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aUniversité d’Angers, LERIA, F-49045 Angers, France
bHuazhong University of Science and Technology, State Key Laboratory of Digital Manufacturing

Equipment & Technology, Wuhan 430074, China
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Abstract

A wireless sensor network (WSN) is a group of sensors deployed in an area, with all of
them working on a battery and with direct communications inside the network. A fairly
common situation, addressed in this work, is to monitor and record data with a WSN
about vehicles (planes, terrestrial vehicles, boats, etc) passing by an area with damaged
infrastructures. In such a context, an activation schedule for the sensors ensuring a con-
tinuous coverage of all the targets is required. Furthermore, the collected data, in order
to be treated, have to be transmitted to a base station in the area, near the sensors. In
this work, the future monitoring missions of the network are also taken into account, as
well as the energy consumption of the current mission. We also consider that the spatial
trajectories of the targets are known, whereas the speed of the targets along their tra-
jectories are estimated, and subject to uncertainty. Hence, the main objective is to seek
solutions that can withstand earliness and tardiness from the previsions. We propose a
formulation of the problem with three different objectives and a solution method with
experiments and results. The objectives are treated in a lexicographic order as follows
(i) maximize the robustness schedule to cope with the advances and delaqui leys of the
targets, (ii) maximize the minimum of monitoring time we can guarantee in priority
areas, (iii) maximize the amount of energy left in the sensor batteries. We propose new
upper bounds on the robustness measure, that are exploited by the solution approach
whose complexity is shown to be pseudo-polynomial. The solution approach is based
on a preprocessing step called discretisation, and the resolution of a series of linear
programs.
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1. Introduction

Wireless Sensor Networks (WSN) (Akyildiz et al. 2002, Yick et al. 2008) is a tech-
nology becoming more and more prominent in industry nowadays, with numerous ap-
plications and a bright promising future (Rawat et al. 2014, Modieginyane et al. 2018,
Xu et al. 2018, Aalsalem et al. 2018). It involves the deployment of a network in an
infrastructure-free area. Each node of the network is a small, cheap, easy to config-
ure and reliable sensor, that will capture data about its environment. Eventually, the
purpose of the network is fulfilled, even with a few defective sensors, by gathering
and processing together the data collected by the nodes. They may include a wire-
less communication module, diverse sensing capabilities (humidity, temperature, light,
movement and many others), wheels, different levels of batteries, etc. As an example
in (Werner-Allen et al. 2006), to monitor volcanoes, the sensors are equipped with a
seismometer, a microphone and a long-range radio. The sum of their data collected
will warn when an eruption is likely to happen. Nonetheless, there are plenty of other
different applications for WSNs (Yick et al. 2008), using their ability to monitor an
area or track one or more targets. Many applications have high impact goals, where
human lives are at stake. The military field is notably using the WSNs (Durišić et al.
2012). Indeed such networks are easily deployed in enemy territory and are able to
work while several sensors are discovered and destroyed by the enemy. In most of the
applications, the networks are deployed in a remote area or an area dangerous to access,
due to natural disaster or war conflict. Therefore, with the lack of infrastructure, the
batteries of the sensors cannot be refilled. Consequently, the lifetime of the network
(the period of time during which the network can fully serve its purpose) is limited.
This leads to the implementation of sensor management optimization methods in order
to provide efficient solutions to various problems.

We consider, in this work, the goal of tracking a set of targets by a sensor net-
work (Liu and Liang 2005). For instance, in the military case, it refers to a WSN
randomly deployed in a battlefield, with one or more targets traversing the battlefield.
Once activated, a sensor is able to monitor the targets inside its sensing range and
record data. The sensing range is the maximum distance at which a target can be to
be monitored by a sensor. Thus, the basic goal in this problem is to find an activation
schedule, that will alternate between active and inactive state for the sensors. The use
of this kind of schedule will highly extend the lifetime of the network compared to a
continuous activation of all the sensors (Benini et al. 2000). Keeping in mind that the
schedule has to guarantee a full and continuous monitoring of the targets whenever and
wherever the targets are located (at every instant a target, if it is under the range of at
least one sensor, has to be monitored). Though, the network lifetime is limited by the
sensing ranges and the battery capacities of the sensors.

The activity of sensing a given set of targets is called a mission, and to the best
of our knowledge, all the contributions in optimization to wireless sensor networks
are focused on a single mission for the monitoring of moving target. The problem
addressed in this paper is to decide when to activate each sensor so as to maximize the
ability of the resulting schedule to keep being feasible despite uncertainty affecting the
targets speed along their trajectory for the current mission. The secondary objective is
to maximize the wireless sensor network ability (i.e. the amount of time available with
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the batteries) to monitor a given set of zones of interest for future missions. The last
objective is to minimize the total amount of energy required by the current monitoring
mission.

In the case where targets are terrestrial vehicles moving on roads or tracks, their
geographical trajectory can be predicted quite naturally (e.g. buses or trains). For boats
or aircrafts, the trajectory can be estimated at least for a short amount of time. In
this work, we assume that such a trajectory prediction is available, but the considered
uncertainty is about the speed at which the targets move along their trajectory.

The main contributions of this paper are the following ones. First, a more real-
istic model than the one in (Lersteau et al. 2016) is considered for the WSN, where
sensor communication is taken into account in the new model. In most of the appli-
cations of WSN, the communication of the data collected is mandatory and since the
power consumption due to communication is much larger than the consumption due
to sensing (Anastasi et al. 2009), the new model proposed in this paper is much more
accurate. Furthermore, the previous work (Lersteau et al. 2016) is also extended to
consider multiple targets in the problem. As a result, we introduce a new upper bound
on the stability radius defined in Section 6, and the previous bounds introduced in (Ler-
steau et al. 2016) are naturally extended to include communication and multiple targets.
The stability radius (Sotskov et al. 1998) is a measure of the ability of the network to
remain feasible despite uncertainty, it is formally defined in Section 3. Second, this
paper proposes an extended and comprehensive approach to produce robust solutions,
refined with the two additional criteria: the results in (Lersteau et al. 2016) are extended
to more than one targets, and hop-communication (communication between sensors to
transfer the collected data to a base station) is taken into account. Finally, this approach
also ĥas energy considerations added to the robust scheduling, with priority areas.

This paper is organized as follows: Section 2 presents the related work, it is fol-
lowed by a reminder of the original definition of the stability radius in Section 3. Sec-
tion 4 defines the problem. Afterwards, we present a discretisation phase, as a preamble
to the solution method in Section 5 and propose an upper bound for the stability radius
in Section 6; Section 7 introduces the solution method; Section 8 presents the experi-
ments and their results and finally, Section 9 concludes this paper.

2. Related Works

The WSN field has plenty of possible applications already addressed in the liter-
ature, with different types of wireless networks considered and different optimization
problems. We outline here several problems divided in two types of WSN: mobile and
static ones.

On the one hand, as presented in (Mohamed et al. 2017) in a mobile WSN, sensors
are still able to move after their initial deployment as they are motorized. Thus, in
these problems, the literature is based mostly on coverage related objectives where the
advantage of the mobility of the sensors is used to fill uncovered parts or to assure a
minimum level of coverage. As an example in (Elhoseny et al. 2018) the k-coverage
problem is addressed. The aim is to cover all locations of the field with at least k
sensors. In an other example (Liu and Liang 2005) treats the θ-coverage where a full
coverage of the zone is impossible and therefore the problem is to cover at least θ%
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of the area. Moreover, there are different other objectives. In (Patel et al. 2005), the
authors addressed a cluster-based problem. Cluster-heads are often used in networks
for performing data fusion on the data collected by the sensors. They can be assigned
to various potential locations that cover different sets of sensors. Since the sensors are
mobile over the horizon of time, the quality (data coverage) of a location is fluctuating.
Therefore, the network is able to relocate several times the cluster-heads to different
locations, with a cost for each relocation. Consequently, in their work, the authors
proposed a column generation heuristic to find an optimal trade-off between the data
coverage and the relocation costs.

On the other hand, in the static WSN, the sensors being deployed cannot move.
A popular application of static WSN is the target tracking, where different objectives
can be optimized, such as energy consumption, scalability, fault tolerance and tracking
precision.

Energy consumption and network’s lifetime are critical since batteries are often
assumed to be not refillable. There exists a very extensive literature about these two
objectives in target tracking. For example, there are two prominent protocols used to
save energy, LEACH (Handy et al. 2002) and HEED (Younis and Fahmy 2004). In
the case of static targets, Cardei and Du (2005) increase the lifetime of the network by
organizing the set of sensors into a maximal number of disjoint subsets of sensors that
cover all the targets. The authors showed that if the sets are activated in turn, the life-
time of the network is extended. Furthermore, an efficient power management method
is presented in (Campos-Nañez et al. 2008), using a game-theoretic approach to pro-
pose a distributed scheme. The network lifetime is often maximized with an efficient
schedule of the sensors’ activity. For example, (Castaño et al. 2014) propose a col-
umn generation approach to compute a schedule for maximizing the network lifetime
under connectivity and coverage constraints. In (Carrabs et al. 2015), the network life-
time is also maximized, but they consider that each sensor is assigned to a family and
each family has a coverage requirement. The lifetime maximisation may also consider
connectivity constraints (i.e., the data collected is transmitted to a central processing
node) and thus multi-role sensors. In these cases, the power consumption of sensors
depends on their roles, i.e., idle, relaying or monitoring, as in (Carrabs et al. 2016,
2017, Castaño et al. 2015). Lifetime maximization in the context of target tracking is
currently a hot topic: as an example, Alibeiki et al. (2019) propose a genetic-based ap-
proach for a directional sensor network with adjustable range. The heuristic approach
finds efficient solution to monitor non-moving target while maximizing the lifetime of
the network. A sensor is only able to monitor the targets inside its sensing range, that is
adjustable, in its direction of activation. The greater the sensing range, the more energy
is consumed, and the sensor has several working directions, but it can use only one of
them at a time.

The criterion of scalability as presented in (Kung and Vlah 2003, Naderan et al.
2012) is also an important one. With this objective, a WSN protocol should scale
well to large numbers of sensors or targets, since a dense network or an important
number of targets can significantly increase the communication consumption. Scalable
protocols typically use cluster-based or distributed approaches instead of centralized
ones. The tracking precision criterion optimizes how far the estimated locations or
passing times of the targets can be derived from the real locations or times (Lersteau
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et al. 2016, Naderan et al. 2012). Literature covers the probability to lose a target,
the recovery process, robustness against delays and advances or trust region for the
location, noise sensitivity, etc. For the fault detection criterion, the algorithms detect
flaws in the network or unexpected external events and reconfigure the network as
quickly as possible, as in (Jin et al. 2015).

In our study, we extend the work of (Lersteau et al. 2016) where the authors ad-
dressed a target tracking robustness problem in Wireless Sensor Networks. The aim is
to find a schedule that covers a single target at any time, with the target position sup-
posed to be exactly known over a time horizon. However, the targets can be subjected
to delays or advances and the schedule is protected from these perturbations by the
stability radius ρ. Indeed, whatever the delays or advances of the targets at any point of
their trajectory, the schedule remains feasible as long as these values remain less than
the stability radius. In the way it is presented in (Lersteau et al. 2016), this problem has
some common features with an assembly line such as in (Sotskov et al. 2006), where
the aim is to schedule operations on a minimum number of stations with possible vari-
ations in the processing time, under a cycle time constraint. The method presented in
(Lersteau et al. 2016) starts with a discretisation phase, i.e., the transformation of the
geometrical problem into data used to model a combinatorial optimization problem.
The covered space is partitioned into faces (this term is defined in Section 5). The
target has several time windows as it moves through different faces, with each transi-
tion between two faces called a tick. The target trajectory is no longer needed and is
turned into a succession of time windows, with a list of available sensors to monitor
the target during each such time window. The authors proposed a pseudo-polynomial
two-step algorithm. They noticed that the increase of the stability radius has an impact
on the time windows, and their solution approach relies on a bisection method to find a
feasible set of time windows with the highest possible stability radius. Each step of the
bisection methods solves a transportation problem. Finally, a linear program is solved
to maximize the stability radius for the time windows returned by the bisection method.
The present paper also relies on the discretisation and bisection phases but extends the
problem by considering multiple targets and communication constraints. Thus, we now
need to find a route for the collected data: from the activated sensors, relayed by sev-
eral sensors, to a base station. Communication heavily impacts the sensor batteries and
thus the returned solutions. In addition, we have added different objectives, aiming to
save energy for future missions, which is again an extension of (Lersteau et al. 2016).

3. Formal definition of the stability radius of a schedule

A formal definition of the stability radius of a schedule can be seen in (Sotskov et al.
1998). In the scheduling problem, the stability radius is an indicator on the greatest
variation on the processing times of the jobs for which the optimal schedule remains
optimal. In such problems, each job i of the set of jobs Q has a processing time pi and,
in a schedule s, a completion time c(s)i. Uncertain events can impact the processing
time of a job i with a variation of εi such that the new processing time is equal to
pi ± εi, which will also affect the completion time. A schedule has a stability radius of
% if and only if it is always the optimal schedule for all the vectors of processing time
p′ ∈ O%(p), with O%(p) the closed ball centered on p = {p1, p2, . . . , p|Q|} the original
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processing times and with a radius equals to %. It means that the schedule remains
feasible if for each job i, εi ≤ %.

After introducing the problem in the next section, the original definition of the
stability radius is adapted to the target tracking problem in Section 5.

4. Problem Definition

The problem of multiple targets tracking by a wireless sensor network, with hop-
communications of data to a base station is addressed. Hop-communication means that
a sensor that cannot communicate directly with the base station can sends its data to
the base station through intermediate sensors, that serve as relays. This problem is
referred to as Pn

c where n is the number of targets and c stands for communication.
In this problem, during a given time horizon T , a set J of n targets with their spatial
trajectories already known, will traverse a zone monitored by a set I of m sensors. A
function τ j(t) estimates the position of the target j at each instant t.

First, the network has to guarantee a constant monitoring of each target. If the
trajectory of a target is not continuously under the monitoring range of at least one
sensor, the problem is considered infeasible. Note that if these targets are neglected
and removed from our problem, we may obtain a new feasible problem. Second, the
network has to transfer all the data collected to a base station which is connected to a
permanent source of energy and is able to forward the data to a remote control center.
For that purpose, the sensors are equipped with communication modules to transmit
and receive data. Once activated they are able to form a path from the monitoring
sensors to the base station, with several sensors used as relays if necessary.

The sensors can only communicate with other sensors or with the base station if
they are under its communication range Rc. The sensor can monitor only the targets
that are under its sensing range Rs, i.e., at an instant t, targets that are more than Rs

meters away from a sensor i cannot be monitored by this sensor. N(i) is the set of all
the sensors in the communication range of the sensor i, i.e. those who can send and
receive information from sensor i. Each sensor i ∈ I has a limited battery with an
energy of Ei joules.

The sensors are multi-role (Castaño et al. 2016) and therefore we consider three
kinds of energy consumption:

• Monitoring a target requires a power of pS watts (a watt is a joule per second)

• Emitting data requires pT watts.

• Receiving data from another sensor requires pR watts.

A monitoring activity by a sensor collects data that is necessarily transmitted to the
base station. Thus, if a sensor i is monitoring a target for s seconds, i will also transmit s
seconds of data, hence i will consumes (pS + pT )×s joules. Likewise, in a relay activity,
if the sensor i receives s seconds of data, i will transmit s seconds of data, hence i will
consume (pR + pT ) × s joules. Therefore, monitoring a target for s seconds, draws
(pS +pT )×s joules out of the battery of the monitoring sensor and (pR+pT )×s joules out
of each battery of the sensors used to relay the collected data to the base station. Note
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that the sensors are always sending the collected information. These activities (sensing,
receiving and transmitting) can take place in the sensor at the same time. Moreover, if a
sensor is monitoring x targets at the same time, it also consumes x times its monitoring
power. For example, at an instant t ∈ T , if a sensor monitors two targets and receives
data from another sensor, it will transmit the data from these three activities. Hence, for
this sensor, the instant power consumption at t is 2pS + pR +3pT watts. i.e., it consumes
energy for the monitoring of both targets, plus consumes for receiving information,
plus consumes three times the emitting consumption since it transmits both the data
collected while sensing and the data received from another sensor. Consequently, a non
sensing nor transmitting nor receiving sensor is not consuming energy. More detailed
and complex energy consumption models are presented in (Halgamuge et al. 2009,
Miller and Vaidya 2005).

A long-term solution of the problem is expected to preserve the network ability
to respond to future monitoring missions. Hence in the sequel, we only activate one
sensor at a time to monitor a target since activating multiple sensors will just collect
redundant data and waste energy. However, several sensors can be activated at the same
instant for the transmission task, or to monitor different targets. Furthermore, we also
consider priority areas, also called hot spots in the coverage related literature (Huang
and Tseng 2005). The aim is to preserve and balance the residual capacities of the bat-
teries for future target tracking missions (Lersteau et al. 2018). The decision makers
define multiple priority areas where the solution should preserve as much monitoring
time as possible. Moreover, because all the areas may not be considered equally im-
portant, the network managers set a rank ` ∈ C to each area, where C is the set of
ranks and r is the maximum rank. The rank of an area is fixed, it does not evolve
during the monitoring, and the higher the rank is the more important the area is. The
rank expresses a preference for the preservation of energy in the considered areas. We
treat the problem as a multi-objective one, with a lexicographic order of the objectives.
The primary objective is to find an activation schedule for the sensors that respects the
constraints (continuously monitor the targets, transfer data, respect battery constraints)
and that maximizes the stability radius. The general notion of stability radius is defined
in Section 3 and a definition adapted to our problem in Section 5. Thus, the schedule
remains feasible even if the targets are late or early to any point of their trajectories,
provided that earliness or lateness stay below the stability radius.

The second objective is to maximize the minimal amount of monitoring time guar-
anteed in the priority areas in each rank ` ∈ C, while respecting the priority as ex-
pressed by the ranks of areas. This means that the guaranteed monitoring time available
anywhere inside a priority area of rank r is maximized, then, among all the solutions
that offer this guaranteed coverage, we maximize the coverage guarantee everywhere
inside the priority areas of rank r − 1, and so on up to rank 1.

Finally, as a third objective, we minimize the total amount of energy required by the
current mission, while maintaining all the previous objective to their optimal values.

Table 1 summarizes the notations.
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I = {1, . . . ,m} Set of sensors
J = {1, . . . , n} Set of targets

Ei Energy of the battery of sensor i
pS Power consumption in watts for sensing
pR Power consumption in watts for receiving data
pT Power consumption in watts for transmitting data
Rc Communication range of a sensor
Rs Sensing range of a sensor
T Time horizon

C = {1, . . . , r} Set of ranks of areas
τ j(t) Position of target j ∈ J at time t ∈ [0,T ]
N(i) Set of all the sensors in range of communication of sensor i

Table 1: Summary of the notations

5. Discretisation

The problem input is a set of geographical data. The sensors with their characteris-
tics and their position, are deployed in a zone, along with the priority areas, the targets
and their routes. However, to determine the schedule of the sensors’ activity and the
routing of the collected data, the problem instance has to be discretised. Discretisation
is based on (Lersteau et al. 2016), and has been extended to the case of multiple tar-
gets, with communications and priority areas. Let us consider the example of Figure 1,
where the yellow disks represent the sensing range of three sensors, the black arrow
the route of a target, B the base station and the gray disks model the communication
range. Two priority areas are shown as green polygons, they have two different ranks,
the smallest one being the most important one.

A face is defined as the set of all the locations (i.e., spatial points in the zone)
monitored by the same subset of sensors (in Figure 1, face {1,2,3} is the set of all
location points that are under the range of sensors 1, 2 and 3). Each face f is associated
a set of candidate sensors S ( f ), i.e., any sensor that can monitor f is in S ( f ). The
discretisation phase turns the trajectory of each target as a sequence of visited faces,
as doing so allows to select one sensor in the set of the candidate sensors of a face to
monitor the target. The instant when a target moves from a face to another one is called
a tick. When a target enters the range of a sensor, it defines an entering tick; it is a
leaving tick when it leaves the range of a sensor. The k-th tick of target j is denoted by
t j
k which also denotes its date of appearance, and σ j

k is an integer value which is +1 if
the tick is entering, and −1 if it is leaving. By convention, the first and last ticks are
respectively leaving and entering (Lersteau et al. 2016). In addition, a time window ∆

j
k

is the duration between two successive ticks t j
k and t j

k+1.
In the example of Figure 1, three faces only are considered (the other ones are not

visited by the target): {1}, {1,2} and {1,2,3}. Hence this defines four ticks as presented
in Table 2.

For the priority areas and their given rank, the problem is discretized as follows.
For a rank, with its priority represented by an integer ` ∈ {1, . . . , r}, where r is the

8



Figure 1: A three-sensor example

Face {1} {1,2} {1,2,3}
Time window length (given) ∆1

0 = 5 ∆1
1 = 10 ∆1

2 = 2.5

Tick t1
0 = 0 t1

1 = 5 t1
2 = 15 t1

3 = 17.5
σ1

0 = −1 σ1
1 = +1 σ1

2 = +1 σ1
3 = +1

Table 2: The four ticks of example of Figure 1

number of different ranks, wherever a potential target appears inside a priority area
whose rank is `, the network should provide the same monitoring time guaranteed.
For each rank ` ∈ {1, . . . , r}, F (`) is the set of all the faces that have a non-empty
intersection with an area of rank `, and no intersection with an area of higher rank.
Indeed, if a face has a non-empty intersection with two areas having ranks ` and `′

with ` < `′, this face is part of F (`′) only since `′ is the most important rank. The set
of all the sensors that can monitor at least one face in F (`) is denoted by T (`). More
formally, T (`) = ∪ f∈F (`)S ( f ) for all ` ∈ {1, . . . , r}. In order to guarantee the same
amount of monitoring time wherever a potential target might be in an area of rank `,
we should guarantee the same amount of monitoring time for every face f ∈ F (`).
Therefore, the priority areas and ranks are now discretized into sets of faces F (`) for
each rank `. For example, in Figure 1, if the smallest area has rank 2 and the other
one has rank 1, then F (1) = {{2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, } and F (2) = {1}. The
reason why face {1} is not in F (1) is that it belongs to F (2). The candidate sensors
for the two ranks are T (1) = {1, 2, 3}, and T (2) = {1}, it can be seen that the same
sensor may appear in different T (`) sets with no inconvenience. Finally, for a given
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rank `, we can reduce F (`) by keeping only the faces with no other faces from F (`)
included in them, i.e., we keep only a face f ∈ F (`) if ∀ f ′ ∈ F (`), f ′ < f . Indeed,
if a set of sensors s is guaranteed an amount of monitoring time t, then each super-set
s′ of s has at least the amount of time t guaranteed. In the example of Figure 1, we
have F (1) = {{2}, {3}} and F (2) = {{1}}. F (1) is reduced to only two faces since, for
example, the face {1, 2, 3} is not considered because it has at least as much covered time
guaranteed as the face {2}.

The communication between sensors is represented by the communication digraph
~Gc = (I ∪ {B}, A) with B the base station and A the pairs of sensors that can communi-
cate. For all the collected data, an optimal flow from the monitoring sensor to the base
station is computed inside ~Gc. With the example of Figure 1, we obtain the following
~Gc (Figure 2):

1 2

3

B 1 2

3

Figure 2: The communication digraph ~Gc for the example of Figure 1

The new notations introduced in this section appear in Table 3.

t j
k Time of tick k of target j

σ
j
k

{
+1 if the tick k of target j is entering,
−1 otherwise.

T (`) Potential subsets of candidate sensors that can monitor a target in a face ranked `
r Total number of ranks for areas

F (`) Set of all faces that have a nonempty intersection with an area of rank `
and an empty intersection with each rank `′ > `

S ( f ) Set of sensors covering the face f

Table 3: Summary of the notations introduced for discretisation

Finally, the stability radius of a feasible schedule of the sensors’ activity is a mea-
sure of its ability to maintain a full coverage to the targets despite their advances and
delays. More specifically, we assume that after the discretisation phase, target j ∈ J
crosses K j ≥ 1 time windows, and should spend ∆

j
k units of time in time window k, for

all k ∈ {1, . . . ,K j}.
The stability radius of a feasible schedule S can be defined using the following

notations (see [(Sotskov et al. 1998)]):

• ~ζ = (ζ jk ∈ R) j∈J,k∈K j is the set of possible advances and delays, i.e., ζ jk is the
deviation of the actual time spent by target j in time window k compared to the
estimated amount of time ∆

j
k. ζ jk < 0 corresponds to an advance and ζ jk > 0 to
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a delay. Thus ζ jk ≥ −∆
j
k for all j ∈ J and for all k ∈ K j, because a target cannot

spend a strictly negative amount of time in a time window.

• Ω(Λ) is the set of feasible schedules for Λ, with Λ the set of all λ jk such that
target j spends λ jk units of time in time window k, for all j ∈ J and for all
k ∈ K j.

The stability radius of solution S can be written as

ρ(S,Θ) = max{ε > 0 | ∀ζ ∈ B(ε),S ∈ Ω(Θ + ζ)}

Where B(ε) = {ζ ∈ ~ζ | ||ζ ||∞ ≤ ε}, and Θ is the set of all ∆
j
k.

Hence, the stability radius ρ(S,Θ) of schedule S is the maximum amount of delay
or advance of that the targets can have in each time window, without compromising the
ability of S to ensure a full coverage of all the targets.

6. Upper bound on the stability radius of a schedule

In this section, we present different upper bounds. The final upper bound used in
the sequel is the smallest bound out of three upper bounds, two of them are natural
extensions from (Lersteau et al. 2016) and are presented in 6.1, the last one is a novel
contribution of this work, introduced in Section 6.2.

6.1. Definition of two general upper bounds on the stability radius
We aim at producing a schedule of the sensors’ activity that maximizes the value

of the stability radius, in order to offer the maximum protection against delays and
advances. Upper bounds are useful for achieving this goal, and are part of the solution
approach introduced in Section 7.

The two bounds presented in (Lersteau et al. 2016) are both built upon the expan-
sion of the timespan of each time window. The first one, denoted by UB1, is based
on the time windows and their set of common candidate sensors, and the second one,
UB2, relies on the sensor capacities. These two upper bounds on the stability radius,
that have originally been introduced for a single target without communication, are ex-
tended to the case of multiple targets and now also consider the energy consumption
for communication. Thus, we obtain two tighter bound:

UB1 = min
j∈J

(k,k′)∈K2
j

1
2


∑

i∈S j(k)∩S j(k′)
Ei

pS + pT + t j
k′ − t j

k+1

 |k < k′


where S j(k) is the set of candidate sensors for the target j during time window k. t j

k′

is the tick delimiting the beginning of the time window k′ and t j
k+1 the leaving tick

associated with the time window k.

UB2 = min
f∈F


∑

i∈S ( f )
Ei

2 × (pS + pT ) × n f
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where F is the set of faces visited by the targets, S ( f ) is the set of sensors covering
the face f and n f the number of times the face f is visited (i.e., the number of times a
target enter in the face f ).

6.2. Upper bound based on the communication digraph
In this section, we introduce a new upper bound on the stability radius based on the

communication consumption and sensing consumption. Indeed, the previous bounds
have been introduced in a context where communication was not taken into account.
The extensions brought to these bounds in this work are not considering the data relay
tasks, i.e., the reception and transfer of data from other sensors. These extensions only
consider the transfer of the data by the sensors that collected it. However, it is more
likely that the relay of the data is needed a lot and therefore will impact significantly
the batteries. Since the sensors may need multiples relays to send the data to the base
station and considering that the transmission and reception powers are not negligible
compared to sensing, the performance of the computed schedule will heavily depend
on the routes available to transfer the data.

In the application context, some subsets of sensors will have to carry all the com-
munication to reach the base station, typically the sensors surrounding the base station.
For each of these sets of sensors, increasing the lifetime of the network induces more
communication, and then more power consumption. Thus, it is more likely that one
of those sets of sensors has first all batteries drained and depleted, and imposes a lim-
itation on the stability radius value, so the sum of the battery capacities of all sensors
in this set defines an upper bound on the value of the stability radius for any feasible
schedule. Hence, for each face f , we find the set of sensors for which all the data
collected will get relayed, we call it a restraining set of f . Moreover, we note that any
feasible schedule covers at least the case with no delay nor advance. In such a case,
the computation of the minimal amount of data that need to be collected in a face is
straightforward, i.e., it is equal to the amount of time spent by the targets in that face.
Hence, we also compute the minimum amount of collected data that is then transmitted
by all the restraining sets. Therefore, we compute an upper bound on the stability ra-
dius based on the battery level of all the restraining sets, and on the minimum amount
of collected data.

We remind that the communication digraph ~Gc = (I ∪ {B}, A) models all differ-
ent paths for the data transmission between the sensors and the base station (see Sec-
tion 5). Let f be a face that is visited by at least one target for a nonzero duration,
then the data collected in f require sensors for receiving and transmitting data for∑
j∈J

2ν j
fρ +

∑
k∈K j

S j(k)=S ( f )

∆
j
k

 units of time, where ν j
f is set to one if and only if target j vis-

its the face f , and zero otherwise. Indeed, if two different targets visit the same face,
they both could spend 2ρ units of extra time in that face, with ρ the stability radius. 2ρ
is the maximal extra time a target can spend in a face while being covered by a schedule
with a stability radius ρ. This data transmission is still possible provided that for each
vertex separator V f ⊂ I of ~Gc that partitions I ∪ {B}\V f into two connected compo-
nents (the first one containing B, and the second one containing S ( f ), the sensors from
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f ), the energy of the sensors of V f should be sufficient to ensure data reception and
transmission, this can be stated as:

∑
j∈J

2ν j
fρ +

∑
k∈K j

S j(k)=S ( f )

∆
j
k

 (pR + pT ) ≤
∑
i∈V f

Ei

In order to obtain the tighter possible upper bound on ρ, the vertex separator V f may
be such that the sum of the energy of the batteries is minimal. Furthermore, the above
inequality can be tightened by considering that V f splits the vertices of I ∪ {B}\V f into
two sets XB and X f . XB is the vertex set that includes B, and X f is the vertex set that
includes S ( f ). Consequently, the vertex separator V f separates B from all the faces
whose candidate sensors are a subset of X f . Consequently the sensors of V f should
have enough energy to:

• receive and transmit all the data collected from the faces with sensors in X f and
without any sensors in V f ,

• receive or monitor, and then transmit the data from the faces with sensors in X f

and with some sensors in V f but not all of them,

• monitor and transmit the data from the faces with all sensors include in X f and
V f .

We obtain:

∑
j∈J

2µ j
V f
ρ +

∑
k∈K j

S j(k)⊆V f

∆
j
k

 pS +
∑
j∈J


2γ j

V f
ρ +

∑
k∈K j

S j(k)*V f
S j(k)∩V f,∅

∆
j
k


min(pS , pR)+

∑
j∈J

2ε j
X f \V f

ρ +
∑
k∈K j

S j(k)⊆X f \V f

∆
j
k

 pR +
∑
j∈J

2ν j
X f
ρ +

∑
k∈K j

S j(k)⊆X f

∆
j
k

 pT ≤
∑
i∈V f

Ei

where for all j ∈ J, the following constants µ j
V f

, γ j
V f

and ε j
X f \V f

are defined by:

• µ
j
V f

is set to one if and only if target j spends a nonzero amount of time in at least

one face whose candidate sensors form a subset of V f , otherwise µ j
V f

= 0,

• γ
j
V f

is set to one if and only if target j spends a nonzero amount of time in at least
one face whose candidate sensors have a non-empty intersection with V f , but do
not form a subset of V f , otherwise γ j

V f
= 0,

• ε
j
X f \V f

is set to one if and only if target j spends a nonzero amount of time in
at least one face whose candidate sensors form a subset of X f \V f , otherwise
ε

j
X f \V f

= 0.
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As a consequence, UB3 can be defined as :

ρ ≤ UB3 = min
f∈F∗



∑
i∈V f

Ei −
∑
j∈J


∑
k∈K j

S j(k)⊆V f

∆
j
k pS +

∑
k∈K j

S j(k)*V f
S j(k)∩V f,∅

∆
j
k min(pS , pR) +

∑
k∈K j

S j(k)⊆X f \V f

∆
j
k pR +

∑
k∈K j

S j(k)⊆X f

∆
j
k pT


2
∑
j∈J

(
µ

j
V f

pS + γ
j
V f

min(pS , pR) + ε
j
X f \V f

pR + ν
j
X f

pT
)


7. Solution Method

Since the problem has three objectives handled in a lexicographical order, we sep-
arate it in three successive problems: P1 for maximizing the stability radius, P2 for
maximizing the time guaranteed in priority areas, and P3 for minimizing the energy
consumption. They are solved sequentially, starting from P1 to P3 where the objective
of a problem becomes a constraint in the next one. Therefore, the solution method has
three successive steps. First, a schedule with a maximum stability radius is sought (P1
is presented in details in Section 7.1). Since P1 cannot be addressed by simply solving
a linear program because the set of faces to be covered depends on the stability radius,
we solve this problem using first a bisection method. Each step creates and solves a
new decision problem for a fixed value of the stability radius ∆ with a linear program
(LP) called LP∆. Once the maximum value of ∆, called ∆opt, is found in a discrete set
of potential values with a bisection method, a final linear program called LPρ is solved.
It finds the optimal value of the stability radius ρ = ∆opt + δ, with δ the objective
function of the optimal solution of LPρ.

Next, P2 is addressed. For each rank `, from the highest one to the lowest one,
we find a solution maximizing the time during which a target in a priority area of this
rank is guaranteed to be monitored. To reach this goal, for each face of a rank, a linear
program denoted by LP` is solved.

The third step is to solve P3: the energy consumption to monitor all the targets is
minimized. This is done by solving a linear program denoted by LPE .

Algorithm 1 summarizes the overall approach.

7.1. P1: Maximization of the stability radius
The maximization of the stability radius is achieved by enhancing the bisection

method presented in (Lersteau et al. 2016). In this subsection, we give an overview
of this method while providing more details on the proposed adaptation to our prob-
lem. The main observation is that increasing the stability radius leads to postpone the
entering ticks and advance the leaving ticks. Whenever two ticks from different time
windows interchange their order of appearance, a time window disappears, and a new
one is created, with a reduced set of candidate sensors. As a result, the constraints
of the problem have to be updated. It should be noted that there is a discrete set of
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Algorithm 1: Solving P1, P2 then P3

// P1 - Maximization of the robustness

while (∆← getNextValueDichotomy()) , null do
MakeLP∆ (∆)
SolveLP∆ ()
if IsFeasibleLP∆ () then

∆opt ← ∆

end if
end while
MakeLPρ (LP∆opt )
SolveLPρ ()
// P2 - Maximization of the guarantees in the priority areas

for all ` ∈ C do
if ` = 0 then

MakeLP` (LPρ,`)
else

MakeLP` (LP`−1,`)
end if
SolveLP` ()

end for
// P3 - Minimization of the energy consumption

MakeLPE (LP|C|)
SolveLPE ()
return GetSolutionLPE ()

values for the stability radius that causes such updates, these values being the distances
between entering and leaving ticks belonging to different time windows. We use the
upper bound of the stability radius, presented in Section 6, to reduce this set of values
by removing all the values greater than the upper bound.

The first part in solving P1 consists in finding the maximum value of the stability
radius in this discrete set for which the problem is feasible. This is done with a bisection
method that checks the existence of a feasible schedule for a given value in this set,
until the largest one is found. The first value tested is always the upper bound of the
stability radius. Indeed, if a feasible schedule with such a stability radius is found, then
it is optimal for P1. If this value is not feasible, a stability radius of 0 is tested. If no
solution is found in that case, then there is no feasible schedule for P1 and the algorithm
stops. This typically happens when a target gets out of the range of any sensor, or when
the network is so sparse that the collected data cannot be sent to the base station. If a
solution is found with a nonnegative stability radius, then the bisection method is used
to find the largest stability radius in the discrete set. This method differs from the one
introduced in (Lersteau et al. 2016) in the search of a feasible schedule. Indeed, due
to communication requirements, we have to solve a linear program LP∆ instead of a
transportation problem. This linear program has no objective function. It is shown in
Model 1, and is addressed with a solver.
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The decision variables are x jik, the monitoring time of the target j during its time
window k by the sensor i, and fii′ the amount of data transferred from sensor i to sensor
i′. We introduce Hi

j as the set of all time windows of target j for which i is a candidate
sensor, i.e., the set of all k ∈ K j such that i belongs to S j(k). The linear program LP∆

(with no objective function) is the following:

∑
j∈J

∑
k∈Hi

j

x jik pS + pR ∑
i′∈N(i)

fi′i + pT ∑
i′∈N(i)

fii′ ≤ Ei ∀i ∈ I (1)∑
j∈J

∑
k∈Hi

j

x jik +
∑

i′∈N(i)
fi′i −

∑
i′∈N(i)

fii′ = 0 ∀i ∈ I (2)∑
i∈S j(k)

x jik = ∆
j
k ∀ j ∈ J, k ∈ K j (3)

x jik ≥ 0 ∀ j ∈ J, k ∈ K j, i ∈ S j(k) (4)
fii′ ≥ 0 ∀i ∈ I, i′ ∈ N(i) (5)

Model 1: LP∆, the linear program solved at each iteration of the bisection method

The first constraints (1) represent the limitation of the battery for each sensor, (2)
model the transfer of all data to the base station (it is a flow conservation equation).
Finally (3) enforce the coverage constraints, i.e., each target is continuously covered
by a sensor at any time.

At the end of the bisection method, we obtain the maximum value ∆opt for which
the problem is feasible. Afterwards, while considering the time windows in that case,
we maximize the stability radius increase δ, by solving a linear program similar to the
one used for determining ∆opt in LP∆. The new linear program is called LPρ, presented
in Model 2, it is identical to the one used in the bisection method, with in addition an
objective function (6), a constraint (7) and an updated constraint (3’).

δopt = Maximize δ (6)∑
i∈S j(k)

x jik = ∆
j
k + (σ j

k+1 − σ
j
k)δ ∀ j ∈ J, k ∈ K j (3’)

δ ≥ 0 (7)
Subject to (1), (2), (4), (5)

Model 2: LPρ solved to maximize the stability radius

Since δ is the stability radius increase from ∆opt, it impacts the duration of the time
windows in (3’). σ

j
k is the value of the k-th tick of the target j (−1 if leaving, 1 if

entering). The optimal stability radius numerical value is then ρ = ∆opt + δ.
The example of Figure 3 illustrates the method.
In this example, with different values of ρ there are different time windows, with

different candidate sensors. The stability radius ρ may be in the interval [0, 97), or in
[97, 189), or in [189,Upper bound), or be equal to Upper bound. During the bisection
method, we find ∆opt = 97, which means that there is a feasible schedule with a stability
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189
•

97
•

0
•

δ
ρ Upper bound

•

Figure 3: Illustration of the solution method for P1

radius of 97. Therefore all schedules with a stability radius which is strictly less than
97 are not considered anymore. This results also implies that there is no solution either
with a value larger than or equal to 189. The second step in solving P1 is then to
maximize δ with 0 ≤ δ < (189− 97). Solving LPρ yields the optimal value of ρ, which
is equal to 97 + δ in this example.

7.2. P2: Maximizing the coverage guarantee in the priority areas
Now that a feasible solution with the best stability radius is found, we search for

a schedule that maximizes the coverage guarantee in the priority areas. Let us remind
that a rank corresponds to a set of faces, and a face can only appear in one rank.

In this phase, for each rank from the highest one to the lowest one, we create a
new problem, where we maximize T`, i.e., the monitoring time guaranteed in all areas
whose rank is ` after the current mission. For each rank, a linear program denoted by
LP` is addressed. It is recalled that a rank ` fixes the optimal values from the previous
problems solved (the stability radius and the T`′ for all `′ > `), and is focused on
the maximization of T`. Therefore the linear programs solved are built incrementally,
by adding and modifying constraints and variables from the previous linear programs
solved (LP`+1 if ` < r, LPρ otherwise).

From the previous solved linear program, we fix first its optimal value in a new
constraint to keep the optimal values of the previous phases. We then change the ob-
jective function to maximize T`, the coverage guaranteed in the areas of rank `. Next,
we add virtual targets in all the faces included in F (`) and monitor them. These targets
all have the same time guarantee, T`, and model the covering requirement induced by
the faces of rank `. Furthermore, a virtual routing of the data (new set of flow con-
straints) is added to route the potential data recorded from the virtual targets. Thus,
when monitoring those faces will be required, the set of candidate sensors will have
enough residual energy after the current mission to track targets in those faces for T`
units of time, and there will be a path of sensors with enough energy left to transmit
the data to the base station.

The new decision variables are the following:

• xi f ` the time during which sensor i ∈ S ( f ) monitors a fictitious target in face f
having rank `.

• f 1
ii′ the amount of data generated by a fictitious target, transmitted from i to i′.

The LP model for a rank ` is the following:
Constraint (1’) is the constraints (1) modified to take into account the virtual flow and
fictive targets that are added. It can be seen that by comparison to LPρ, sensors can now
be used to perform sensing and data transmission after the current mission, to insure
the network ability to monitor the priority areas.
Constraints (2), (3’), (4), (5) are the same as in P1
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Maximize T` (6’)∑
j∈J

∑
k∈Hi

j

x jik pS + pR ∑
i′∈N(i)

fi′i + pT ∑
i′∈N(i)

fii′

+pS ∑
f∈

⋃
`≤`′≤r

F (`′)|i∈S ( f )
xi f `′ + pR ∑

i′∈N(i)
f 1
i′i + pT ∑

i′∈N(i)
f 1
ii′ ≤ Ei ∀i ∈ I (1’)

δ = δopt (8)∑
i∈S ( f )

xi f `′ = T`′ ∀`′ ∈ C, `′ ≥ `, `′ ≤ r,∀ f ∈ F (`′) (9)∑
f∈

⋃
`≤`′≤r

F (`′)|i∈S ( f )
xi f `′ +

∑
i′∈N(i)

f 1
i′i −

∑
i′∈N(i)

f 1
ii′ = 0 ∀i ∈ I (10)

f 1
ii′ ≥ 0 ∀i ∈ I, i′ ∈ N(i) (11)

T`′ = T opt
`′

∀`′ ∈ C, `′ > ` (12)
xi f `′ ≥ 0 ∀`′ ∈ C, `′ ≥ `, `′ < r,

∀ f ∈ F (`′), i ∈ S ( f ) (13)
Subject to (2), (3’), (4), (5)

Model 3: LP` Model solved for a rank `

Constraint (8) sets δ to δopt, the optimal objective value of LPρ.
Constraints (9) ensure the tracking of the fictive targets for a rank `′ for a duration of
T`′ units of time.
Constraints (10) ensure the flow balance for the data collected generated by fictive
targets, at each sensor i.
Constraints (12) set the value for the previous ranks `′.

7.3. P3: Minimizing energy consumption

Problem P3 is to minimize f3, the total energy consumed to achieve the current
mission. In order to solve it, the linear program LPE is built from the last linear program
solved in P2, by fixing its objective value in a new constraint, changing the objective
function and resolving it.

While solving P3, the schedule and the routing can be changed, but the stability
radius value and the coverage guarantees found in P1 and P2 are maintained to their
optimal respective values.

The energy consumed by a sensor is the left-hand side of constraints (1), this quan-
tity can be written as:∑

i∈I

(∑
j∈J

∑
k∈Hi

j

x jik pS + pR
∑

i′∈N(i)

fi′i + pT
∑

i′∈N(i)

fii′

+pS
∑

f∈
⋃

`≤`′≤r
F (`′)|i∈S ( f )

xi f ` + pR
∑

i′∈N(i)

f 1
i′i + pT

∑
i′∈N(i)

f 1
ii′

)

The virtual flow and fictive targets are not actual consumptions since they are not
used during the current mission, but are spared for possible future missions, so they are
subtracted from the previous quantity, leading to:
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∑
i∈I

∑j∈J

∑
k∈Hi

j

x jik pS + pR
∑

i′∈N(i)

fi′i + pT
∑

i′∈N(i)

fii′


Finally, since the total recording time of the target is a constant (the stability radius

is fixed), we just have to minimize the transferred data in the current mission, so f3, the
objective function of P3 is:

f3 = Minimize
∑

i∈I,i′∈N(i)

fi′i

7.4. Complexity analysis

There are two important parts in the proposed algorithms, the discretisation phase
and the solution method (i.e., the solution of P1, P2 and P3).

First, the discretisation can be achieved using a pseudo-polynomial algorithm. A
precise analyze of the complexity of the discretization can be found in (Lersteau et al.
2016), that shows that the number of faces is bounded by a polynomial on the number
of sensors. Thus, the modifications brought in this work (communication, priority
areas and multiple targets), that still rely on the numbers of sensors and faces, does not
change the complexity.

Secondly, P1 is a dichotomy that requires a logarithmic number of iterations, with
at each iteration, a linear program solved. The dichotomy is done on a set of discrete
values, that in the worst case is equals to all possible intersections between the ticks.
And, if the targets have polygonal trajectories, the number of ticks cannot exceed 2qm,
with q the number of segments in the trajectories and m still the number of sensors. In
P2, we solve as many linear programs as the number of ranks and finally in P3, there is
only one linear program to solve.

8. Numerical experiments

8.1. Description of the protocol

In this last part, we present our experiments, results and analysis. We study the
behavior of the solution method and the impact of different parameters like the number
of sensors, targets and ranks. Moreover, we evaluate the efficiency of the upper bound
introduced in this work compared to the other ones extended from (Lersteau et al.
2016). To this end, we design four experiments on different sets of instances, each of
them investigates the impact of the problem from the following:

• Impact of the sensing and communication powers. We vary them in order to
compare UB3 to the two other upper bounds. In this experiment, we study the
efficiency of this new upper bound on the stability radius.

• Impact of the sensor density. In the experiment, only the number of sensors is
varied.
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• Impact of the number of targets. More targets to monitor induces more data,
send or receive.

• Impact of the number of ranks and areas.

• Impact of the communication.

Although each experiment has its proper set of instances, they are all generated
using the instance generator presented in Section 8.2.

8.2. Dataset
All of our instances are generated with the same algorithm. The generator’s inputs

are:

• The number of sensors m

• The surface of the rectangular zone L1 × L2

• The number of targets n to monitor

• The minimum Emin and maximum Emax level of energy initially available in the
batteries of the sensors

• The powers associated with the different tasks (pS , pT and pR)

• The communication range Rc and sensing range Rs

• The number of priority areas q and ranks r

• The maximum radius of the priority areas Ra

First of all, the sensors are randomly deployed in the zone. Each sensor has a
random level of battery picked between the two values given as parameters. Second,
the journeys of the targets are drawn also randomly in the zone. Their paths are simple
routes made of three segments. Third, the priority areas are randomly deployed and
their rank are also randomly chosen, with at least one priority area per rank. Each
priority area is a disc whose radius is selected randomly between fifty percent and one
hundred percent of the maximum value given as parameters. Finally, the base station
is randomly deployed in the zone.

The default parameters of our instances are presented in Table 4.

Parameter Value Parameter Value
Number of sensors m 400 Energy of the sensors [Emin, Emax] [350, 400]
Number of targets n 2 pS 2.8

Size of the area L1 × L2 300 × 300 pR 1
Sensing range Rs 35 pT 1

Communication range Rc 70 Number of areas q 5
Maximum radius of the priority areas Ra 50 Number of ranks r 2

Table 4: Default values of the parameters in the instances generator
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8.3. Results and analysis
We present in this section the results and analysis of the different experiments. The

software is coded in C++ and all the experiments were run on a computer with Ubuntu
16.04 and Intel Core i7-6700HQ CPU @ 2.60GHz × 8 cores and 16 GBytes of RAM.
We use the version 12.7 of IBM CLPEX for solving the linear programs. The CPU
times reported are in seconds.

8.3.1. Impact of the sensing and communication powers
In this first experiment, we study the quality of the new upper bound. The objective

is to compare it to the previous upper bounds and see if the method benefits from
the addition of UB3. Indeed, the two previous bounds are still valid in our robustness
problem and have been extended to consider multiple targets and communication costs.
Though, they are both only considering in a face f , the consumption induced by the
coverage of the targets inside this face (i.e., sensing the targets inside f and transmitting
the data collected). They are not considering the consumption induced by forwarding
the data collected in other faces. Hence, the addition of our new upper bound based
on such principle seems to be a good opportunity to help the solution process. Indeed,
the value of the upper bound is important since it may reduce drastically the number
of iterations in the bisection method in P1, thus the number of linear programs to be
solved. Clearly, it is expected to perform better when the communication costs are
significant compared to sensing. In this experiment, we are studying the efficiency of
the new bound compared to the two extended previous bounds when working on WSN
with several significant ratios between the sensing power pS and the communication
powers pR and pT .

We test three different sets of powers. In all of them, pR = pT and pS = 3. First,
we set pR = pT = 0.5. In the second set, we have pR = pT = pS = 3. And in the third
set, pR = pT = 5. We generate a set of fifty instances, and we use the three different
powers on each of them. All other parameters are fixed as presented in Table 4, except
for the number of sensors and targets fixed to 300 and 4 respectively.

We report the number of times where UB3 dominates the two other bounds in Ta-
ble 5.

pS pR = pT # { min(UB1,UB2) > UB3 }

3 0.5 2 / 50
3 3 20 / 50
3 5 26 / 50

Table 5: Domination of UB3 over UB1 and UB2

Table 5 shows that with a low consumption for communication, UB3 is dominated.
Indeed, it reaches the best value in only 2 instances out of 50. Clearly, UB1 and UB2
are less impacted by low communication costs, by contrast with UB3 which is mostly
based on these costs. However, for an average consumption, with pR = pT = pS = 3,
UB3 is almost as good as the two other upper bounds combined. In such a case, in
20 instances out of 50, UB3 is strictly the best upper bound on the stability radius,
and is therefore really useful in the bisection method. Finally, we observe that when
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power consumption due to communication is much more significant than sensing power
consumption, which is the most realistic situation (Anastasi et al. 2009), our new upper
bound dominates the other two ones in 26 cases out of 50, and is therefore significantly
more efficient. Naturally, this dominance gets stronger when the power consumption
due to communication increases.

Though, the two other bounds should still be considered since they are useful in
almost half of the instances (note that for the highest communication costs, UB1 was
the best bound in 12 instances, same for UB2).

To conclude, the new introduced bound, UB3, has good performances compared to
the two other ones and it makes a significant contribution to the approach, in reducing
the number of linear programs to solve in the bisection method. Though, it is less
useful when low communication costs are considered.

8.3.2. Impact of sensor density
In this second part, we study the impact of sensor density on the method and the

values found. For that purpose, we generate a set of fifty feasible instances using the
default parameters (Table 4), except for the number of sensors which is fixed to 200
sensors. Afterwards, we add a few sensors to each instance in order to study the impact
of sensor density in the network. Each sensor added is generated in the same way as
the initial sensors, i.e., they have random positions in the L1 × L2 area and a random
level of initial battery in [Emin, Emax]. The method is run on the instances when the
number of sensors m is in {200, 250, 300, 350, 400, 700}.

In Table 6, we report the average number of time windows and the number of faces
included in a priority area. Table 7 reports the computational effort required by each
problem of the solution method with the average number of linear programs solved in
P1. Finally, in Table 8 we report the average objectives values. The CPU times are in
seconds.

#Sensors # windows # faces in priority areas
200 103.48 85.94
250 128.94 133.58
300 154.58 188.26
350 179.94 254.40
400 204.94 324.80
700 357.38 973.34

Table 6: Average number of time windows and faces in priority areas with different numbers of sensors

Table 6 shows that when sensor density increases, the number of time windows
increases also. Consequently, each step of the solving method takes more time to
solve, with more data to process, more constraints and more variables in the models.
Furthermore, there is also a fast increase of the number of faces inside the priority
areas. Therefore, the models for P2 and P3 are becoming even more complex with
more constraints and more variables.

Each row of table 7 presents the average results over fifty instances. The first col-
umn is the number of sensors. The second one is the CPU time (in seconds) spent by
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#Sensors CPU (Discretisation) CPU (UB) CPU (P1) LP solved in P1 CPU (P2) CPU (P3) Overall CPU time
200 0.02 0.04 0.28 3.44 1.22 0.49 2.05
250 0.02 0.06 0.16 1.22 2.38 1.14 3.75
300 0.04 0.13 0.41 2.30 4.01 1.86 6.45
350 0.06 0.20 0.35 1.22 6.39 2.62 9.62
400 0.10 0.33 0.53 1.48 8.94 3.63 13.54
700 0.86 2.47 1.03 1.00 59.65 19.52 83.53

Table 7: Average computational effort with different numbers of sensors

the discretisation step, CPU (UB) is the average time (in seconds) for computing the
upper bound (6). Column 4, 6 and 7 represent the CPU times for solving P1, P2 and P3
respectively. Column 5 represents the average number of linear programs when solving
P1. The last column is the average overall CPU time (s) required to solve an instance.

As expected, the density of the network impacts a lot the solution time. Indeed,
the results show that, when the number of sensors increases, the computational ef-
fort required for every step and thus the overall CPU time are increasing quickly. It
is explained by Table 6, that shows that the number of time windows is increasing.
Consequently, the CPU times required by the discretisation and the computation of the
upper bound are increasing quickly, since they are mostly dependent on the number
of time windows. The solution time of P1 also depends on the number of linear pro-
grams to be solved. This is why the CPU time for P1 is not always increasing when
the density increases, since there are often less linear programs solved in P1 (because
the upper is more often a feasible solution) though they are more complex to solve.
The solution processes of P2 and P3 are heavily impacted by the number of faces in
the priority areas, hence their running times are also increasing significantly when the
sensor density is higher.

#Sensors Stability radius T2 T1 f3

200 79.26 40.24 5.84 10816.16
250 102.98 43.74 4.87 10667.43
300 113.56 45.58 3.33 10509.07
350 119.75 47.58 1.56 10342.56
400 124.12 45.30 1.35 10312.58
700 143.20 32.01 1.23 10179.60

Table 8: Evolution of the objectives with the number of sensors

The Table 8 shows that the stability radius is increasing with the number of sensors.
The second objective seems to increase at first but with more than 350 it decreases. The
following objective, T1, is impacted negatively by the increase of the number of sen-
sors, with the covering time left in the priority areas rank 1 overall decreasing. Finally,
surprisingly, the last objectives (i.e., minimization of the communication consumption)
is getting better with more sensors even if a higher stability radius induces more data
collected and transferred.

As expected, adding sensors to a network extends the robustness. It adds more
opportunities for the network to monitor the targets and to transfer the collected data.
Thus, it is less restrained by the battery and by the constraint of having only one sensor
monitoring a target at a time. This observation is also explaining the decrease of the last
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objective. With more sensors, the network has more opportunities for shorter and more
direct routes to the base station. It induces less transfer of data between the sensors
and therefore less energy consumption. The objectives on the times guaranteed in the
priority areas are affected differently. Indeed, with more sensors, there is more energy
in the network and it seems that it gives more opportunity to increase these objectives.
However, for each rank ` in C, T` is constrained by the time guaranteed in each face
f in F (`), hence T` is constrained by the less covered face. Adding sensors in the
network is not bringing necessarily more sensors in each face already in F (`). Thus,
it can still be the same face (i.e., the exact same set of candidate sensors) that restrain
the value of T` after adding sensors to the network. However it still adds more faces to
cover in the priority areas (Table 6). Consequently, the network is having less coverage
time guaranteed in the priority areas.

8.3.3. Impact of the number of targets
In this third experiment, we analyze the impact of the number of targets. As in

the second experiment, all parameters are fixed (see Table 4) except the one we study.
The number of targets varies in the set {1, . . . , 7}. An initial set of feasible instances
is generated and solved with 7 targets. Afterwards, we just remove the targets, one by
one, to the instances to test on different numbers of targets.

We report in our results the average times for all the instances. Results are summa-
rized in Table 9. The values of the objectives are reported in Table 10. The CPU time
reported are in seconds.

#Targets CPU (Discretisation) CPU (UB) CPU (P1) CPU (P2) CPU (P3) Overall CPU time
1 0.10 0.15 0.55 9.09 3.02 12.90
2 0.10 0.28 0.49 9.33 3.22 13.41
3 0.10 0.39 0.50 9.30 3.30 13.57
4 0.10 0.49 0.75 9.75 3.38 14.48
5 0.10 0.61 1.19 10.38 3.60 15.88
6 0.10 0.74 1.84 11.25 3.66 17.59
7 0.10 0.89 5.30 12.13 4.18 22.61

Table 9: Results with different numbers of targets

In this experiment, we observe that P1, P2 and P3 have increasing CPU times re-
sulting in an overall growth of the computational effort. However the results can be
analyzed more deeply. First, for the discretisation, only the part of the computation of
the routes of the targets is impacted, and not the discretization of the communication or
the priority areas. Consequently the time used by this phase is increasing only slowly.
Secondly, the most increasing times are for P1 and the computation of the upper bounds
as they are totally dependent on the number of targets: more targets imply more time
windows and a stability radius more complex to compute. Finally, the time needed for
P2 and P3 is increasing slowly since only the part of the model inherited from P1 is
impacted.

To conclude on the computational effort, as expected, each part of the solution
method needs more time when targets are added.

The values of the objectives in Table 10 show that with more targets, the stability
radius is obviously decreasing. Indeed, with more targets the network is more limited,
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#Targets Stability radius T2 T1 f3

1 207.60 55.84 5.93 5629.14
2 127.61 51.30 4.63 9568.11
3 105.98 48.30 3.25 13606.10
4 98.79 43.40 1.95 18139.19
5 93.77 35.90 1.05 22820.62
6 87.98 26.07 0.67 28297.36
7 72.55 20.31 0.36 33337.56

Table 10: Evolution of the objectives with the number of targets

because it consumes more to monitor the targets. Furthermore, if we increase the
stability radius, we increase it for every target. Hence, we consume more energy when
increasing the stability radius for problems with an increasing number of targets.

The same observation can be made with the other objectives. The time guaranteed
in the priority areas is decreasing and the total energy consumption is also increasing.
It shows that the network has still a lot of energy after solving P1 for a few targets.
In such cases, the stability radius is bounded by a specific region of the network or
by a constraint on the number of sensors activated at the same time. Therefore the
total amount of energy consumed (minimized in P3) is limited, and more energy is
available to guarantee a higher time in the priority areas. However, with more targets,
the network consumes more for the stability radius, so the third objective is increasing
and moreover there is less energy for the priority areas. Therefore, with more targets,
even with the stability radius decreasing, we consume more energy and can guarantee
less time for the priority areas.

8.3.4. Impact of the number of ranks and areas
In this set of experiments, we study the impact of the priority areas by varying

the number of areas generated with the number of ranks. As for the experiment on
targets, we first generate and solve a set of fifty instances with only two areas of the
same rank. Afterwards, we add areas and ranks on the same instances. Therefore,
we obtain different versions. For each instance, we have versions with 1 to 7 ranks for
respectively 2, 4 to 14 areas with at least one area per rank. Average times are presented
in Table 11 and objective values for P2 and P3 (the stability radius is not varying) in
Table 12. The CPU times are in seconds.

#Ranks #Areas CPU (Discretisation) CPU (UB) CPU (P1) CPU (P2) CPU (P3) Overall CPU time
1 2 0.06 0.33 0.55 4.59 3.38 8.90
2 4 0.08 0.36 0.57 10.77 4.17 15.96
3 6 0.12 0.33 0.56 14.82 4.09 19.92
4 8 0.16 0.33 0.56 19.12 4.12 24.29
5 10 0.20 0.32 0.55 23.94 3.95 28.96
6 12 0.25 0.33 0.57 29.39 4.04 34.57
7 14 0.29 0.32 0.57 34.51 4.11 39.80

Table 11: Results with different numbers of ranks

This experiment shows that the numbers of ranks and areas increase the compu-
tational effort for the discretisation and for the problem P2. Moreover, as expected,

25



the computation of the upper bound on the stability radius and problem P1 are not im-
pacted by the areas. We can observe that, with the increase of the number of ranks, the
overall CPU time is increasing, up to five times more from one to seven ranks.

#Ranks T1 T2 T3 T4 T5 T6 T7 f3

1 46.93 10058.05
2 7.58 50.56 10158.19
3 2.97 12.61 64.61 10383.87
4 1.44 3.94 24.39 68.00 10425.95
5 0.09 0.91 6.48 25.07 65.57 10197.06
6 0.00 0.00 1.31 6.04 22.87 66.62 10407.70
7 0.00 0.00 0.16 1.22 6.77 26.86 70.71 10480.30

Table 12: Evolution of the objectives with the number of ranks

Table 12 shows that the time guaranteed in an area is heavily depending on the
priority assigned to it. Indeed, as an example the areas of rank 1 have a lot of time
guaranteed when they are the only priority areas. However, for the same areas, the
time is dropping when we add higher ranks. Moreover, with a lot of ranks, there is a
really small time guaranteed for the less important ranks. Therefore, we conclude that
the time guaranteed in an area is heavily depending of its rank. For the most critical
areas, the time guaranteed is huge but will heavily decrease along the priority. For low
priority, there is often no time guaranteed. We advise to only use up to three or four
ranks.

Secondly, we notice that the energy consumed is globally not varying. Indeed, it
seems that the overall time guaranteed in all the priority areas is not considerably rising
because it is probably limited by the same region of sensors whatever the number of
ranks. Therefore, the state of the network and the energy left after solving P2 does not
differ much with more or less ranks. The process of minimizing the energy consump-
tion obtains similar values.

8.3.5. Impact of the communication in the objectives
In this experiment, we study the impact of the communication. i.e., how the manda-

tory data transfer to the base station has impacted the solution quality and the computa-
tional effort. Taking communication into account makes the problem more complex to
solve and is restraining the objectives. In order to study such assumptions, we compare
the objectives of the solution obtained by the method with and without considering the
communication on a set of instances. Several different communication costs are tested
to represent different impacts in the network. Fifty instances are generated with the
default parameters presented before (Section 8.2). Our method is run multiple times on
each of these instances, each time with a different communication power consumption.
The values used for pR and pT are {1, 2, 3}, with pT = pR. The value of pS is still
equals to the default value. Afterwards, for each instance, we run our method without
considering the communications costs (i.e., pT = pR = 0). We report the average value
of the objectives in Table 13, for each cost tested.

Afterwards, a second set of feasible instances is generated, with the default pa-
rameters except for the number of targets fixed to 1 and no priority area. Hence, on
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these instances, we can compare our method and the method developed in previous
work (Lersteau et al. 2016). It is recalled that communication is ignored in this article.
Several communication costs are tested again for our method, with pR = pT and pR in
{0, 1, 2, 3}. The CPU times (still in second) needed for the computation of UB and P1
are reported in Table 14.

pR = pT Stability radius T2 T1 f3

0 124.60 90.52 40.68 0
1 124.27 52.94 4.58 9559.63
2 122.38 27.79 0.84 19975.08
3 111.92 14.63 0.10 30292.13

Table 13: Impact of communication on the objective values

Problem pR = pT CPU (UB) CPU (P1)

Our Problem

0 0.17 0.13
1 0.17 0.44
2 0.17 1.05
3 0.17 1.19

Lersteau et al. (2016) 0 0.004 0.08

Table 14: Impact of communication on the solution times

As expected, all the values of the objectives are worsening when increasing the
communications costs. Although, for the stability radius, the difference is really small
between no communication cost (pR = pT = 0) and low costs. However, there is a
bigger difference when comparing no cost to the most important costs (pR = pT = 3),
with a loss of approximately 10% of the stability radius. The coverage times left in the
priority areas, for the two ranks, are also quickly decreasing with higher costs. When
communication costs are added, the priority areas of rank 1 are losing almost all their
coverage time, and the areas of rank 2 an important part of it. Finally, the overall energy
consumed for communication (i.e., f3) is obviously continuously increasing with the
costs.

These results confirm that, as expected, the communication is restraining the ob-
jectives. The value of the stability radius is impacted, since more energy are necessary
to cover the targets. Though, it does not vary a lot with low communication costs. In-
deed, the stability radius is also constrained by the the constraints forcing to only have
one sensor activated per target for sensing at any time. Thus, in these cases, adding
communication costs is not necessarily reducing the stability radius. That is why the
values found for the stability radius are similar in our instances with no communica-
tion costs and low costs. Though, the stability radius is decreasing a lot more with high
costs. The others objectives are worsening a lot more when the communication costs
are added. The energy consumption is increased a lot, and not only the sensors in range
of a target are consuming energy. The energy left in the network for the priority areas
is a lot smaller, thus restraining these objectives.

To conclude on the objective values, the addition of the communication is certainly
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impacting the objectives. However, the loss of robustness is small, especially for low
communication costs.

As expected, the CPU times in Table 14 are worst with our problem, since the
communication are considered. Both the computation of the upper bound and P1 are
longer to compute. For the upper bound, it does not vary with the different tested costs.
However, the difference between the time needed for solving P1, with communication
and without it, is becoming more and more important with higher costs. It also shows
that solving the problem without considering the communication is faster than solving
the same problem while considering the communication but without any costs, which,
again, is not surprising.

These results were expected, since the problem solved is much more complex,
and even with null communication costs, the communication is still computed. The
linear program solved in the bisection method in the present work require much more
computational effort to solve than the transportation problem in (Lersteau et al. 2016).
The upper bound may also be less restraining thus increasing the running time of P1.
Finally, the new bound added, is obviously increasing the solution time of UB.

9. Conclusion

In this paper, we extended the original problem, treated in (Lersteau et al. 2016).
Their objective was to find an activation schedule to track a target with a WSN. We
developed it to make the problem more generic and it now handles cases with multi-
ple targets to be tracked at the same time by the same WSN. Furthermore, we added
communications between sensors, with the task to transfer all the data gathered to a
base station. The communication is a great generalization since the impact on a WSN
is important, and in some applications may be even more consuming that the sensing.
These two extensions change the solution process. Indeed, the discretisation is modi-
fied to deal with the communication and the targets. Likewise, the optimization of the
stability radius (problem P1) is more general. We solved a new model by linear pro-
gramming instead of a transportation problem. We adapted the previous upper bounds
to multiple targets and communication and introduced a new bound, based on energy
consumption that is due to communication. The relevance of this new bound has also
been checked. Afterwards, we added two objectives in our problem, optimized after
P1. The new objectives are the maximization of the time guaranteed inside the priority
areas (P2) and the maximization of the overall energy left (P3). We added two steps
to the solution method for these objectives, based on new models formulated as linear
programs.

We designed different experiments to test and analyze the solution method. The re-
sults show that increasing the numbers of sensors, targets, ranks or areas is contributing
to the rise of the overall running time. The number of sensors, i.e., the density, is the
most significant parameter in terms of CPU time. Finally, we also showed that the new
upper bound based on communication, is efficient and is used in the solution process.

To go further, several extensions could be considered. First, what if one targets
has a delay or an advance outside the stability radius? How to dynamically change the
solution to avoid losing targets? And how to achieve this at low computational cost so
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as to meet real time constraints? In order to test various realistic situations, we intend
to use CupCarbon simulator (CupCarbon, Mehdi et al. 2014).
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Charly Lersteau, André Rossi, and Marc Sevaux. Minimum energy target tracking with coverage
guarantee in wireless sensor networks. European Journal of Operational Research, 265
(3):882–894, 2018.

Yuzhen Liu and Weifa Liang. Approximate coverage in wireless sensor networks. In Local
Computer Networks, 2005. 30th Anniversary. The IEEE Conference on, pages 68–75.
IEEE, 2005.

Kamal Mehdi, Massinissa Lounis, Ahcène Bounceur, and Tahar Kechadi. Cupcarbon: A multi-
agent and discrete event wireless sensor network design and simulation tool. In 7th In-
ternational ICST Conference on Simulation Tools and Techniques, Lisbon, Portugal, 17-
19 March 2014, pages 126–131. Institute for Computer Science, Social Informatics and
Telecommunications Engineering (ICST), 2014.

Matthew J Miller and Nitin H Vaidya. A mac protocol to reduce sensor network energy con-
sumption using a wakeup radio. IEEE Transactions on mobile Computing, 4(3):228–242,
2005.

Kgotlaetsile Mathews Modieginyane, Babedi Betty Letswamotse, Reza Malekian, and Adnan M
Abu-Mahfouz. Software defined wireless sensor networks application opportunities for
efficient network management: A survey. Computers & Electrical Engineering, 66:274–
287, 2018.

Shaimaa M Mohamed, Haitham S Hamza, and Iman Aly Saroit. Coverage in mobile wireless
sensor networks (M-WSN): A survey. Computer Communications, 110:133–150, 2017.

Marjan Naderan, Mehdi Dehghan, Hossein Pedram, and Vesal Hakami. Survey of mobile object
tracking protocols in wireless sensor networks: a network–centric perspective. Interna-
tional Journal of Ad Hoc and Ubiquitous Computing, 11(1):34–63, 2012.

Dipesh J Patel, Rajan Batta, and Rakesh Nagi. Clustering sensors in wireless ad hoc networks
operating in a threat environment. Operations Research, 53(3):432–442, 2005.

Priyanka Rawat, Kamal Deep Singh, Hakima Chaouchi, and Jean Marie Bonnin. Wireless sen-
sor networks: a survey on recent developments and potential synergies. The Journal of
supercomputing, 68(1):1–48, 2014.

30



Yuri N Sotskov, Vyacheslav S Tanaev, and Frank Werner. Stability radius of an optimal schedule:
A survey and recent developments. In Industrial applications of combinatorial optimiza-
tion, pages 72–108. Springer, 1998.

Yuri N Sotskov, Alexandre Dolgui, and Marie-Claude Portmann. Stability analysis of an optimal
balance for an assembly line with fixed cycle time. European Journal of Operational
Research, 168(3):783–797, 2006.
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