Mohamed Arezki

Mellal Lmss

Enrico Zio

Availability Optimization of Parallel-Series System by Evolutionary Computation

Keywords: system availability, system cost, parallel-series system, optimization, evolutionary computation I

This paper addresses the problem of availability optimization of a parallel-series system by using evolutionary techniques. Five techniques are considered, namely the cuckoo optimization algorithm, particle swarm optimization, flower pollination algorithm, differential evolution, and genetic algorithms. The integer values and constraints of cost are handled. The results regarding a system with ten subsystems are compared. It demonstrates that the cuckoo optimization algorithm performs best.

INTRODUCTION

The availability of systems is crucial for production or service competitiveness. However, increasing the overall system availability comes with a cost. Recently, many works dealing with the optimization of RAMS+C problems (reliability, availability, maintainability, safety and cost) use evolutionary computation techniques. In [START_REF] Liu | Availability optimization for repairable parallel-series system by applying Tabu-GA combination method[END_REF], [START_REF] Liu | Availability optimization for repairable n-stage standby system by applying Tabu-GA combination method[END_REF], the system cost under a fixed availability value has been optimized using the combination of genetic algorithms and Tabu search. The system and cost have been optimized by introducing various techniques, such as artificial immune [START_REF] Hsieh | An effective immune based two-phase approach for the optimal reliability-redundancy allocation problem[END_REF], artificial bee colony [START_REF] Garg | An efficient two phase approach for solving reliability-redundancy allocation problem using artificial bee colony technique[END_REF], genetic algorithms [START_REF] Mellal | Large scale reliability-redundancy allocation optimization problem using three soft computing methods[END_REF], [START_REF] Mellal | System reliability-redundancy allocation by evolutionary computation[END_REF], and penalty guided stochastic fractal search [START_REF] Mellal | System reliability-redundancy allocation by evolutionary computation[END_REF], [START_REF] Mellal | A penalty guided stochastic fractal search approach for system reliability optimization[END_REF]. In [START_REF] Marseguerra | Basics of genetic algorithms optimization for RAMS applications[END_REF], genetic algorithms have been applied to solve both objectives.

Although evolutionary optimization techniques have been shown to perform well in RAMS+C problems, in practice it can be difficult to decide which one to use. This paper aims to address the availability optimization problem of a parallel-series system. A system with ten subsystems is considered, under the constraints of cost and design. A comparison of five evolutionary computation techniques is offered. Penalty functions are introduced to handle the constraints. The remainder of the paper is organized as follows: Section II describes the problem; Section III presents the numerical case study; Section IV gives a brief description of the implemented evolutionary techniques; Section V gives the results with a discussion; finally, conclusions are given in Section VI.

II. AVAILABILITY OPTIMIZATION OF PARALLEL-SERIES SYSTEM

Design of parallel-series system (Figure 1) can be characterized by the following formulations [START_REF] Liu | Availability optimization for repairable parallel-series system by applying Tabu-GA combination method[END_REF], [START_REF] Liu | Availability optimization for repairable n-stage standby system by applying Tabu-GA combination method[END_REF]:

System cost       1 (, ,) exp(/ 4) i m s i i i i i i i C n mc n n                (1)
where C S (•) is the total system cost, n i is the number of identical redundant components in the ith subsystem,  i is the failure rate of the components in the ith subsystem, and  i is the repair rate of the components in the ith subsystem, m is the number of subsystems in the system. β i and α i are parameters representing physical features (shaping and scaling factors, respectively) of each component in subsystem i. ,,)

1 1 i n m i s ii i An                 (2)
System design configuration constraint of weight

2 1 1 () m ii i p n D    (3)
where p i is the product of weight and volume per component in subsystem i and D 1 is the limit of constraint [START_REF] Hsieh | An effective immune based two-phase approach for the optimal reliability-redundancy allocation problem[END_REF].

System design configuration constraint of the product of weight and volume

m i i i i w n n D    (4)
where w i is the weight of one component in subsystem i and D 2 is the limit of constraint (4).

The aim is to allocate the set of values (n i ,  i ,  i), i=1, 2, …, m which satisfies the redundancy allocation in each subsystem of the system. The search for the optimum of (1) (minimum) and (2) (maximum), constrained by (3) and (4), is performed within:

1; , , ii LU i i i LU i i i nn                       (5)
where

 i L ,  i L ,  i U ,  i U
are the lower and upper limits of the failure and repair rates, respectively.

III. NUMERICAL CASE STUDY

The system considered consists of ten subsystems connected in parallel-series configuration (Figure 1, with m=10). Table I reports the data of the system. In [START_REF] Liu | Availability optimization for repairable parallel-series system by applying Tabu-GA combination method[END_REF], [START_REF] Liu | Availability optimization for repairable n-stage standby system by applying Tabu-GA combination method[END_REF], the authors fixed the system cost as an objective to be minimized in the case of a system with five subsystems. In the present paper, the goal is to maximize the system availability under the constraints of cost and system configurations. Therefore, according to Eqs. (1)(5) and the data reported in Table I, the problem of this case study is:

10 1 Maximize (, ,) 1 1 i n i s ii i An                 (6) subject to       10 * 1 exp(/ 4) i i i i i i i s i mc n n C              (7) 10 2 1 1 () ii i p n D    (8) 10 2 1 exp(/ 4) i i i i w n n D    (9)
where

n i ≥1 (n i ℤ +)  i [10 7 , 10 3]ℝ + ,  i [32×10 7 , 32×10 3]ℝ + A s ≥0.9 C s *=250; D 1 =200; D 2 =300
, in arbitrary units.

IV. EVOLUTIONARY COMPUTATION TECHNIQUES

Five evolutionary computation techniques are applied: genetic algorithms, differential evolution, particle swarm optimization, cuckoo optimization algorithm, and flower pollination algorithm. The redundancy variables are rounded to the nearest integer values, while the constraints are handled using penalty functions [START_REF] Mellal | A penalty guided stochastic fractal search approach for system reliability optimization[END_REF], introduced in the formulation of the problem as follows:

(, ,) (, ,) s Fitness value A n n       (10
)
with the penalty function 2 1 (, ,) max(0, (, ,))

M hh h n g n          (11)
where ϕ h is the penalty factor and M is the number of constraints (M=9).

A. Genetic Algorithms (GA)

The GA are based on the principles of the evolution of species [START_REF] Holland | Adaptation in Natural and Artificial Systems[END_REF], [START_REF] Renner | Genetic algorithms in computer aided design[END_REF]. Table III contains the parameters and rules of the implemented GA.

B. Differential Evolution (DE)

The DE is a population-based algorithm similar to GA, but with more perturbations in the iterations of the population [START_REF] Storn | Differential evolution -A simple and efficient adaptive scheme for global optimization over continuous spaces[END_REF]- [START_REF] Zio | Optimization of the inspection intervals of a safety system in a nuclear power plant by Multi-Objective Differential Evolution (MODE)[END_REF]. Table IV

C. Particle Swarm Optimization (PSO)

The PSO is based on the behavior of swarms of fishes and birds [START_REF] Kennedy | Particle swarm optimization[END_REF], [START_REF] Mellal | A survey on ant colony optimization, particle swarm optimization, and cuckoo algorithms[END_REF]. Table V contains the parameters and rules of the implemented PSO.

D. Cuckoo Optimzization Algorithm (COA)

The COA is inspired from the processes of reproduction and migration of the cuckoos birds [START_REF] Rajabioun | Cuckoo optimization algorithm[END_REF], [START_REF] Mellal | The cuckoo optimization algorithm and its applications[END_REF].

E. Flower Pollination Algorithm (FPA)

The principles of the FPA is based on the pollination process of flowers [START_REF] Yang | Flower pollination algorithm for global optimization[END_REF]. The parameters of the implemented FPA are reported in Table VII. The values of the parameters of the above techniques have been fixed based on experience and trial-and-error, in the attempt to get the best performance for each technique. The algorithms have been encoded using MATLAB 2017 and run on a personal computer with the following characteristics: Intel Core I3 of 2.53 GHz with 4 GB of RAM. The problem involves 30 decision variables, including 10 integer values.

V. RESULTS AND DISCUSSION

Table VIII summarizes the worst, average and best values of A s found by each algorithm, whereas Table IX reports the optimal solutions, system cost C s , standard deviation (SD) after 10 independent runs, number of function evaluations (NFE) required to find the best solution, and the CPU time. From Table VIII, it can be observed that the best values of A s found by each algorithm are: PSO (0.9649), DE (0.9654), FPA (0.9644), GA (0.9589), and COA (0.9765). Thus, the maximum A s has been found by the COA (A s =0.9765), whereas the minimum value 0.9589 has been provided by the GA. Furthermore, the worst and average values found by the COA are better. Figure 2 illustrates the best values of A s found by each algorithm. It can be also observed that the COA has required fewer number of function evaluations (2,000), consumed less CPU time (1.5912 s), and is more stable in term of standard deviation (0.001884) than the other techniques. Figure 3 summarizes the NFE values required by each technique. The above results reveal that the penalty function has been successfully implemented and the COA has outperformed the other applied evolutionary computation techniques.

VI. CONCLUSIONS

In this paper, the system availability of a parallel-series system has been addressed using five evolutionary computation techniques: genetic algorithm (GA), differential evolution (DE), particle swarm optimization (PSO), flower pollination algorithm (FPA), and the cuckoo optimization algorithm (COA). A case study involving 10 subsystems has been investigated and a penalty function has been implemented for handling the constraints. From the results it can be concluded that the COA has outperformed the other four techniques in terms of system availability, number of function evaluations, standard deviation, and CPU time. On the other hand the integer values of redundancy have been successfully handled in implementing the five techniques. Further works on other system configurations will be performed to confirm the results.

Figure 1 .

 1 Figure 1. Parallel-series system.Asymptotic system availability

Figure 2 .

 2 Figure 2. Best system availability provided by each evolutionary computation technique.

Figure 3 .

 3 Figure 3. NFE required by each evolutionary computation technique.

TABLE I .

 I

			i	mc i	p i	w i
	1	1.25	1.5 500	2	6
	2	2.70	1.5 500	4	9
	3	8.10	1.5 500	3	7
	4	4.50	1.5 500	2	6
	5	1.90	1.5 500	4	8
	6	3.55	1.5 500	2	5
	7	2.45	1.5 500	4	3
	8	6.30	1.5 500	3	9
	9	1.80	1.5 500	2	7
	10	5.25	1.5 500	2	5

DATA OF THE SYSTEM

Subsystem i  i (10 5) 

 Table II summarizes their main characteristics.

TABLE II .

 II CHARACTERISTICS OF THE APPLIED TECHNIQUES

	Methods	Advantages	Limitations
	GA	Robust, Flexibility Premature convergence,
			Problem encoding,
			Requires high function
			evaluations
	DE	Accurate, Effective, No proof of convergence
	PSO	Fast execution,	Velocity parameters could
		Simple calculations	be difficult to hand
	COA	Proper convergence,	Hard to handle integer
		Simple parameters to	variables
		be handled	
	FPA	Good convergence	Parameters could be
		rate	difficult to hand

TABLE III .

 III GENETIC ALGORITHM PARAMETERS AND RULES.

	Population size	20
	Selection technique	Standard roulette
	Mutation probability	10 3
	Crossover probability	1

 contains the parameters and rules of the implemented DE.

TABLE IV .

 IV DIFFERENTIAL EVOLUTION PARAMETERS AND RULES.

	Population size	20
	Scaling factor	0.2
	Crossover rate	0.2

TABLE V .

 V PARTICLE SWARM OPTIMIZATION PARAMETERS.

	Swarm size	20
	Inertia weight	1
	Learning coefficient	2

 Table VI contains the parameters and rules of the implemented COA.

TABLE VI .

 VI CUCKOO OPTIMIZATION ALGORITHM PARAMETERS.

	Number of cuckoos	20
	Motion coefficient	5
	Radius coefficient	10 3

TABLE VII .

 VII FLOWER POLLINATION ALGORITHM PARAMETERS.

	Population size	20
	Probability switch	0.8

TABLE VIII .

 VIII RESULTS.

	Method	Worst	Average	Best
	COA	0.9697	0.9734	0.9765
	GA	0.9053	0.9255	0.9589
	FPA	0.9011	0.9267	0.9644
	DE	0.9015	0.9350	0.9654
	PSO	0.9240	0.9424	0.9649

TABLE IX .

 IX DETAILED RESULTS.

	Method	n	 (10 3)	 (10 2)	C s	A s	NFE	SD	CPU (s)
	COA	(3, 2, 2, 3, 2, 2,	(0.5435, 0.4903,	(0.4393, 0.8895,	249.9922 0.9765 2,000 0.001884	1.5912
		3, 2, 3, 3)	0.7522, 0.8219,	1.0907, 0.5776,					
			0.4606, 0.4313,	0.8726, 0.7540,					
			0.6612, 0.6649,	0.4958, 1.1125,					
			0.5661, 0.8780)	0.4630, 0.6139)					
	GA	(3, 3, 2, 2, 3, 3,	(0.5978, 0.7117,	(0.3637, 0.4170,	248.5754 0.9589 25,000	0.0166	1.6536
		2, 2, 2, 2)	0.8648, 0.6510,	1.0598, 0.9699,					
			0.4545, 0.8658,	0.3067, 0.6567,					
			0.5126, 0.6194,	0.8701, 0.9023,					
			0.2048, 0.7043)	1.7164, 0.9745)					
	FPA	(3, 2, 2, 2, 2, 2,	(0.5157, 0.7579,	(0.3410, 0.7964,	249.8303 0.9644 40,000	0.0181	5.8032
		3, 3, 3, 2)	0.4919, 0.6473,	1.0277, 0.8878,					
			0.5591, 0.9095,	1.0974, 1.4357,					
			0.4938, 0.8977,	0.2876, 0.5501,					
			0.7457, 0.6910)	0.4852, 0.8708)					
	DE	(3, 2, 2, 1, 2, 1,	(0.4844, 0.3590,	(0.4681, 0.5971,	244.0932 0.9654 10,000	0.0181	3.66
		2, 3, 3, 2)	0.7673, 0.4063,	1.1225, 1.9211,					
			0.5366, 0.7744,	0.2822, 1.1092,					
			0.6316, 0.9290,	0.8182, 0.8442,					
			0.6903, 0.5165)	0.8668, 0.4274)					
	PSO