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Abstract: In interdependent critical infrastructures (ICIs), a disruptive event can affect
multiple system elements and system resilience is greatly dependent on uncertain factors,

related to system protection and restoration strategies. In this paper, we perform

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/


http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0951832017313947
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0951832017313947

sensitivity analysis (SA) supported by importanaeasures to identify the most relevant
system parameters. Since a large number of sirooktis required for accurate SA
under different failure scenarios, the computatidnaden associated with the analysis
may be impractical. To tackle this computationalugs we resort to two different
approaches. In the first one, we replace the lomging dynamic equations with a fast-
running Artificial Neural Network (ANN) regressiomodel, optimally trained to

approximate the response of the original systemauhyn equations. In the second
approach, we apply an ensemble-based method tlggegedes three alternative SA
indicators, which allows reducing the number ofdations required by a SA based on
only one indicator. The methods are implemented iatcase study consisting of
interconnected gas and electric power networks. €Effectiveness of these two
approaches is compared with those obtained by engilata estimation SA approach.
The outcomes of the analysis can provide usefublms to the shareholders and

decision-makers on how to improve system resilience

Keywords: Critical Infrastructure, System Resilience, Impoga Measure, Sensitivity

Analysis, Artificial Neural Networks, Ensemble ofelihods

1 Introduction

The safety of critical infrastructures (Cls), su@s electrical power grids, transportation,
telecommunication, natural gas and oil, water sypmgtworks and government services systems, are
significantly threatened by multiple hazards, emgtural disasters [1,2] and human-made attacks [3]
Disruptive events that occur in one CI can triggascading failures to the interdependent Cls (ICIs)
causing significant consequences and losses [4n,Thow to anticipate, prepare for, respond to, and
recover from disruptive events in Cls and ICls,dmee important issues [6].

Resilience refers to the “ability of a systemstistain andrestore its basic functionality following a
hazard source or an event (even unknown)” [6]. Magiattempts have been made to define, quantify,
analyze and improve system resilience of Cls [7].

In scientific literature, works on system resilienmainly focus on the recovery aspect [8,9,10].
However, in practice, it is relevant to distinguible individual contributions to system resiliericam
both the mitigation and recovery viewpoints in ertieplan and implement the most effective straggi
for improving resilience of ICls. Indeed, the immmce of a system element with respect to system
resilience may change before, during and after dbeurrence of a disruptive event, and, as a

consequence, the associated resilience strategychmmge too. Then, it is necessary to capture this



variation of criticality of the system elementsrntmre efficiently guide the resilience strategiegha

different phases following a disruptive event.

In this work, we model ICls within a control-basgghamic modeling framework, as in [11], and we
guantify three resilience measures for ICls, inticet! in [12], to analyze resilience in differentpbs,
i.e., during the failure phase, the recovery phasel the entire failure-recovery period. Then, we
perform a sensitivity analysis (SA) that is ableatttount for the contribution of different sourcds
uncertainty in the model inputs (such as systengdgsarameters and failure-recovery parameters) to
the uncertainty in the outputs (such as resiliemsmasures) [13]. SA can be performed to achieve
different purposes such as [14,15]: 1) ranking, tlee identification of a ranking of the inputs the
basis of their contribution to the output variaili2) screening, i.e., the identification of timputs that
have a non-influential effect to the output vardigépi and 3) mapping, i.e., the determination oé th
region of the space of input variability that prods relevant output values. In this work, the fdsusn
ranking; indeed, we perform SA to rank the inpyigrémeters and elements of the ICIs) that are more
critical with respect to the development and improent of system resilience, in order to provide
insights to the decision-makers. Identifying thestnmritical inputs to system resilience can suppet

implementation of appropriate resilience strategigd the effective improvement of system resilience

Two types of SA approaches can be identified: lacal global. Local (or differential) SA evaluatbe t
effect on the output of small variations of theutgparound a reference value; the sensitivity ieslic
typically used are partial derivatives or finitdfeiences [15,16,17]. Global SA, instead, evalu#tes
effect on the output of inputs varying across thére domain of possible input parameter variations
the sensitivity indices typically adopted are, eaprrelation measures between inputs and outmats a
statistical properties of the output distributisnch as variance [15]. Indicators for global SA caked
global importance measures or uncertainty impoganeasures [18]. Local SA is straightforward, does
not require many simulations, and its results aasilg interpreted compared to global SA [17];
however, the latter one is considered more relifi¢ and offers higher capabilities [16]. Then tliis
work, we focus on global SA.

Also, SA methods can be classified in differentegaties, for example [15] identified the following
types of SA methods for environmental models: pbetion and derivative methods, multiple starts
perturbation methods, correlation and regressicayais methods, Monte Carlo filtering, variance-
based methods, density-based methods; [17] cledgifobal SA methods for building energy analysis
in four categories, i.e., regression methods, singebased methods, variance-based methods, meta-
model methods; [19] distinguished between screemrghods, non-parametric (regression-based)
methods, variance-based methods, density-basedodsetand expected-value-of-information-based



methods; [18] presented an overview of global S#hméques used in risk analysis, specifying three
types of methods, i.e., non-parametric (regresbased) techniques, variance-based techniques and
moment independent techniques. With respect tdasteclassification, in this paper, we considembot

variance-based techniques and moment independdmigees for SA.

As mentioned above, global SA methods offer higt@pabilities; however, they suffer of higher
computational cost [16], since they explore tharemlomain of inputs variability. As a result, the
computational cost of the SA-driven importance meas (SADIM) can become very expensive, due to
the long time needed by one single simulation toand the large number of simulations required by
SA. In order to reduce the computational burdethefanalysis, we adopt two strategies: in the first
one, we replace the long-running dynamic model &itfast-running regression model rietluce the
time required by each simulation; in the second strategy, we keep the long-rundimgamic model and
adopt an ensemble-based method, which aggregatess $4\ indicators and allows obtaining accurate

SA results with dower number of ssmulations [16].

Fast-running regression models, also called metalmgduch as Atrtificial Neural Networks (ANNS)
[20,21], Local Gaussian Processes (LGPs) [22-28]ynomial Response Surfaces (RSs) [24-25],
polynomial chaos expansions [26-27], stochastitocations [28], Support Vector Machines (SVMs)
[29] and kriging [30,31,32]), can be built by mearfsnput-output data examples to approximate the
response of the original long-running dynamic megdehd used to perform SA. Since the metamodel
response is obtained quickly, the problem of higmputational times is circumvented [33]. In this
work, we use ANN-based metamodels to approximaeadbponse of the long-running dynamic model
and we apply SA by analyzing a variance-based thahsindex (i.e., the first-order index) on theNAl

model outputs.

The ensemble strategy allows integrating the outptitree SA individual methods to generate reéabl
rankings, avoiding possible misinterpretations ttaat be produced by using a single SA method. This
strategy has been shown to be particularly usefidnathe number of simulations needs to be reduced
for computational issues [16]. The three SA indicaitconsidered in this work are: 1) the first-order
variance-based sensitivity measure (also calledsBea correlation ratio or Sobol’s first-order éxg
[19,34]; 2) the distribution-based sensitivity me@s[18] and 3) the Beta measure on the basis of
Kolmogorov-Smirnov distance [35]; while the firstdex is variance-based, the last two indices are
given by moment independent techniques. To aggeetim results in the ensemble, we propose a
normalized value sum aggregation method, derivenh fthe ranking sum aggregation method [36]. In
the rest of the paper, we refer to the first arabsd strategies as SADIM 1 and SADIM 2 approaches,
respectively, for brevity. The results obtainednir@ADIM 1 and SADIM 2 are compared with those



obtained by a SA approach that estimates globaitsédty indices from given data, at the minimum

computational cost, [19], to which we refer in ffaper as “given data estimation method” or SADIM 3.

The present work is organized as follows. Sectipmezents the control-based modelling framework
of ICIs and the system resilience indicators. ®ec8 introduces the SADIM 1 and 2 approaches.if th
Section, the basics of the ANN model, the defindi@f the SA indicators and the aggregation styateg
used in the ensemble-based approach are giveriois&cillustrates the application of the proposed
methodologies on a case study concerning interadedegas and electric power networks. Finally,

Section 5 draws conclusions from the work performed presents the future works.

2 IClsdynamic modelling framework and resilience metrics

In Section 2.1, we introduce a modelling framewfwk ICls, where the system behaviors in the
nominal operation and failure modes are descrilyed fet of dynamic equations and the system states
represent the level of a resource that passesghragiven node or link of the ICls. Accounting the
variability of users’ demands and the constraimssystem states, we formulate an under-control flow
distribution problem by a Model Predictive Cont(MPC) algorithm to calculate the system states in
real-time. In Section 2.2, we define the perfornreant the system. In Section 2.3, we present the
uncertain system parameters that affect systentieres. In Section 2.4, we illustrate the system

resilience metrics.
2.1 Modelling framework

In this work, ICls are described as a network, lo@ basis of graph theory, and their operation is
modeled by linear dynamic equations that desctikestvitching dynamic modes of the interconnected
systems. Then, the modeling framework adoptedlestabgo beyond the purely topological description
of a system by including dynamic aspects, althdagh linearly (approximated) manner [11]. The ICls
model is quantified by simulation, reformulatingag an optimization problem, specifically into ake
ahead resource dispatch problem, which scheduteBadvs of resources within the ICIs based on up-
to-date forecasts of users’ demands [12]. The MB&aach [37,38], which allows taking into account
the constraints on system components, system ¢qarameters, and system design parameters, has
been adopted to identify the control actions ahdue step [11,12].

In Section 2.1.1, the system dynamic equationsvaiteen in their state-space form (i.e., the lingare-
invariant dynamic equations), where vectors of eysttate variablesc), controllable variablesuj,
disturbances d), and system outputsy] are related; in Section 2.1.2, the model conssaare

illustrated; and in Section, 2.1.3, the model otijecfunction is given.



2.1.1 Dynamics of ICls

ICIs are represented as a networked graph, wheradtles are the subsystems, i.e., components or
functional sets of components, and the links argsiphl, cyber or logical connections between the
nodes [39]. Various resources are constantly predluconsumed, stored and transformed in the
subsystems of the ICIs. Then, depending on the ruaintionalities of the nodes, i.e., production,
consumption, storage, transportation and/or coiwgrsve classify them into suppliers, users, buffer
transporters, and convertors [11].

In the modelling framework, we consider as systéates the levels of input flow, output flow and
storage of the nodes, and the levels of input fimd output flow of the links connected to them. To
mimic the realistic operations of ICIs under cohttbe outgoing links of buffering nodes and system
driver nodes, as defined in [40], are consideredragr links and their output flows are designatsd
system controllable inputs. The general, discrdfiztate-space representation is written as follddk

x(t +1) = Ax(t) + Bu(t) + d(t)
y(&) = Cx(t) ’

wherex = [x; ...xNx]' € RV is the vector of the system statess [u; ...uy, ]’ € R is the vector of

(1)

the control variables; = [y, ...yNy]’ € RYy is the vector of the system outputs, which are flirer

levels received by the usets= [d; ...dy,]" € R4 is the vector of disturbance variables descrilbiey

losses of the system states due to the disrupfidreV, x N, matrixA4 contains the information on the
system connectivity and, specifically, the rows aotlmns represent the nodes and the cells assume
value 1 if the nodes on the rows depend on the snodethe column, otherwise they assume value 0.
The Ny X Ny (N, <N, ) matrix B and theN, x N, matrix C represent the flow transmission
coefficients, respectively. Matrid is obtained from the topology of the system, whsrenatrices
matricesB andC are given by the dynamic equations formulatedefrh component. Finally, the scale
of time depends on the objective and level of defaihe analysis, on the type of system under sl
and also on the available input data. For exaniple)ectric power networks, the scale of time when
analyzing the unit commitment problem should bamimutes to analyze the ramping capabilities of
power generators, whereas it can be in hours whalyzing the supply of electricity to customers. In
this work, we consider an hourly resolution.

The advantage of using Eq. (1) is related to thssipdity of describing the changes of flows durthe
failure and restoration processes, by explicitipresenting the dynamic of flows on nodes and links.
This cannot be handled by the existing approachté®eclassical, static network flow models [3,41].
The interested reader is referred to [11] and fa2further detalils.



2.1.2 Constraints

The values of system states and control varialskediraited by the capacities of the nodes and links
The constraints are formulated as follows:
0 < x(t) < CP,, )
0 <u(t) <CP, 3)
where the elements P, andCP, take values of the capacities of the correspondiements, i.e., the
nodes or the links. In nominal operation, the cépaxf an element is at maximum leveC PN. When a

disruptive event occurs, the capacity varies iretiduring the failure-recovery process, as shown in

Figure 1:
CPi(t) = CPiN—Fi+Hl'(t_tr):CPi(t) SCPLN (4)
with
._{ 0 fOI'OSt<tf ©)
7 |magnitude of failure  for ¢ > tr

._{ 0 for 0<t< t, (6)
Hi= recovery rate  for t > ¢,

wheret, is the time of failure ang. is the start time of the recovery. The exact shafpide recovery
function curve of an element is driven by the systesilience strategies. For example, [2] usesltine
trigonometric, and exponential recovery curvesdpresent the system response of average prepared,
not well prepared and well prepared communities.tke sake of simplicity of illustration, here, wse
linear recovery functions.

Nominal
level

Failure
level
eve H,

Capacity of element i

Time

Figure 1 Evolution in time of the capacity of elethi

2.1.3 Objective function

Considering that the units of the resources in Beésdifferent (e.g., for the gas network the isih



cubic feet or mand for the electric power network it is in MW)ewepresent the level of relative
insufficient satisfactiomy of useri,,, by a normalized and non-dimensional variable:[11]

v (o) = Dy, (t) = yi, (1) ()
YR Dy

whereDl-y is the demand of uséy.

Based on the dynamic equations and constraintdgusy introduced, we use MPC algorithm to
allocate the flows at each time step, i.e., at damhr. MPC performs a finite-horizon optimizatiopn b
determining sequences of system states and carpeoiations over a prediction horizdi for the
minimization of the objective function at each tistep withinN,, and, then, implementing only the
first control action [42].

Here, the objective function is formulated to miidenthe weighted sum of insufficiency function

Yl-y(t) of useri,,, within the time horizow,:

Na (8)
minz Z wl-le-y(t+q|t) ,
q=0 \iyENy

where,a)l-y is the weight assigned to the uég;arandziy wy, = 1.

By solving the optimization problem with MPC, thentrol actionu(t|t) is obtained from the control
sequence:
u 2 {u(t]o), ut + 1¢),...,u(t + N, — 1]t)}. )
Then, only the first control actian(t|t) will be used in the recursion to calculate thetesysstates at

t+1.

2.2 System performance function

ICIs should provide stable and reliable servicethousers; their performance can be defined from
different perspectives (reliability, availabilityesilience, safety, economics, etc.) and measumed i
effective ways, e.g., counting the number of opegatomponents [2], the economic loss associated to
the components and the casualties of people diheglisaster [1]. According to [7], a measure of
resilience of ICls should be related to the capagitenabling and enhancing people daily life. Hist
view, we evaluate the actual performance functibiCds, P(t), in terms of the weighted sum of the
users states:

Ny (10)
PO = ) w1, i, (©).
iy



The performance reference function of the I@IB(t), is characterized as the weighted sum of the
users demands:
Ny (11)

Under nominal operating conditions, the supplydoheuser, e.gi,,, with respect to its demanlljy is
always achieved, i.ey,l-y(t) = Dl-y(t) andP(t) maintains values close to the performance referenc

function PR(t).

2.3 Uncertain input variables

The uncertain inputs here considered to affectesystesilience performance include system initial
conditions, i.e., initial resource levels in theffbu subsystems, parameters of the process teniyoral
i.e., related to the process duration like theesystesponse time and the time horizon, and parasnete
related to the failure-recovery process, i.e.ufailmagnitude and recovery rate.

The buffer subsystems in the ICIs contribute tdesysperformance by storing resources, adjusting
the supply of resources in nominal operation andpansating the insufficiency of resources in cdse o
shortage during an accident. To include the funetity of the buffers, we assume that the initial

0

inventory levels of buﬁers;,@?i , represents the initial resource level of bufféf, att = 0.

Two critical time durations are defined in a faduscenarioH, = t, —ty is the response time and
Hy =ty — t is the time horizon, which represents the timehinitwhich the restoration is to be
finished, where;, is the time within which system performance iseotpd to return to the nominal
level.

The failure magnitudé&; and recovery ratg; of an element are considered as uncertain variables.
F;

The failure magnitudé; is limited to the intervalF; = [0, C;], whereC; is its predefined

min’ max:|

capacity. The recovery rate varies Within[ﬂimm.ﬂimax], which can be, for examplg;, . = Fimin

Hhrmax

Fimax

ANk g = Hhmin'

2.4 System resilience metrics

Resilience can be described as a function of tlséeBy performance over time and it is typically
represented by triangular [2,43,44] or trapezdiifpturves, as shown in Figure 2. As a result,rtost
used metrics for resilience quantification are Ugubased on area quantification, such as the area

between the referencBR(t), and the actuaR(t), system performance functions within a period of



interest, e.g., from the time of occurrence ofsaugitive event until the complete recovery of thetem
[43,45].

P(t) 4
(]
2 P(t) ——
S PR(t) . : )
E 1 \|
L.g 1 1 PR(t) ................
2 1 :
g 1 |
Z NI\
IN N N >
0 tf t? th t

Figure 2 System performance following the occureeoica disruptive event.

In this work, we compute resilience as a ratiohaf areas between the actu¥lt), and the reference,
PR(t), system performance functions during a given tpagod. Specifically, we consider three time
periods that lead to the computation of three isrgie metrics: 1) resilience by mitigatidty,,, during
the disruptive (failure) phase of the system, fiti time of occurrence of a disruptive evept,until
the time when the recovery starts, 2) resilience by recoverR,, during the recovery phase of the
system, from the time of starting of the recoveyy,to the time within which system performance is
expected to return to the nominal leugl; and 3) total resilience’,, during both the failure and

recovery phases, i.e., fratpuntil t;,.

The distinction between resilience by mitigatiord aasilience by recovery comes from the need of
identifying the most important resilience protentiand recovery activities that can contribute te th
system resilience during the different phases digation and recovery, following a disruptive event
Indeed, during the mitigation phase, the capacftyhe system to maintain the nominal level of
operation or mitigate the negative impacts of ¢ion mainly depends on the robustness and
redundancy of the system, whereas in the recovieagq the capacity of the system to return to its
nominal operation following disruptive events mgidepends on the rapidity of the recovery and en th
resourcefulness of the system [46]. However, itwierth mentioning that protection strategies
implemented during the mitigation phase can countebalso to the system resilience during the
recovery phase, indeed larger robustness and highiglity are correlated. In this work, this coatén
is not considerewvhen analyzing separately the mitigation and regppbases, but it is included when
analyzing the total resilience measure.

In the following, the mathematical formulation bEtthree resilience measures adopted is given.

10



The resilience by mitigation is quantified as thaia of the area between the actual system
performance functio® (¢t) and the time axis (the area shaded with upwargbdial stripes in Figure 2)
for the time period; < t < t,,, and the area between the performance referencidn PR(t) and the
time axis, for the time periog < ¢t < t,, which corresponds to the response thipe= t, — ty, i.e.,
within the mitigation phase:

ftif P(t)dt (12)
Rp=—F7——.
) tf’ PR(t)dt

The resilience by recovery is calculated as théoraf the area between the actual system
performance functio® (t) and the time axis (the area shaded with downwiagbdal stripes in Figure
2) for the time period, < t < t;, and the area between the performance referencidao PR(t) and
the time axis, for the time periad < t < t,, witht; > t,., i.e., from the start of restoration to the end
of the time horizoH,, — H, = t, — t,, i.e., within the recovery phase:

ffrh P(t)dt (13)
T [ PR(t) dt

The overall level of system resilience, i.e., th&al resilience,, is given by the ratio of the area
between the actual system performance fundti@n and the time axis for the time perigd< t < ¢,
and the area between the performance referencidn®®(t) and the time axis, for the time period
tr < t < ty, Witht, > t, within the mitigation and recovery phases:

oo ftttfhP(t) dt | (14)
) tf“ PR(t) dt

3 Sengitivity analysis-driven importance measure (SADIM)
3.1 Introduction to SADIM

Generally speaking, we can consider the system inode
Z =f(Q),R" - R™, (15)

whereZ is the set of output variables (OVs) of the modekiQ is the set of uncertain input variables
(IVs). In the case of ICIs, IVs include systemimdittonditions, parameters of the process tempgrali
and parameters related to the failure-recoveryge®of the system elements, as discussed in Section
2.3, and the OVs include the system resilienceiosgfjust introduced in Section 2.4.

The uncertainty in IVs propagates to uncertaintytt@ system resilience metrics (OVs). Sensitivity
analysis (SA) can be used to quantitatively evaluht contributions of the IVs on the OVs, and

11



identify the most critical/important elements toigfh higher priority should be given in the proteati
and recovery strategies design and implementation.

A sensitivity analysis-driven importance measurd®1) can be introduced to filter the least
relevant input variables and simplify the modebider to reduce computational cost, while maintajni
the accuracy needed for the analysis [13]. Therfily criteria can be, for example, a thresholdttier
unity-based normalized SA indicators definedras 1/n, wheren is the number of IVs [47]. It's also
possible to select the most important 1Vs with ee$po a certain percentage of the IVs number [16].

The IVs most relevant to system resilience areadl#o the elements whose failures most affect the
system resilience: then, SADIM can also be useitiaatify the system critical elements, which are

more worthy of investment for system resiliencerovement.

3.2 Two strategies to accelerate SADIM computation

The cost for combining SADIM can be very expensberause of the high computation time
required by each simulation of the dynamic modet &ample, a simulation of a failure scenario for
the case study illustrated in Section 4.1 takesiratolO seconds to run and the computational time
increases with the growth of the system size; thmallations are carried out by using Yalmip Toolbox
[48] and Cplex optimizer [49] on Matlab 2015a, onlatel® Core™ 2 Duo CPU E7600 @ 3.07 GHz)
and the large number of simulations required by @& example, more than iQVionte Carlo
simulations are required in SA approaches thatudistribution-based SA indicator [18].

To reduce the computational burden, we proposestnaiegies, as shown in Figure 3. In the first
approach (referred in the following as SADIM 1), adopt a fast-running Artificial Neural Network
(ANN) regression model to replace the original ioomsuming dynamic model and, then, we apply the
SA considering a variance-based sensitivity index, the first-order index) on the ANN model outpu
In the second approach (referred in the followisgSADIM 2), we keep the long-running dynamic
model, but we reduce the number of simulations sgay for an accurate SA by implementing an
ensemble-based approach [16] in the SADIM. In theeeble-based approach, three SA indicators are

computed and, then, aggregated to produce a reliabking of the most critical elements [16].

12



Input variables (IVs)

ANN model

| Dynamic model I

Ensemble-based SA

Three SA indicators
Aggregation

Ranking of IVs

Figure 3 Approaches to reduce the computationaldrufor the sensitivity analysis-driven

SA indicator

importance measure calculation.

3.2.1 Artificial Neural Networks

An ANN is a modelling structure composed of mangafial computing nodes arranged in different
layers and interconnected by weighed connectioff [Bhe node in an ANN performs few and simple
operations and communicates the results to itshbeigng nodes. From a mathematical viewpoint,
ANNSs consist of a set of nonlinear (e.g., sigmdidesis functions with adaptable parameters theat ar
adjusted by a training process (on many differaptif/output data examples), i.e., an iterative @sec
of regression error minimization [51]. ANNs havesbeproved to be a powerful technique to perform
massively parallel computations for data procesgb®?] and to solve a variety of problems in
prediction, control, optimization, pattern recogmit etc. [53]. Specifically, ANNs have been
demonstrated to be universal approximants of coatia nonlinear functions (under mild mathematical
conditions) [54], i.e., in principle, an ANN modelith a properly selected architecture can be a
consistent estimator of any continuous nonlineaction. Further details about ANN regression models
are not reported here for brevity; the interestatier may refer to the cited references and thivasp
literature in the field.

In this work, we consider the classical three-lagerfeed-forward ANN composed of three layers
(input, hidden and output, see Figure 1) and tchimethe error back-propagation algorithm. Noticat t
it is a good practice to model the system usinlittéess number of hidden layers as possible to keep

number of parameters to be estimated as low asbpmssideed, the higher the number of hidden
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layers, the larger the model complexity and ther@othe generalization capabilities [55]. In adufiti

too many parameters will drastically slow down lgrerning process [56].

Input data

| | | bias

Input layer

bias

Hidden layer

Output layer

9

Output values

Figure 4 Layout of a three-layered, feed-forwardfisial Neural Network.

The numbers of nodes in the input layer and theuiuayer are known, as they correspond to the
numbers of IVs and OVs. The number of nodes inhidelen layer has to be determined during the
training process; in general, also this numbethasiumber of hidden layers, is kept as low asiplass
since the higher the number of hidden nodes theehithe number of parameters to be estimated. In
general, an ANN with too few hidden nodes doessumiceed in learning the training data set; vice
versa, an ANN with too many hidden nodes learnsihiaing data set too well, and it does not have
generalization capability [33].

Typically, the entire set of input-output data isided into three subsets: a training (input/output
data set, used to calibrate the parameters of M Fegression model (i.e., the weights of the ljnks
validation (input/output) data set, used to moniter accuracy of the ANN model during the training
procedure; a test (input/output) data set, not wkethg ANN training and validation, but used a¢ th
very end of the training to evaluate the networkegalization capability when fed with new data.
ANNSs are good at interpolation, but they can be/ed at extrapolation; to guarantee that the bsund
of the training domain are not exceeded, data moisbe over-fitted during the training process.sThi
can be guaranteed by the validation process: igtipea the validation error is computed on the
validation set at different iterative stages of thaning procedure: at the beginning of trainitiys
value decreases as does the error computed orrdimng set; later in the training, if the ANN

regression model starts over-fitting the data,etrer calculated on the validation set starts iasireg
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and the training process must be stopped [50]. Rb& Mean Square Error (RMSE) on the training,
validation and test data set has been considergdANN development in this paper.

A final remark is in order with respect to applioatto large-scale systems. In this work, a smadiec
study has been considered, but it is worth memimitat issues related with the high dimensionality
the input parameter space can arise when considéainge-scale systems. Indeed, any algorithm
involving the construction of a metamodel suffetsew the dimensionality of the input parameter,(i.e.
feature) space increases, because the availalbé isput-output data examples becomes sparserawith
power law relationship [57]. This issue is unavbidaand limits the application of any algorithm for
metamodeling in engineering problems, unless dileafity reduction strategy is adopted (e.g.,
principal component analysis, or feature extraciind selection) [33].

3.2.2 Ensemble-based sensitivity analysis

The ensemble method allows combining the outputhode single SA indices to identify reliable
rankings [16]. As a consequence, the resulting irgnkovercomes the problem of possible
misinterpretations of the individual methods, sfieglly in cases of limited quantity of data [16h
Section 3.2.2.1, the three SA indicators used énghsemble approach are illustrated and in Section

3.2.2.2, the method proposed to aggregate thetséswescribed.
3.2.2.1 Senditivity analysisindicators

In this work, the three SA indicators consideredhi@ ensemble-based SA method are: 1) first-order
variance-based sensitivity measure (also calledsBea correlation ratio or Sobol’s first-order @xq
[19,34]; 2) distribution-based sensitivity measjir&] and 3) Beta measure on the basis of Kolmogorov
Smirnov distance [35]. The first index is variarmesed, whereas the last two indices are given by
moment independent techniques.

Methods based on variance decomposition are thé osesl for global SA [16]; indeed, they are
suitable for complex nonlinear models since theynad introduce any hypothesis on the model
functional relationship to its inputs [15,16,17,18phriance-based methods explore the entire rafige o
variation of the inputs that are modelled as ststtbaariables inducing variability (uncertainty) the
model outputs. The variance of the output distidng is considered a good proxy of the output
uncertainty [15]. However, the assumption thatraglei moment of the output distribution, i.e., the
variance, is sufficient to describe output varidpils not always appropriate, e.g., in case oftmul
modal or highly-skewed distributions [15,16,17,83.5To overcome this limitation, moment
independent techniques, such as distribution-bssesitivity measure and Beta measure on the bhsis o
Kolmogorov-Smirnov distance, do not consider omg gpecific moment of the output distribution, but

15



they look at the entire output distribution in ament independent fashion [15,18]. Specifically, the
distribution-based sensitivity measure and the Be&msure on the basis of Kolmogorov-Smirnov
distance are based on the distance between theditiooal output distribution (generated by varying
all inputs) and the conditional (on a given input}put distribution.
In the following, the mathematical formulation bktthree SA indicators considered in the ensemble-
based SA method is given.
Let Z; denote one of the OVs agd one of IVs, the first-order variance-based sevigtindex, S;, is
defined as [19,34]:
_VIE@Z1Q)] (16)
l viz]
whereV[Z;] is the variance of the model uncertain OV, ¥if#l(Z;|Q;)] is the variance of the expected
value ofZ; if the impact fromy; is eliminated, i.e., assuming th@tis fixed at its “true” value. This
first-order index represents the direct contributdd each IV to the variance of OV.
The distribution-based indicatdf;, is given by [18]:

1
6 = 5 EI(Q0)] )

wheres(Q;) is defined as:

S(Qi) = f |ij(Zj) _ij|Qi(Zf) de, (18)

wherefzj (z]-) is the density function df;, andej|Qi(zj) is the conditional probability density function
of Z; whengQ; is a fixed value. The distribution-based SA intica; represents the expected shift in
the distribution of; provoked byQ;. Unlike the first-order variance-based sensitivitglexs;, which
considers one moment of the OV distribution, thdidatord; accounts for the entire distributions of
OVs. Applications show th&f; andd; are in agreement in identifying the less relevrd, but
discrepancies exist in the ranking of the mostvaate ones [18].
The Beta measurg;, based on the Kolmogorov-Smirnov distance, is adetb by averaging the
distance between the unconditional and conditidgaal a given input) distributions of the output as
follows [35]:

Bi = E[Supz}-enzj |FZ}-(Zj) - FZlei(Zj)l]- (19)
whereFZj(zj) is the cumulative distribution function (CDF)Z;fandFZﬂQi(zj) is the conditional CDF

of Z; when Q; is a fixed value. The metriSuijEQZ}_|FZj(zj)—FZ}.|Qi(zj)| in Eq. (19) is the

Kolmogorov-Smirnov distance, which is defined ae thrgest absolute difference between the two
CDFs, and has the property to be scale invariant.
The main advantage of the Beta meas@ifecompared to the distribution-based indicadgr,is in the

use of CDFs rather than density functions. Ind€l-s can be defined for all distributions (evea if
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distribution does not admit a density) and theypwallrelating the sensitivity measure to, e.g., the
probabilities of exceeding a target [35].

In this work, the three SA indicators have beepliad to the same input-output data obtained from
system behaviour simulations, so they have beenlea¢d without the need of rerunning the model,

avoiding extra computational cost.

3.2.2.2 Aggregated ranking of sensitivity indicators

The three SA indicators introduced in Section 312&dte aggregated for the final ranking of the IVs
that affect the OVs. We take as reference the ngnkum aggregation [36] and propose the following
method to aggregate the values of the three SAannlisS;, §; andg; in one SA indicatof;. For each
IV, Q;, the aggregated SA indicatkris calculated as follows:

1) For each SA indicato4;, i.e.,S;, §; or B;, rescale its original value to a normalized value

SA;
SAY = =24
LoXisa

, which is the ratio of the SA indicator value of B/ Q; over the sum of the SA
indicator values of all the 1Vs. This step brine talues of different SA indicators into the range
[0,1].

2) Calculate the sum of the results obtained in sjefSY; = S;" + 8, + ;.

SSA;
Y SSA;

3) Normalize the values ¢fSA4; to the aggregated SA indicatipr=

This aggregation method considers the direct iatémr of the results of the different SA indicators
i.e., it calculates the sum of values of SA indicatinstead of the sum of ranking, as in the ragkiim
aggregation method. The ranking sum aggregatiohademay lead to practical undesirable situations:
indeed, it can lead to multiple Vs occupying tlaeng ranking position. Comparing to the ranking sum
aggregation method, the advantage of the propagg@gation method is that it is able to capture the
variability of Vs with respect to different SA if@tors, avoiding the situation of multiple Vs time

same ranking position.

4 Casestudy and results
4.1 Interconnected natural gas distribution network and electric power grid

The case study is taken from [59] and considersI®¥e: a natural gas distribution network and an
electric power grid (Figure 5, solid and dash-dbtiees, respectively). The objective is to provite
necessary amount of gas and electricity to the ddmades. In particular, the gas distribution nekwo
supplies gas to two usei, andD,, and to two electric power generatdigs,andE,, that provide

electricity to two users of electricity;, andL,.
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The natural gas distribution network has two s@pls; andS,, whose outputs are assumed to be
equal to 90000 cubic feet, i.e., 90 MCF (1 MEF28.32 rﬁ), and 180 MCF, respectively; two buffers
(gas reservoirs))S; andDS,; five transporters, b, ¢, d ande; and two user®; andD,, whose
demandsDp, andDy,, are equal to 100 MCF and 80 MCF, respectivelye €lectric power network
has two converters (electric power generatdshndE,, that transform gas into electricity with a
constant coefficienf, wheref=10 MWh/MCF, i.e., 1 MCF of natural gas produces NWh of
electricity; two transporters;; andG,; two userd.; andL,, whose demand®),; andD,,, are equal to
500 MWh and 400 MWh, respectively.

In this case study, we consider the same failuemario as in [59], where the vulnerable elements,
which are highlighted in Figure 5, fail due to ardption event. The uncertainties of 1Vs, i.e.teys
design parameters, parameters related to the groeeporality, failure magnitudes and recoverygate
of the vulnerable elements identified in [59], amnsidered as described by uniform distributions, f

illustration purposes. The ranges of the distriindiare reported in Table 1.

- ™

Gas distribution network

—> Gas flow (unit measure: MCF)

=-=2> Power flow (unit measure: MWh)

s . N
Power grid

@- . -)@---'-@ 500 (MWh)
N
\.

\'\'
,@— . ->@----->@ 400 (MWh)
\ J

J

Figure 5 Interconnected natural gas-power systemiadrable nodes and links are highlighted).
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TABLE 1
Ranges of uncertain input variables (1 MEES.32 )

Description Symbol Interval Unit measure
Response tin H, [0, 30] hre
Time horizol Hp [50, 120 hre
Initial storage of buffeDs; Xhsl [1000, 400C MCF
Initial storage of buffeDs, Xbso [2000, 800C MCF
Failure magnitude of suppliéf F; [0, 90] MCF
Failure magnitude of suppliég F, [0, 180 MCF
Failure magnitude of link,_, Fs [0, 300 MCF
Failure magnitude of link;_. F, [0, 170 MCF
Failure magnitude of link._,; F [0, 100 MCF
Failure magnitude of link;_, Fy [0, 100 MCF
Failure magnitude of linkg _¢, F, [0, 80O MWh
Failure magnitude of linkg, g, Fg [0, 400 MWh
Recovery rate of suppli€y Uy [0,1.8 MCF/hrs
Recovery rate of suppliek, Uz [0, 3.6 MCF/hre
Recovery rate of link,_j, U3 [0, 6] MCF/hrs
Recovery rate of link,_, Uy [0, 3.4 MCF/hrs
Recovery rate of link._,4 Us [0, 2] MCF/hre
Recovery rate of link,_, Ug [0, 2] MCF/hre
Recovery rate of linkg, _s, U7 [0, 16] MWh/hrs
Recovery rate of linkg, ¢, Ug [0, 8] MWh/hre

4.2 Results by SADIM 1
4.2.1 Artificial Neural Network models

To build the data sets, 5000 Vs have ben sampiddifze OVs have been calculated by simulating
the original dynamic model. The input/output datveh been divided into three data sets as follows:
70% (i.e., 3500 data) in the training data set, 1686 750 data) in the validation data set arfh {be.,

750 data) in the test data set. Training, valicatioad test have, then, been carried out by the ANN
Toolbox of Matlab 2015a.

Three different ANN models have been built, witlkekeane output node representing one of the three
system resilience measur®s,, R, andR;. Table 2 shows the numbers of hidden nodes oAt
models found by trial and error, and the Root M&auare Error (RMSE) values obtained on the

training, validation and test data sets.
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TABLE 2

Number of hidden nodes of the ANN models and RoeaMSquare Error (RMSE) of the training,
validation and test data sets for resilience bygaitonR,,,, resilience by recoverg,., and total

resilienceR;.
R R, R,
Hidden node 3C 29 28
RMSE Training 0.018¢ 0.040¢ 0.037"
RMSE Validatior 0.024¢ 0.052¢ 0.046¢
RMSE Tes 0.028¢ 0.053: 0.049:

For brevity sake, in the following, we discuss ottlg results related to the total resiliege

Figure 6 shows the linear regression between theomke outputs (total resilience computed by the
ANN model,RA¥N, on the vertical axis) and the original dynamicd@looutputs (total resilienc&}MF¢,
computed by the MPC, on the horizontal axis), withpect to the training, validation, test, and the
entire data set. Notice that only the first 50 da&shown in Figure 6, for rendering the Figussble.
For a perfect fit, the data should fall along aling, where the network outputs are equal to éngetts,
i.e., the original dynamic simulations outputs.this case, the correlation coefficighy is always

higher than 0.98, which indicates that the fit@g for all data sets. Then, once the ANN is trajrie

can provide accurate values of total resilienosoimespondence of new input data.

The computational time required by one simulatibrihe trained ANN model to calculate the total

resilience indicator of one failure scenario isuam 2x10* seconds. On the contrary, one simulation of

the MPC dynamic model takes 10 seconds.
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Training data set: R, =0.99213 Validiation data set: R_=0.93932
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Figure 6. Linear regression between the networgudst(total resilience computed by the ANN
model,RAMN, on the vertical axis) and the original dynamicdelcoutputs (total resilienc&?¢,

computed by the Model Predictive Control (MPC) tlha horizontal axis).

4.2.2 Input variable importance by sensitivity analysis

For each resilience measuRg,, R, or R;, 5000 simulations by the ANNs have been carriddt@u
estimate unconditional distributions and®1€imulations have been run to estimate conditional
distributions for each IV. Then, the first-orderriemce-based SA indicators of each IV have been
calculated according to equation (16). In Tabléhd,values of the first-order variance-based seitgit
measure computed for the resilience by mitigatiq‘ﬁ',‘, resilience by recoverySiRT, and total
resiliencesff, are reported. The most important IVs are thosesehSA indicator values are larger

than threshold = 0.05.
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The results of the SA first-order indices for tlesilience by mitigationSiRm, resilience by recovery,

Sfr, and total resiliencé,ft, are reported in Table 3.

TABLE 3
SA indicators (first order-indices) of IV for reigihce by mitigationsfm, resilience by recover)i.Rr,

and total resiliencéin, computed by means of SADIM 1 approach. The vahigiser than the
threshold value are in bold.

SADIM 1
I\ Sfm S?r Sft
H, 0.1667 0.049¢ 0.0565
Hp, 0.034¢ 0.0661 0.0519
xf)if 0.034¢ 0.0297 0.033¢
x[t,jg 0.034¢ 0.031¢ 0.035:
Fy 0.034¢ 0.038¢ 0.0391
F, 0.034« 0.0705 0.0611
Fs 0.1377 0.1355 0.1481
F, 0.0523 0.0661 0.0641
Fs 0.037: 0.031¢ 0.035!
Fg 0.044: 0.031¢ 0.036¢
F, 0.0785 0.0826 0.0855
Fg 0.035¢ 0.028¢ 0.033¢
i 0.034¢ 0.033( 0.036¢
Uz 0.034« 0.047: 0.042°
Us 0.034¢ 0.0595 0.0534
U 0.034« 0.046: 0.064:
Us 0.034¢ 0.031¢ 0.035:
U 0.034¢ 0.031¢ 0.035:
i 0.034¢ 0.037¢ 0.038:
s 0.034¢ 0.049¢ 0.033¢

It can be seen that during the mitigation phase ntlost important 1Vs identified by the SA for the
resilience by mitigationSiR"‘, computed by employing the SADIM 1, are the resgatime H,., and the
failure magnitudests, F,, andF,, whose values are higher than the threshold valués shown in
Table 3, in bold). The results show which are thimgonents and, consequently, the activities thadl ne
to be considered to enhance the resilience in tiigation phase; specifically, in this case, theg a
related to the improvement of, e.g., failure détectapabilities that can increase the system respo
and the strengthening of the robustness of links,, Lg, ¢, andL,_., to reduce the failure magnitudes.

During the recovery phase, the most relevant I\éstified by the SA for the resilience by recovery,
Sf’, are the failure magnitudés, F,, F, andF,, the time horizor;,, and the recovery ratg, whose

values are higher than the threshold vaiygas shown in Table 3, in bold). Then, in this sghathe
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most important resilience enhancement activitiemukshfocus on the improvement of the emergency

preparedness of the users and of the recoveryegftg of linkL,_;, Lg, _¢,andL;,_. and suppliers.

Regarding the total resilience, the most relevad identified by the SASL.R*, are the failure
magnitudess, F,, F, andF,, the response tim#,, the time horizorH, and the recovery rate;,
whose values are higher than the threshold valug@s shown in Table 3, in bold). It can be seet th
the most important IVs are the combination of theméables identified for resilience by mitigatiand
resilience by recovery. This result is coherenhwuiite meaning of total resilience, which represéms
resilience level of the system considering both fditure and recovery stages. The corresponding
resilience enhancement activities in two phasesbeaimplemented following the results for resilienc

by mitigation and those for resilience by recoveegpectively.

4.3 Results by SADIM 2

In SADIM 2, the original MPC dynamic model simutats are performed to calculate the values of
the resilience measures, i.8,,, R, andR;. However, the number of Monte Carlo simulations fo
computing the unconditional and conditional disttibns of each IV reduces to 100 and® 10
respectively, thanks to the use of the ensembleebapproach. In SADIM 2, the first-order variance-
based sensitivity index, the distribution-baseddatbr, and the Beta measure based on Kolmogorov-
Smirnov distance, have been calculated, for eachab¢ording to equations (16), (17), and (19),
respectively, and then have been aggregated, #&ireghin Section 3.2.2.2.

In Table 4, the values of the ensemble-based sétysitneasure computed for the resilience by

mitigation,lf"‘, resilience by recoverthr, and total resilienclet, are reported. The relevant IVs are

those whose SA indicator values are larger thathifesholds = 0.05.
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TABLE 4
Ensemble-based SA indicators of the IVs for resdeby mitigation]iR"‘, resilience by recovery,

Il.R’, and total resiliencdff, computed by means of SADIM 2 approach. The vahigiser than the
threshold value are in bold.

SADIM 2
vV I?m I?r Ift
H, 0.2662 0.0508 0.0580
Hy, 0.030: 0.0641 0.049¢
x,g?f 0.029:¢ 0.032( 0.030(
x5S0 0.031( 0.033; 0.032¢
F; 0.029¢ 0.035( 0.037¢
F, 0.029¢ 0.0630 0.0577
Fs 0.1452 0.1754 0.2215
F, 0.040( 0.0530 0.0549
Fs 0.032( 0.032¢ 0.030¢
Fg 0.038¢ 0.032¢ 0.031:
F; 0.0603 0.0764 0.0686
Fg 0.029¢ 0.030¢ 0.029¢
Uy 0.029: 0.034¢ 0.034:
Uy 0.029: 0.041° 0.040:
Us 0.029¢ 0.0714 0.0595
Uy 0.029: 0.041: 0.038:
Us 0.030: 0.032( 0.030:
Ug 0.030¢ 0.032( 0.029¢
Uz 0.030: 0.035% 0.035¢
Ug 0.029¢ 0.032( 0.0297

During the mitigation phase, the most important Nentified by the SA for the resilience by
mitigation,IiR"‘, identified by employing the SADIM 2, are the respe timeH,, and the failure
magnituded’; andF,, whose values are higher than the threshold valués shown in Table 4, in
bold). Therefore, the most important resilienceagrdement activities include, e.g., the improvenuént
failure detection capability to reduce the respdimee and the strengthening of the robustnessngéli
Lo—p andLEl_Gl.

During the recovery phase, the most important Identified by the SA for the resilience by
recovery,If’, identified by employing the SADIM 2, are the tag magnitudes;, F, , F, andF,, the
recovery rate;, the time horizorH,, and the response tintg., whose values are higher than the
threshold valueg, (as shown in Table 4, in bold). Then, the impurtasilience enhancement activities
should focus on the improvement of the failure ciixd@ capability, the emergency preparedness of the

users and the recovery efficiency of links ,, Lg, _¢,, andL,_., and suppliers,.
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Regarding the total resilience, the most relevafg identified by the SAIin, are the failure
magnituded, F, , F, andF,, the recovery ratgs;, and the response tinik, whose values are higher
than the threshold value, (as shown in Table 4, in bold).

The most important IVs are the combination of theeséables identified for resilience by mitigation
and resilience by recovery, except for the timeidworH;,, whose value is equal to 0.0469. The
corresponding resilience enhancement activities lnmplemented in the mitigation and recovery
phases according to the individual results forliergie by mitigation and resilience by recovery,

respectively.

4.4 Comparison of SADIM approaches

The results given by SADIM 1 (Section 4.2.2) andD®¥ 2 (Section 4.3) are compared with those
obtained by a given data estimation SA method [(®ADIM 3), in Section 4.4.1. Then, considerations
about the computational cost and the effectivenédise three methods are given in Sections 4.4 an
4.4.3, respectively. SADIM 3 has been applied hysaering 5000 system responses generated by the
original dynamic model and Monte Carlo simulati&arther details on the results given by SADIM 3

can be found in [60].

4.4.1 Ranking of important IVs
The most important Vs and subsystems can be raohketthe basis of the SA indicator values. In
Table 5, the five most important IVs, i.e., thoséhvarger SA indicator values, identified by theee
SADIM approaches, are given with respect to theelmesilience measures (resilience by mitigation,

R,,, resilience by recoverg,., and total resilience,).

TABLE 5
Rankings of the five most important IVs given by[@M 1, SADIM 2 and SADIM 3 approaches for
resilience by mitigatio®,,, , resilience by recoverR,., and total resilience,

R, R R,

T
SADIM1 SADIM2 SADIM 3 SADIM1 SADIM2 SADIM 3 SADIM1 SADIM2 SADIM 3
1 H, H, H, Fs3 F; Fs3 F; F3 F;
2 F; F; F; F, F, F, F; F, F;
3 K K K F, H3 Hp 1 H3 F,
4 F, F, F, Hy Hy F, F, H, F,
5 Fy Fy Fy F, F, F, H, F, Hy
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For the resilience by mitigatioR,,, the five most important IVs obtained by SADIM thda2
methods are identical with those obtained by SABIMhey are the response tintg, and the failure
magnitudes’, F;, F, andFg, which reflect the importance of protection effoan linksL,_, Lg, ¢,
Ly_.andL;_,.

For the resilience by recoveR;., the most important two IVs, obtained by the th&&DIM
methods, aré; andF,, related to the failure magnitudes of link , and linkLg, _¢,. The other three
most important IVs are the same for SADIM 1 and $M[3 (even if they are in a different order) and
they are: time horizorH,,, failure magnitude of suppliek, F,, and failure magnitude of link;,__, F,.
The approach SADIM 2, instead, identifies alsordeovery rate of linl.,_,, 13, as important.

If we look through the entire failure-recovery pess (i.e., with respect to the total resiliendegan
be seen that three IVs, i.&5, F,, andF,, have been identified as critical by all the th@&DIM
methods, and, specificallf; andF,, are the most critical. The other IVs that appeahe top five by
at least one SADIM method a®;, us, H,, H,. The importance af, is supported by SADIM 1 and 3;
the criticality of the response timi, is highlighted by SADIM 1 and 2; whereas the inipoce of the
recovery ratey;, and the time horizorH,, is supported by only one method, i.e., SADIM 2l an
SADIM 3, respectively.

The results of SADIM approaches provide differemking positions of the IVs, which indicate the
priorities of the corresponding resilience enharemactivities. In general, topology modification,
redundancy allocation of the important elementidra detection capability are some of the actbati
that can be implemented to increase the resilidmcamitigation. In this specific case, the most
important resilience enhancement activities cafutethe improvement of failure detection capapilit
to reduce the response time and the strengthefithg sobustness of links on linkg_, Lg, _¢,, Ly—¢
andL,_.. Instead, the increase of the recovery efficieiscy typical activity to improve the resilience
by recovery by improving the repair rate efficierafyfailed elements and/or identifying the bestaiep
sequence (by optimization).

Notice that for the system under analysis, the mmpbrtant components for resilience are mainly
associated with failure magnitudes, response timigtimme horizon. Indeed, the initial storage of tive
buffers and the recovery rates (except for onevesgorate over eight) are not in the ranking of fikie
most important variables. It is worth mentioningttthese results are for the specific system aadlyz

and cannot be generalized to any interconnectédatrinfrastructure system.

4.4.2 Computational costs of three SADIM approaches
The three applied SADIM methods can significandgiuce the computational cost, comparing to the

conventional method with the original dynamic modedl large numbers of simulations in SA. Indeed,
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to obtain the above results, the traditional SAhudtrequires 10 simulations, i.e., it takes around
5000 hours, whereas, the SADIM 1 and SADIM 3 meshoehjuire 5000 simulations of the original
MPC dynamic model, which takes around 13 hours,taeadSADIM 2 method needs “6imulations to
obtain the SA indicator for each IV, i.e., it takasund 26 hours, the double of time required by
SADIM 1 and 3. Notice that the computational cosSADIM 1 does not depend on the number of
system parameters, i.e., it does not increaseeif imber of Vs increases; on the contrary, the
computational cost of SADIM 2 strongly depends be tumber of IVs. Then, SADIM 1 and 3 are
better than SADIM 2 with the respect to the comfiaiteal cost.

4.4.3 Effectiveness of three SADIM approaches

The SADIM methods provide the rankings of the mogtortant/critical parameters with respect to
system resilience, which can, then, be improveitiefftly by taking into account the results given b
these methods. In the following, we take into aotdhe results obtained in Section 4.3 in order to
improve the system resilience of the ICIs givenSiction 4.1; then, the effectiveness of the three
SADIM methods are compared.

We consider first an initial configuration (the eegnce case) of the IVs in which all of them are
assumed to take their mean values (see Table &h, T¥e modify these values according to the ranking
position of the Vs given by each SADIM method itler to analyze the improvement on the resilience
by mitigation,R,,,, resilience by recoverg,, and total resilience?;. The original level of an IV
increases, e.g., in the case of the recovery oateeduces, e.g., in the case of the failure magasitor
response time, by 50% if it ranks first, by 40%t ifanks second, by 30% if it ranks third, by 2004 i
ranks forth and by 10% if it ranks fifth.

The values of the resilience measures of the neferease and improved values as guided by three
SADIM methods are reported in Table 6. As expectied,resilience measure valugs,, R, andR;,
increase by applying the resilience strategiestifiieth by the SADIM methods and, in particular, the
highest improvement (values in bold in Table 6)g@vwen by SADIM 2 with respect to the resilience by
mitigation and by SADIM 1 with respect to the risice by recovery and total resilience.

Notice that the percentage values adopted to inertbee performance of the most important elements
have been arbitrarily chosen only for illustratipurposes. In real cases, the best strategy fogatiibin
and/or recovery should be identified for the difertypes of components.
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TABLE 6

Values of resilience measures (resilience by ntitgar,,,, resilience by recoverg,., and total
resilienceR;) under the initial condition (reference case) HrelSADIM-improved conditions.

Ry, R, R,
Initial conditions (eference ca)) 0.673¢ 0.748: 0.734:
SADIM 1-improved conditior 0.725¢ 0.8418 0.8243
SADIM 2-improved conditior 0.7733 0.799: 0.796:
SADIM 3-improved conditior 0.694: 0.836: 0.811¢

In Figure 7, the evolution in time of the ICls mmrhance functions, under initial conditions and
SADIM-improved conditions, is shown. These curveflect the characteristics of the failure and
recovery processes of the system performance. ®@ukfferent recovery start and end instants of the
users, the recovery curves of the system perforenare not smooth. The slope changes depend on the

topological structure of the system, the coeffitiealues in the dynamic equations and, most

importantly, the setting of the system parameters.

—
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Figure 7. Comparison of the evolution in time of fherformance functions of the case study
illustrated in Section 4.1 under the initial coitit(reference case) and SADIM-improved conditions.

It can be noticed that all the SADIM methods previgseful indications on the improvement of the
system resilience of the considered ICI. In pakicuthe most significant improvement in the
performance function is achieved by implementing thsilience strategy guided by the SADIM 1.

Since SADIM 1 has, also, a relatively low computaésl cost, it turns out to be the best SADIM method

for this application.
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5 Conclusion

In this work, we have developed sensitivity analyiiven importance measure (SADIM)
approaches to identify the most influential sysfmmameters and most critical subsystems with réspec
to system resilience, within a control-based maaglframework. Three resilience measures have been
considered to assess the system resilience of il€ls}l) resilience by mitigatioR,,, which represents
the capacity of resistance of ICIs during the falphase of the system, 2) resilience by recoRgry
which measures the capacity of restoration of I@lising the recovery phase, 3) total resilieRege
which evaluates the overall resilience performafd€ls during the failure and recovery phases.

Due to the long simulation time needed to evaluhé dynamic model and the large number of
iterations required by the SA, the computationat @d SADIM for large-scaled ICIs is very expensive
To address this issue, we have proposed two appFeaand applied them to a case study of interest.
The first one, i.e., SADIM 1, consists in employifast-running ANN models to replace the long-
running dynamic model. The second approach, i.ADIB 2, aims at reducing the number of
simulations required for SA. It adopts an ensenbiglsed method that aggregates three different SA
indicators, which can be calculated by employirggrealler number of simulations. This approach uses
the original, costly, dynamic model but reducesrthimber of simulations for SA.

We have applied the proposed SADIM approaches (8#ADEnd 2) and a given data estimation SA
approach (SADIM 3) to a case study concerning a gig®ply system and a power grid. The
computational cost and the effectiveness of the IBADethods have been compared:

*  With respect to the computational cost, both trmppsed SADIM methods can largely reduce
the computational burden of the conventional SAhoét SADIM 1 is faster than SADIM 2,
but slower than SADIM 3, due to the training of &N models.

*  With respect to effectiveness, the results obtained SADIM 1 lead to a larger improvement
of system resilience than those provided by SADI&h#3 SADIM 3.

For the case study considered, SADIM 1, which irgtgs the used of ANN estimation in the
standard process of SA, has turned out to be tteS#ADIM method. To generalize this finding to athe
systems, more ICls should be analyzed and, iniaddithe uncertainty introduced by the use of ANNs
should be addressed.

With the capability of the proposed SADIM approashene direction of future work is the
optimization of the resilience improvement stragsgor ICIs on the basis the results of SADIM.
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