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Abstract—This paper addresses the problem of availability 

optimization of a parallel-series system by using evolutionary 

techniques. Five techniques are considered, namely the cuckoo 

optimization algorithm, particle swarm optimization, flower 

pollination algorithm, differential evolution, and genetic 

algorithms. The integer values and constraints of cost are 

handled. The results regarding a system with ten subsystems 

are compared. It demonstrates that the cuckoo optimization 

algorithm performs best. 
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I.  INTRODUCTION 

The availability of systems is crucial for production or 
service competitiveness. However, increasing the overall 
system availability comes with a cost. Recently, many works 
dealing with the optimization of RAMS+C problems 
(reliability, availability, maintainability, safety and cost) use 
evolutionary computation techniques. In [1], [2], the system 
cost under a fixed availability value has been optimized 
using the combination of genetic algorithms and Tabu search. 
The system and cost have been optimized by introducing 
various techniques, such as artificial immune [3], artificial 
bee colony [4], genetic algorithms [5], [6], and penalty 
guided stochastic fractal search [6], [7]. In [8], genetic 
algorithms have been applied to solve both objectives. 

Although evolutionary optimization techniques have 
been shown to perform well in RAMS+C problems, in 
practice it can be difficult to decide which one to use. This 
paper aims to address the availability optimization problem 
of a parallel-series system. A system with ten subsystems is 
considered, under the constraints of cost and design. A 
comparison of five evolutionary computation techniques is 
offered. Penalty functions are introduced to handle the 
constraints. The remainder of the paper is organized as 
follows: Section II describes the problem; Section III 
presents the numerical case study; Section IV gives a brief 
description of the implemented evolutionary techniques; 
Section V gives the results with a discussion; finally, 
conclusions are given in Section VI. 

II. AVAILABILITY OPTIMIZATION OF PARALLEL-SERIES 

SYSTEM 

Design of parallel-series system (Figure 1) can be 
characterized by the following formulations [1], [2]: 
System cost 
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where CS(•) is the total system cost, ni is the number of 

identical redundant components in the ith subsystem, i is the 

failure rate of the components in the ith subsystem, and i is 
the repair rate of the components in the ith subsystem, m is 
the number of subsystems in the system. βi and αi are 
parameters representing physical features (shaping and 
scaling factors, respectively) of each component in 
subsystem i.  
 

 
Figure 1.  Parallel-series system.  
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System design configuration constraint of weight 
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where pi is the product of weight and volume per component 
in subsystem i and D1 is the limit of constraint (3). 

System design configuration constraint of the product of 
weight and volume 
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where wi is the weight of one component in subsystem i and 
D2 is the limit of constraint (4). 

The aim is to allocate the set of values (ni, i, i),                     
i=1, 2, …, m which satisfies the redundancy allocation in 
each subsystem of the system. The search for the optimum of 
(1) (minimum) and (2) (maximum), constrained by (3) and 
(4), is performed within: 
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where i
L
, i

L
, i

U
, i

U
 are the lower and upper limits of the 

failure and repair rates, respectively.   

III. NUMERICAL CASE STUDY 

The system considered consists of ten subsystems 
connected in parallel-series configuration (Figure 1, with 
m=10). Table I reports the data of the system.  

TABLE I.  DATA OF THE SYSTEM 

Subsystem i i (10
5

) i mci pi wi 

1 1.25     1.5 500 2     6    

2 2.70 1.5 500 4 9 

3 8.10 1.5 500 3 7 

4 4.50 1.5 500 2 6 

5 1.90 1.5 500 4 8 

6 3.55 1.5 500 2 5 

7 2.45 1.5 500 4 3 

8 6.30 1.5 500 3 9 

9 1.80 1.5 500 2 7 

10 5.25 1.5 500 2 5 
 
In [1], [2], the authors fixed the system cost as an 

objective to be minimized in the case of a system with five 
subsystems. In the present paper, the goal is to maximize the 
system availability under the constraints of cost and system 

configurations. Therefore, according to Eqs. (1)(5) and the 
data reported in Table I,  the problem of this case study is: 
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where  

ni≥1 (niℤ
+
) 

i[10
7

, 10
3

]ℝ+
, i[32×10

7
, 32×10

3
]ℝ+

 
As≥0.9 
Cs*=250; D1=200; D2=300, in arbitrary units. 

IV. EVOLUTIONARY COMPUTATION TECHNIQUES 

Five evolutionary computation techniques are applied: 
genetic algorithms, differential evolution, particle swarm 
optimization, cuckoo optimization algorithm, and flower 
pollination algorithm. Table II summarizes their main 
characteristics. 

TABLE II.  CHARACTERISTICS OF THE APPLIED TECHNIQUES 

Methods Advantages  Limitations  

GA Robust, Flexibility  Premature convergence, 

Problem encoding, 

Requires high function 

evaluations 

DE Accurate, Effective, No proof of convergence 

PSO Fast execution,  

Simple calculations  

Velocity parameters could 

be difficult to hand 

COA Proper convergence, 

Simple parameters to 

be handled 

Hard to handle integer 

variables 

FPA Good convergence 

rate 

Parameters could be 

difficult to hand  

 
The redundancy variables are rounded to the nearest 

integer values, while the constraints are handled using 
penalty functions [7], introduced in the formulation of the 
problem as follows: 

 ( , , ) ( , , )sFitness value A n n                (10) 
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where ϕh is the penalty factor and M is the number of 
constraints (M=9). 

A. Genetic Algorithms (GA) 

The GA are based on the principles of the evolution of 
species [9], [10]. Table III contains the parameters and rules 
of the implemented GA. 



TABLE III.  GENETIC ALGORITHM PARAMETERS AND RULES. 

Population size 20 

Selection technique Standard roulette 

Mutation probability 10
3 

Crossover probability 1 

B. Differential Evolution (DE) 

The DE is a population-based algorithm similar to GA, 
but with more perturbations in the iterations of the 
population [11]–[13]. Table IV contains the parameters and 
rules of the implemented DE. 

TABLE IV.  DIFFERENTIAL EVOLUTION PARAMETERS AND RULES. 

Population size 20 

Scaling factor 0.2 

Crossover rate 0.2 

C. Particle Swarm Optimization (PSO) 

The PSO is based on the behavior of swarms of fishes 
and birds [14], [15]. Table V contains the parameters and 
rules of the implemented PSO. 

TABLE V.  PARTICLE SWARM OPTIMIZATION PARAMETERS. 

Swarm size 20 

Inertia weight 1 

Learning coefficient 2 

D. Cuckoo Optimzization Algorithm (COA) 

The COA is inspired from the processes of reproduction 
and migration of the cuckoos birds [16], [17]. Table VI 
contains the parameters and rules of the implemented COA. 

TABLE VI.  CUCKOO OPTIMIZATION ALGORITHM PARAMETERS. 

Number of cuckoos 20 

Motion coefficient 5 

Radius coefficient 10
3 

E. Flower Pollination Algorithm (FPA) 

The principles of the FPA is based on the pollination 
process of flowers [18]. The parameters of the implemented 
FPA are reported in Table VII. 

TABLE VII.  FLOWER POLLINATION ALGORITHM PARAMETERS. 

Population size 20 

Probability switch 0.8 

 
The values of the parameters of the above techniques 

have been fixed based on experience and trial-and-error, in 
the attempt to get the best performance for each technique. 
The algorithms have been encoded using MATLAB 2017 
and run on a personal computer with the following 
characteristics: Intel Core I3 of 2.53 GHz with 4 GB of RAM. 
The problem involves 30 decision variables, including 10 
integer values. 

V. RESULTS AND DISCUSSION 

Table VIII summarizes the worst, average and best 
values of As found by each algorithm, whereas Table IX 
reports the optimal solutions, system cost Cs, standard 
deviation (SD) after 10 independent runs, number of function 
evaluations (NFE) required to find the best solution, and the 
CPU time.  

TABLE VIII.  RESULTS. 

Method Worst  Average Best    
COA 0.9697   0.9734  0.9765 

GA 0.9053   0.9255 0.9589 

FPA 0.9011   0.9267  0.9644 

DE 0.9015   0.9350  0.9654 

PSO 0.9240 0.9424 0.9649 

 
From Table VIII, it can be observed that the best values 

of As found by each algorithm are: PSO (0.9649), DE 
(0.9654), FPA (0.9644), GA (0.9589), and COA (0.9765). 
Thus, the maximum As has been found by the COA 
(As=0.9765), whereas the minimum value 0.9589 has been 
provided by the GA. Furthermore, the worst and average 
values found by the COA are better. Figure 2 illustrates the 
best values of As found by each algorithm. 
 

 

Figure 2.  Best system availability provided by each evolutionary 

computation technique. 

 

Figure 3.  NFE required by each evolutionary computation technique. 
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TABLE IX.  DETAILED RESULTS. 

Method n  (10
3

)  (10
2

) Cs As NFE SD CPU (s) 

COA (3, 2, 2, 3, 2, 2, 

3, 2, 3, 3)                                              

(0.5435, 0.4903, 

0.7522, 0.8219, 

0.4606, 0.4313, 

0.6612, 0.6649, 

0.5661, 0.8780) 

(0.4393, 0.8895, 

1.0907, 0.5776, 

0.8726, 0.7540, 

0.4958, 1.1125, 

0.4630, 0.6139) 

249.9922 0.9765 2,000 0.001884 1.5912 

GA (3, 3, 2, 2, 3, 3, 

2, 2, 2, 2)   

(0.5978, 0.7117, 

0.8648, 0.6510, 

0.4545, 0.8658, 

0.5126, 0.6194, 

0.2048, 0.7043)    

(0.3637, 0.4170, 

1.0598, 0.9699, 

0.3067, 0.6567, 

0.8701, 0.9023, 

1.7164, 0.9745) 

248.5754 0.9589 25,000 0.0166 1.6536 

FPA (3, 2, 2, 2, 2, 2, 

3, 3, 3, 2)                                                                                                                                                          

(0.5157, 0.7579, 

0.4919, 0.6473, 

0.5591, 0.9095, 

0.4938, 0.8977, 

0.7457, 0.6910) 

(0.3410, 0.7964, 

1.0277, 0.8878, 

1.0974, 1.4357, 

0.2876, 0.5501, 

0.4852, 0.8708) 

249.8303 0.9644 40,000 0.0181 5.8032 

DE (3, 2, 2, 1, 2, 1, 

2, 3, 3, 2) 

 

(0.4844, 0.3590, 

0.7673, 0.4063, 

0.5366, 0.7744, 

0.6316, 0.9290, 

0.6903, 0.5165) 

(0.4681, 0.5971, 

1.1225, 1.9211, 

0.2822, 1.1092, 

0.8182, 0.8442, 

0.8668, 0.4274) 

244.0932 0.9654 10,000 0.0181 3.66 

PSO (2, 2, 2, 2, 2, 2, 

3, 2, 2, 2) 

    

 

(0.3515, 0.5183, 

0.7869, 0.5934, 

0.5166, 0.5958, 

0.7610, 0.7557, 

0.5538, 0.6736) 

(0.6501, 0.8490,    

1.0842, 0.8974, 

0.8375, 0.9218, 

0.5122, 1.0620, 

0.8899, 0.9773) 

249.9994 0.9649 10,500 0.0128 8.5333 

         
It can be also observed that the COA has required fewer 

number of function evaluations (2,000), consumed less CPU 
time (1.5912 s), and is more stable in term of standard 
deviation (0.001884) than the other techniques. Figure 3 
summarizes the NFE values required by each technique. The 
above results reveal that the penalty function has been 
successfully implemented and the COA has outperformed 
the other applied evolutionary computation techniques. 

VI. CONCLUSIONS 

In this paper, the system availability of a parallel-series 
system has been addressed using five evolutionary 
computation techniques: genetic algorithm (GA), differential 
evolution (DE), particle swarm optimization (PSO), flower 
pollination algorithm (FPA), and the cuckoo optimization 
algorithm (COA). A case study involving 10 subsystems has 
been investigated and a penalty function has been 
implemented for handling the constraints. From the results it 
can be concluded that the COA has outperformed the other 
four techniques in terms of system availability, number of 
function evaluations, standard deviation, and CPU time. On 
the other hand the integer values of redundancy have been 
successfully handled in implementing the five techniques. 
Further works on other system configurations will be 
performed to confirm the results. 
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