the information coming from the 

nearest bark (referenced with « 1 » in Fig. 7). Besides, we have ( )1 2Abs d d T>− , then the proposed 

system considers that there is no ignorance between the first two bark. We notice that 
3

m  was defined 

on the union of { }3 4,S S . In fact, the distance difference between the third and the fourth bark is 

smaller than or equals to T, ( )3 4Abs d d T− ≤ . Then, their distances are near to each other which 

makes their differentiation harder. In this case, we consider that there is a partial ignorance between 

the third and the fourth bark as we cannot differentiate them. Then, we define a mass distribution on 

the union of { }3 4,S S  to model this ignorance.       

  

Next, we use the conjunctive combination rule to fuse these masses and we obtain as a result the 

following mass distribution: 

( )
( )
( )
( )

3

4

0.264

0.136

0.396

0.204

m

m S

m S

m

∅ =
=
=

Γ =







       (10) 

We notice that ( ) 0.264m ∅ =  which means that the amount of belief that the good species is in Ω Γ  

is 26.4%. Besides, the partial ignorance we have on 3
m  was resolved on the combined distribution m. 

Thus, the confusion between the two species 3S  and 4S  eliminated. Next, to make a decision about 

the species we apply the pignistic transformation operator and we obtain the following result: 

( )
( )
( )
( )

4

3

1

2

0.6073

0.2541

0.0693

0.0693

m S

m S

m S

m S

=
=
=
=







       (11) 

As a result, we have an ordered list of the possible species. We note that the good species, S4, is now 

in the first position with a confidence of 60.73%. At this stage, we can provide the user with the list of 

most probable species which are in this example S4 and S3 associated with their confidence. 

 

7.3. Results & discussion 

In a first experiment, we study the impact of the parameter K, i.e. the number of selected nearest 

neighbors, on the accuracy of the system. We fixed the parameter N to 15, i.e. N is the number of 

species returned by the first step of our system. We fixed the parameter T to 0.04, i.e. T is the 

maximum allowed value of distance between neighbors to put them in the same focal element. Then, 

we examine the accuracy of the system with different K values. The results are presented in Fig. 8. 

According to Fig. 8, the parameter K does not have an important effect on the first detected species. 

However, when K increases, we notice an important improvement in the accuracy of the system 

especially starting from the second detected species. 
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In a second experiment, we study the impact of the parameter N on the accuracy of the proposed 

tree species recognizer. In this experiment, we fixed K to 20 and T to 0.04. Fig. 9 shows the obtained 

results with different values of N. According to Fig. 9, we notice that the impact of the parameter N 

starts from the fourth detected species. Then we notice that the system accuracy decreases when the 

parameter N increases. 

 

Fig. 8: System accuracy with different K values and N=15 

 

 

 

Fig. 9: System accuracy with different N values and K=20 

 

In Fig. 10, we study the impact of the distance adjustment on the result of the system. Indeed, 

the distance adjustment allows the proposed evidential kNN to consider the information coming from 

the first step of the system, i.e. the output of the random forest, as explained in section 4. Then  Fig. 10 

shows the importance of this adjustment. In fact, without distance adjustment, we have only 25%  

accuracy on the first detected species. However, when we adjust the distance this accuracy increases to 

about 70%. 

In the experiment of Fig. 11, we study the impact of the second step of our system presented in 

Fig. 5. Then, we compare the system accuracy at the output of the random forest (the first step), the 

blue curve, with the accuracy of the system called RF EkNN, red curve. In this experiment, we fixed N 

to 10, K to 20 and T to 0.04. Fig. 11 shows that adding the bark information at the second step 

improves the system accuracy for the first three detected species. In fact, the accuracy increases from 

63.59% using the random forest (output of step 1) to 69.11% when we consider the bark information 

(output of the system RF EkNN). 
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Fig. 10: Impact of the distance adjustment on the system accuracy 

Fig. 12 presents a radar chart that compares the proportion of correctly recognized trees of each 

species (recognition rate per species) at the output of the first step to the output of the second one of 

the proposed system. We considered the first returned species. According to Fig. 12, the second step of 

the system improved the recognition rates of several species compared to the first step. Then, the 

consideration of the bark in the second step was useful to reduce the impact of the conflict between 

species. For example, the fifth species, called Acer pseudoplatanus L., has a null recognition rate at the 

output of the first step, this rate is increased to 33%. We analyzed the first step recognition results of 

the Acer pseudoplatanus L. and we find that it was confused especially with the Acer Campestre L. 

species and the Acer Opalus Mill species. Fig. 13 presents the leaves of the Acer pseudoplatanus L., 

the Acer Campestre L. and the Acer Opalus Mill species respectively. According to Fig. 13 we can see 

that these three species have a similar base, apex and polygonal models which explain the confusion of 

the first step of the proposed approach. Some of these confusions are removed using the bark of these 

species and the second step of the proposed approach. 

According to Fig. 12, we have some species that are not recognized either by the first step or by 

the second one like the species 11 and 23. In fact, these species have few exemplary in our dataset. For 

example, the species 11 which is Betula pendula Roth has only two leaves in our leaves dataset, also, 

the species 23 which is Crataegus laevigata (Poir.) DC. has three leaves. Besides, these two species 

have many similarities with other species which makes their identification conflictual. Another 

important observation is that the accuracy of some few species has been decreased with the second 

step. In such cases, the bark brings some confusion to the system. Let take the species 60 for example. 

It is Quercus rubra L. species. When we analyze the output of the second step for this species, we 

notice that there is a confusion between Quercus cerris L. and Quercus pubescens Willd. that have 

similar bark to Quercus rubra L. as shown in Fig. 14.  

 

 
Fig. 11: Comparison between the accuracy of the random forest on leaves and the output of RF EkNN 
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Fig. 12: Comparison of the proportion of correctly recognized trees of each species at the output of the first step (first 

returned species) to the output of the second one (first returned species) of the proposed system.  

 

(a)  (b)  (c)  

Fig. 13: Example of confused species: (a) Acer Pseudoplatanus L. (b) Acer Campestre L. (c) Acer Opalus Mill 

 

(a)    (b)   (c)  

Fig. 14 : Example of confused bark: (a) Quercus cerris L., (b) Quercus rubra L. (c) Quercus pubescens Willd. 
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Table 3: Accuracy comparison between the proposed solution RF EkNN, LNS-EkNN, RF based fusion system, 

EkNN, SVM and Folia classifier for recognizing the tree species from leaf and bark photo 
 

 

Folia classifier 

(Cerutti et al., 

2013) 

SVM EkNN 
LNS 

EkNN 

RF based fusion system 

(Ben Ameur et al. 2017) 
RF EkNN 

1 53.78 60.13 42.56 50.05 55.96 69.11 

2 67.32 72.14 56.10 62.48 68.86 79.64 

3 74.13 76.77 62.88 69.50 75.49 81.72 

4 78.69 80.26 67.39 74.63 79.50 83.33 

5 81.67 82.44 71.26 78.28 82.22 84.09 

6 83.97 84.31 74.27 81.40 83.87 85.05 

7 85.96 85.88 76.42 83.76 85.23 86.16 

8 87.33 87.03 78.28 85.05 86.52 87.60 

9 88.40 87.87 80.83 86.59 87.74 89.43 

10 89.17 88.59 81.97 87.78 88.67 90.32 

Table 4: Processing time to recognize a species in milliseconds 
 

LNS EkNN RF EkNN Random Forest based fusion system 

127.8 44.6 275.4 

 

In Table 3, we compare the accuracy of the proposed RF EkNN with the accuracy of some 

existing solutions which are LNS EkNN (Jendoubi et al., 2010), RF-based fusion system (Ben Ameur 

et al. 2017), EkNN, SVM and Folia classifier (Cerutti et al., 2013) respectively. Then, we compare the 

accuracy of these solutions to recognize the tree using its leaf and bark photo. According to Table 3, 

we notice that RF-based fusion system, SVM and Folia classifier has close results. Besides, the best 

accuracy is given by the proposed solution RF EkNN that gives 69.11% for the first detected species 

and 90.32% for the tenth one. 

In another experiment, we study the performance of the proposed RF EkNN against an existing 

solution that uses a deep network and a huge dataset for training, which is Pl@ntNet. Besides, our 

dataset is part of Pl@ntNet learning data. We note that it is not possible to run Pl@ntNet on our testing 

data using one running and such access was not performed by the authors of this application. 

Consequently, we were obliged to do these tests manually through the running of Pl@ntNet on each 

photo separately. To simplify the task, we run Pl@ntNet on ten photos per species for which we have 

more than ten photos, and we run the tests on all the species photos if we have less than ten. For this 

experiment, we used our testing leaves dataset. We note that our dataset is a part of the training data of 

Pl@ntNet. Then to compare the proposed approach to Pl@ntNet, we learned and tested the RF EkNN 

approach on the testing dataset.  

Pl@ntNet has good results for almost considered species. However, we notice that for some 

species the proposed RF EkNN performs better results than Pl@ntNet. Let us take the case of the 

species 4 (Acer platanoides L.). Pl@ntNet recognized only 50% of the photos of this species and RF 

EkNN was more efficient in this case and recognized 62.5% (for this result we used only the leaves 

dataset for the two steps of RF EkNN). In fact, Pl@ntNet has some confusions generally between the 

Acer platanoides L., Acer pseudoplatanus L. and Acer saccharinum L. Fig. 15 presents leaves photos 

of these species, we can visibly notice that they are similar. On the other hand, RF EkNN was more 

robust to such confusions in the recognition of the Acer platanoides L. 

We noticed that the dataset we are using in our experiments is a part of Pl@ntNet learning data 

which explains its high performance in recognizing many species. Then, to put the proposed system in 

a similar condition, we learned and evaluated the RF EkNN using the testing dataset. In this case, the 

proposed RF EkNN was perfect in recognizing all the species and we obtained 100% of system 

accuracy. 
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 (a)  (b)  (c)  

Fig. 15 : Leaves examples of (a) Acer platanoides L., (b) Acer pseudoplatanus L. and (c) Acer saccharinum L. 

In the last experiment, we compare the processing time to recognize a species between RF 

EkNN, LNS EkNN, and Random Forest-based fusion system. Table 4 presents the recognition time in 

milliseconds. We notice that the proposed RF EkNN gives the best recognition time, 44.6 

milliseconds. Next, we have LNS EkNN that takes 127.8 ms to recognize a species and the Random 

Forest-based fusion system that takes 275.4 ms. The recognition time reduction is an important 

advance in this paper. In fact, the proposed approach will be run on a smartphone and should give a 

result to the user as fast as possible. 

To sum up, the proposed RF EkNN is efficient, in terms of accuracy, to identify the tree species 

compared to LNS-EkNN, RF-based fusion system, EkNN, SVM and Folia classifier. This is a result of 

the proposed mass distribution estimation process that detects confusing species and defines a mass 

distribution on their union. In fact, modeling these confusions as a partial ignorance allows the system 

to reduce them later in the information fusion step through an adapted combination rule. Thus, the 

proposed solution is able to make more accurate recognition.  

8. Conclusion & Perspectives 

This paper proposes an evidential recognition approach for tree species identification. The 

performance of the proposed solution is studied through a set of experiments on a dataset from the 

ImageClef 2015 challenge. Compared to the experimented solutions, the proposed approach is the 

most accurate one in recognizing tree species. 

In an uncertain environment which is characterized by several conflict situations between tree 

species, if the proposed approach can take advantage of the ability and the flexibility of the belief 

functions theory in elaborating a powerful decision system, it can be sometimes criticized for its 

limitations and disadvantages. Therefore, the used method can be confronted with problems of 

robustness, especially in the presence of very weak information and its homogeneity. Moreover, the 

proposed method is not equipped to handle cases of total conflict between species. In this situation, the 

decision system is not able to give a decision and the tree species is not recognized. Our method may 

also suffer from the inherent drawbacks of kNN algorithms (feature scaling, sensitivity to noisy data, 

outliers, …).  

Additional research will focus on the following three aspects. 1) Method optimization: 

considering the weaknesses mentioned in the kNN algorithm, we could first propose another 

distance (Eq. 4) for the EkNN algorithm and then consider other types of more efficient 

classifiers. 2) Method expanding, by bridging fuzzy logic and probabilistic reasoning, the theory of 

belief functions can become a primary tool for knowledge representation and uncertain reasoning in 

expert systems. A methodological reflection about this problem and its robustness will be conducted in 

our future works. 3) Application system: based on the two-step recognition system, another research is 

underway to establish a knowledge element system for an expert and intelligent system in the field of 

mushroom recognition. We adapted our two-step recognition system, by recognizing from a photo of 

the mushroom as a whole (the cap with the stem) the type of mushroom (gills, tubes, pores, etc.) then 

in a second stage refine the search thanks to additional characteristics extracted from a second image. 
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