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Multi-objective system reliability optimization has attracted the attention of several researchers, due to its importance in industry. In practice, the optimization regards multiple objectives, e.g., maximize the reliability, minimize the cost, weight and volume. In this paper, an adaptive particle swarm optimization (ADAP-PSO) is presented for multi-objective system reliability optimization. The approach uses a Lévy flight for some particles of the swarm, for avoiding local optima and insuring diversity in the exploration of the search space. The multi-objective problem is converted to a single-objective problem by resorting to the weighted-sum method and a penalty function is implemented to handle the constraints. Nine numerical case studies are presented as benchmark problems for comparison; the results show that the proposed approach has superior performance than a standard PSO.

m number of subsystems in the system. ri reliability of each component in subsystem i, 1≤i≤m. r =(r1, r2,…, rm), vector of component reliabilities for the system. ni number of components in subsystem i, 1≤i≤m. n =(n1, n2,…, nm), vector of redundancy allocation for the system. upper limits on the weight and cost of the system, respectively. V upper limit on the sum of the subsystems' products of volume and weight.

Ws, Cs

weight and cost of the system, respectively. Vs, sum of the subsystems' products of volume and weight. exp(ni/4) term accounting the interconnecting hardware.

Introduction

System reliability optimization aims at having in each subsystem, an optimal number of allocated redundant components, or allocated reliabilities, or both. The goal is to maximize the overall system reliability, subject to the limits of cost, weight and volume [START_REF] Kuo | Optimal reliability design: fundamentals and applications[END_REF]. The problem may be single-objective or multi-objective (i.e., only one objective is considered or multiple objectives, under design constraints), according to the goal of the application.

The redundancy allocation problem involves integer variables and the reliability allocation problem involves real variables; then, the reliability-redundancy allocation problem is mixed.

Various methods have been proposed for solving reliability optimization problems (ROPs).

These methods may be divided into two main categories [START_REF] Kuo | Optimal reliability design: fundamentals and applications[END_REF][START_REF] Soltani | Reliability optimization of binary state non-repairable systems: A state of the art survey[END_REF]: mathematical programming (exact, such as Branch & Bound [START_REF] Djerdjour | A branch and bound algorithm for designing reliable systems at a minimum cost[END_REF], dynamic programming [START_REF] Kulshrestha | Use of dynamic programming fo reliability engineers[END_REF], surrogate constraint [START_REF] Hikita | Reliability optimization of systems by a surrogate-constraints algorithm[END_REF],

branch-and-cut algorithm [START_REF] Caserta | An exact algorithm for the reliability redundancy allocation problem[END_REF] and approximation, such as linear programming [START_REF] Kolesar | Linear programming and the reliability of multi-component systems[END_REF], mixed integer linear programming [START_REF] Ramirez-Marquez | Redundancy allocation for series-parallel systems using a max-min approach[END_REF]), heuristic [START_REF] Aggarwal | Redundancy Optimization in General Systems[END_REF] and metaheuristic methods, such as genetic algorithms [START_REF] Hsieh | Genetic algorithms for reliability design problems[END_REF][START_REF] Marseguerra | Basics of genetic algorithms optimization for RAMS applications[END_REF][START_REF] Mellal | System reliability-redundancy allocation by evolutionary computation[END_REF][START_REF] Mellal | Large scale reliability-redundancy allocation optimization problem using three soft computing methods[END_REF], artificial bee colony [START_REF] Yeh | Solving reliability redundancy allocation problems using an artificial bee colony algorithm[END_REF], particle swarm optimization [START_REF] Huang | A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems[END_REF], cuckoo search [START_REF] Garg | An approach for solving constrained reliability-redundancy allocation problems using cuckoo search algorithm[END_REF], and penalty-guided stochastic fractal search [START_REF] Mellal | A penalty guided stochastic fractal search approach for system reliability optimization[END_REF]. The genetic algorithms have been successfully implemented for multi-objective RAMS (reliability, availability, maintainability and safety) [START_REF] Marseguerra | Basics of genetic algorithms optimization for RAMS applications[END_REF] and condition-based maintenance [START_REF] Marseguerra | Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulation[END_REF] optimization problems.

In particular, the metaheuristics, often called artificial intelligence methods or intelligent computation, have proven their effectiveness in solving reliability optimization problems for realistic systems and are currently considered the most promising solution methods. They are able to find optimal solutions in reasonable CPU time [START_REF] Mellal | A survey on ant colony optimization, particle swarm optimization, and cuckoo algorithms[END_REF][START_REF] Talbi | Population-based metaheuristics[END_REF]. Zhang et al. [START_REF] Zhang | A practical approach for solving multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization[END_REF] combined the bare-bones particle swarm optimization with the sensitivity-based clustering (BBMOPSO).

The system reliability, cost and weighted have been generated in the Pareto front. Fang et al.

[22] used the nondominated sorting binary differential evolution (NSBDE) algorithm to optimize the system resilience and cost. Kong et al. [START_REF] Kong | Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization[END_REF] used a simplified version of particle swarm optimization (SPSO) to optimize the system reliability with multiple strategy choices.

Abouei [START_REF] Abouei Ardakan | A novel strategy for redundant components in reliability--redundancy allocation problems[END_REF] implemented a modified version of the GA (MVGA) by considering the standby strategy in the optimization of the system reliability. Recently, the system availability of a parallel-series system has been optimizing by resorting to the genetic algorithm (GA), differential evolution (DE), particle swarm optimization (PSO), cuckoo optimization algorithm (COA), and flower pollination algorithm (FPA) [START_REF] Mellal | Availability optimization of parallel-series system by evolutionary computation[END_REF]. In [START_REF] Muhuri | Multi-objective Reliability-Redundancy Allocation Problem with Interval Type-2 Fuzzy Uncertainty[END_REF][START_REF] Chebouba | Multi-objective system reliability Optimization in a power plant[END_REF], the authors used the nondominated sorting genetic algorithm II (NSGA-II) to optimize the system reliability and cost as both objectives.

Dealing with both objectives of design is a great challenge for the decision maker. On the other hand, most of the previous approaches are limited and need to be more efficient in the search for optimal solutions. The goal of this paper is to propose a novel solution approach based on an adaptive particle swarm optimization (ADAP-PSO), for solving the multiobjective system reliability optimization problem. The multi-objective problem is converted to a single-objective by using the weighted-sum method [START_REF] Konak | Multi-objective optimization using genetic algorithms: A tutorial[END_REF]. The remainder of the paper is organized as follows: Section 2 presents the multi-objective system reliability optimization problem and mentions various techniques for its solution. Section 3 describes the adaptive particle swarm optimization implemented. Nine numerical case studies of systems with various subsystems' configurations are presented in Section 4. Results and discussion are given in Section 5. Finally, the last Section concludes this paper with some remarks.

Multi-objective system reliability optimization

The general mathematical multi-objective system reliability optimization is written as follows: 
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where Rs(•) is the overall system reliability, Rmin is its minimum allowable value, Vs(•) is the sum of the subsystems' products of volume and weight, Vmax is its upper limit, Cs(•) is the system cost, Cmax is its upper limit, Ws(•) is the system weight and Wmax is its upper limit; ri and ni are the reliability and the number of redundant components in the ith subsystem, respectively, and m is the number of subsystems in the system.

The methods for solving the multi-objective optimization problems are diverse and can be classified in three main categories:

 Weighted-sum method by assigning weights to each function in order to convert the multi-objective problem to a single-objective problem [START_REF] Konak | Multi-objective optimization using genetic algorithms: A tutorial[END_REF].

 Optimize one objective and include the other objectives as constraints [START_REF] Martorell | Constrained optimization of test intervals using a steady-state genetic algorithm[END_REF].

 Generate and analyse the set of Pareto optimal solutions [START_REF] Marseguerra | Basics of genetic algorithms optimization for RAMS applications[END_REF][START_REF] Busacca | Multiobjective optimization by genetic algorithms: application to safety systems[END_REF].

In this paper, the weighted-sum method is implemented to solve the multi-objective system reliability optimization problem. The objective functions of Eq.( 1) are converted to a single-objective function as follows:

1 2 3 4
Minimize ( , )
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where Qs is the unreliability (failure probability) of the system (Qs=1Rs) and =(1, 2, 3, 4) is the weight vector, such that The values of i depend on the targets of the decision maker.

Adaptive particle swarm optimization

The particle swarm optimization (PSO) has been proposed by Kennedy and Eberhart [START_REF] Kennedy | Particle swarm optimization[END_REF]. It is inspired by the movement mode of swarms in nature, such as birds and fishes. The comprehensive concepts of PSO can be referred to [START_REF] Kennedy | Particle swarm optimization[END_REF][START_REF] Shi | Parameter selection in particle swarm optimization[END_REF][START_REF] Talbi | Population-based metaheuristics[END_REF][START_REF] Garg | Multi-objective reliability-redundancy allocation problem using particle swarm optimization[END_REF]. In this paper, some particles fly using a Lévy flight for diversification and finding the best solutions by exploring the search space of the multi-objective system reliability optimization problem. The objectives are normalized in a single-objective by resorting to the weighted-sum method described in Eq. [START_REF] Kolesar | Linear programming and the reliability of multi-component systems[END_REF]. Furthermore, a penalty function is used to handle the constraints.

The fitness value of each particle is evaluated after handling the constraints by adding penalty terms to Eq.( 7):

Fitness value = ( , ) ( , ) f r n r n   (8) 
where ψ(r1, r2,…, rm, n1, n2, …, nm) is the penalty function.

The penalty function is computed as follows [START_REF] Mellal | A penalty guided stochastic fractal search approach for system reliability optimization[END_REF][START_REF] Mezura-Montes | Constraint-handling in nature-inspired numerical optimization: Past, present and future[END_REF]:
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where l (l=1,…,4) is the penalty factor. If the operand is negative, then, the absolute value is taken; otherwise, it is set to zero. The vector of the variables for the redundancy numbers is rounded to the nearest positive integer value before evaluating the fitness.

In practice, some particles in a swarm may fly a bit farther than the majority of particles and their position could be more interesting to explore for finding food and habitat. These particles, then, perform a random walk, using the Lévy flight, as done in the cuckoo search (CS) algorithm in the successive search iterations for finding new solutions to the optimization problem [START_REF] Yang | Cuckoo search: Recent advances and applications[END_REF][START_REF] Yang | Engineering Optimisation by Cuckoo Search[END_REF][START_REF] Yang | Cuckoo Search via Levy Flights[END_REF]. Some authors have tried to combine the principles of PSO and CS for solving optimization problems. In [START_REF] Hakli | A novel particle swarm optimization algorithm with Levy flight[END_REF], each particle has a limit value of the solution and in case that the particle is unable to improve this solution, then, this value is increased; on the contrary, if this limit has been exceeded, then, the particle performs a Lévy flight into the search space. In [START_REF] Jensi | An enhanced particle swarm optimization with levy flight for global optimization[END_REF], the velocity of the particles is updated using the Lévy flight. In [START_REF] Hariya | Lévy flight PSO[END_REF], the Lévy flight has been applied to the inertia coefficient of PSO. In [START_REF] Jana | Particle swarm optimization with Lévy flight and adaptive polynomial mutation in gbest particle[END_REF], the Lévy flight has been applied to a percentage of particles except the global best particle, which uses a polynomial mutation.

In the current proposed algorithm, at each iteration, L particles move using a Lévy flight:

1 Lévy( )

tt zz xx    (10) 
where

1 t z
x  is the new solution, z is the index of the particle travelling according to a Lévy flight (z=1,...,L),  is the step size scaling factor (it is advised to keep =1), and Lévy() is the Lévy distribution.

The approach proposed is called an Adaptive Particle Swarm Optimization (ADAP-PSO) and the baseline is:

Step 1: Input the parameters.

Step 2: Initialize particles.

Step 3: Evaluate the fitness of each particle of the swarm and handle the constraints.

Step 4: If the fitness value is better than the best fitness value (pbest) thus far, then, set the current value as the new pbest.

Step 5: Select the particle with the best fitness value of all the particles as the gbest.

Step 6: Move (ML) particles using the following equation:

1 1 1 2 2 ( ) ( ) t t t t t t j j j j j v v C pbest x C gbest x          ( 11 
)
where M is the number of particles in the swarm, L is the number of particles flying using a Lévy flight model, j is the index of the particle in the swarm (j=1,…,ML), 1 t j v  is the velocity at the (t+1)th iteration,  is the inertia weight (we use =0.5 as a medium value), C1 and C2

are acceleration constants (it is advised to keep C1=C2=2), 1 and 2 are random numbers uniformly distributed in [0,1], and t j x is the position of the particle.

Step 7: Move L particles with a Lévy flight.

Step 8: Update the position of the particles.

The position of the (ML) particles is updated using the following equation:

11 t t t j j j x x v   (12) 
Step 9: Repeat Steps 3 to 8 until the number of iterations is reached; then, display the optimal solutions.

The pseudo-code of the ADAP-PSO implemented is described in Algorithm 1 and its flowchart is represented in Figure 1, where M is the number of particles in the swarm, L is the is the number of particles flying using a Lévy flight model, NIter is the number of iterations. 

(1,…,4) is the vector of the penalty factor and =(1, 2, 3, 4) is the weight vector.

Algorithm 1 -Pseudo-code of the implemented ADAP-PSO.

1: Input the parameters: M, L, NIter, ϕ1, ϕ2, ϕ3, ϕ4, 1, 2, 3, 4.

2: Initialize particles.

3: While K≤NIter

4:

Evaluate the fitness according to Eq.( 8).

5:

Update pbest.

6:

Update gbest.

7:

Move (ML) particles using Eq.( 11).

8:

Move L particles using Eq.(10).

9:

Update position of the (ML) particles using Eq.( 12).

10: End While 11: Display the results.

Insert: Figure 1  Flowchart of the implemented ADAP-PSO.

The ADAP-PSO starts with random particles and the loop begins until the number of iterations has been reached. The loop evaluates the fitness value using Eq. ( 8) and both positions are updated (pbest and gbest). (ML) and L particles are moved by resorting to Eqs. [START_REF] Hsieh | Genetic algorithms for reliability design problems[END_REF] and [START_REF] Marseguerra | Basics of genetic algorithms optimization for RAMS applications[END_REF], respectively. At this stage, the overall solution is improved by updating the position of the (ML) particles using Eq. ( 12).

Numerical case studies

In this section, we present nine case studies for different system configurations.

Series system

Insert: Figure 2  Series system.

Insert: Table 1  Data used in series system and complex -bridge-system.

The multi-objective optimization problem of the series system represented in Figure 1 [START_REF] Hikita | Reliability optimization of systems by a surrogate-constraints algorithm[END_REF][START_REF] Mellal | A penalty guided stochastic fractal search approach for system reliability optimization[END_REF] is written as follows:
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The minimum allowable system reliability is 0.90 (Rmin=0.9). The data are reported in Table 1.

Series-parallel system

Insert: Figure 3  Series-parallel system.

Insert: Table 2  Data used in series-parallel system.

The series-parallel here considered (see Table 2 and Figure 3 [START_REF] Yeh | Solving reliability redundancy allocation problems using an artificial bee colony algorithm[END_REF]) is written as follows:
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where Rmin=0.9.

Complex (bridge) system

Insert: Figure 4  Complex (bridge) system.

Figure 4 shows the configuration of the complex (bridge) system [START_REF] Yeh | Solving reliability redundancy allocation problems using an artificial bee colony algorithm[END_REF]; the mathematical definition of the related multi-objective optimization problem is given as follows:
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where Rmin=0.9.

Overspeed protection system

Insert: Figure 5  Overspeed protection system.

Insert: Table 3  Data used in overspeed protection system.

The details of the overspeed protection system (see Figure 4 and Table 3) are given in [START_REF] Mellal | A penalty guided stochastic fractal search approach for system reliability optimization[END_REF].

The multi-objective optimization problem of this system can be written as follows:

  4 1 4 2 1 4 1 4 1 Maximize ( , ) 1 (1 ) Minimize ( ) Minimize ( , ) ( / ln ) exp( / 4) Minimize 
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)
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where Rmin=0.9999.

Complex bridge network system

Insert: Figure 6  Complex bridge network system.

Figure 6 shows the complex bridge network system [START_REF] Mellal | A penalty guided stochastic fractal search approach for system reliability optimization[END_REF]. The multi-objective problem can be written as follows: 4.6. Life-support system in a space capsule

The multi-objective optimization problem of the life-support system in a space capsule considered here gives rise to two cases, derived from the single-objective problem solved in [START_REF] Ravi | Nonequilibrium simulated-annealing algorithm applied to reliability\noptimization of complex systems[END_REF] (Case 1) and in [START_REF] Mellal | A penalty guided stochastic fractal search approach for system reliability optimization[END_REF][START_REF] Ravi | Nonequilibrium simulated-annealing algorithm applied to reliability\noptimization of complex systems[END_REF] (Case 2), respectively.

Case 1:

          2 2 1 2 3 4 3 1 4 3 2 1 4 4 1 2 3 4 1 Maximize ( , , , ) 1 1 1 1 1 1 1 1 Minimize ( , , , ) 2 i s si i i R r r r r r r r r r r r C r r r r K r                   (36) subject to 0.5 1, for 1, 2,3, 4 i ri    (37) 0.9 ( , ) 1 s R r n  ( 38 
)
where K1=K2=100, K3=200, K4=150, and i=0.6 i.

Case 2: 

          2 2 1 2 3 4 3 1 4 3 2 1 4 4 1 2 3 4 1 Maximize ( , , , ) 1 1 1 1 1 1 1 1 Minimize ( , , , ) tan 2 i s s i i i R r r r r r r r r r r r C r r r r K r               
where K1=K2=25, K3=50, K4=37.5, and , and i=1 i.

Large scale reliability-redundancy allocation problem

Insert: Table 4  Data used in large scale reliability-redundancy allocation problem.

Table 4 reports the data for the large scale reliability-redundancy allocation problem [START_REF] Mellal | A penalty guided stochastic fractal search approach for system reliability optimization[END_REF][START_REF] Zhang | IPSO-based hybrid approaches for reliabilityredundancy allocation problems[END_REF];

the multi-objective problem can be written as follows:

  

i i n si i s i i i s i i i i i s i i i i R r n r V n v n C r n T r n n W n w n n                     (42) subject to min ( , ) s R r n R  ( 43 
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where Rmin=0.88.

Pharmaceutical plant

Insert: Figure 7  Pharmaceutical plant.

Insert: Table 5  Data used in pharmaceutical plant.

The single-objective optimization problem of the pharmaceutical plant (see Figure 7 and Table 5) has been proposed in [START_REF] Garg | Reliability-redundancy allocation problem of pharmaceutical plant[END_REF] and solved in [START_REF] Mellal | A penalty guided stochastic fractal search approach for system reliability optimization[END_REF]. The multi-objective problem of this system can be written as follows:

  
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(51) 66 0.5 1 10 , 0,1 10 ; 1 5, ; 1,2,...,5
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where Rmin=0.95.

Results and discussion

The developed ADAP-PSO has been implemented using Matlab 2015 and run on a PC with the following specifics: Intel Pentium Processor G620, Sandy Bridge, 2.60GHz, 4GB of RAM, 3Mo Cache, Windows 7 -64 bits. A PSO has been run for the same problems, on the same computer. The number of particles in the swarm is 20 (M=20) for each algorithm and the number of particles flying according to a Lévy flight in the ADAP-PSO is 5 (L=5). For the series system, series-parallel system, complex bridge system, overspeed protection system, large scale reliability-redundancy allocation problem, and the pharmaceutical plant, the weights are equally fixed to 0.25 (a=0. 25, a=1,…,4) for Rs, Vs, Cs and Ws, respectively. For the complex bridge network and life-support system in a space capsule (cases 1 and 2), the value of  is 0.5 (1=2=0.5) for both Rs and Cs. We consider that there is no preference between the objectives, i.e., the weights are equal for each objective. However, the decision maker may change these values, according to her/his preferences on the targets. The values of the cost, weight and volume are assumed in arbitrary units.

Tables 614 report the results of PSO and ADAP-PSO for the numerical case studies illustrated in Section 4. The optimal solutions, the number of function evaluations (NFE) needed by each algorithm for converging to the optimal solutions, and the CPU time required are compared. The bold represents the best values.

Insert: Table 6  Results for the series system.

Insert: Table 7  Results for the series-parallel system.

From Table 6, it can be observed that the ADAP-PSO provides better results (Rs=0.91; Vs=73; Ws=164.99906) than the PSO (Rs=0.90924; Vs=88; Ws=189.42752). Also, the ADAP-PSO uses fewer function evaluations (600) for shorter CPU time (10.2 s) than the PSO (1000 and 25.8 s, respectively). Thus, the ADAP-PSO has outperformed the PSO in solving the multi-objective series system, despite that the PSO achieves a smaller system cost Cs. The results reported in Table 7 for the series-parallel system also reveal that the computations of the ADAP-PSO are better than those of the PSO, as discussed for the series system.

Insert: Table 8  Results for the complex (bridge) system.

In Table 8, the optimal results of the ADAP-PSO for the complex (bridge) system are: Rs=0.90011, Vs=15, Cs=49.14271 and Ws=62.88688, whereas those of the PSO are: Rs=0.90011, Vs=21, Cs=32.83563 and Ws=78.99422. Therefore, it can be observed that the values of Vs and Ws provided by the ADAP-PSO are better. Furthermore, the NFE and CPU time of the ADAP-PSO are smaller, i.e., (700, 13.1 s) vs. (1240, 32 s).

Insert: Table 9  Results for the overspeed protection system.

Insert: Table 10  Results for the complex bridge network system. Insert: Table 11  Results for the life-support system in a space capsule (Case 1).

Insert: Table 12  Results for the life-support system in a space capsule (Case 2).

Tables 9 and10 show that the values of Cs, NFE, and CPU time for the ADAP-PSO are smaller than those of the PSO for the overspeed protection system and the complex bridge network system, respectively. In Table 11, the results of the ADAP-PSO for the life-support system in a space capsule (Case 1) are: Rs=0.90111, Cs=642.34313, NFE=480 and CPU time=8.4 s, whereas those of the PSO are: Rs=0.9, Cs=647.78277, NFE=1080 and CPU time=24.6 s. It can be observed that the ADAP-PSO has again outperformed the PSO. For Case 2 (see Table 12), the ADAP-PSO has also outperformed the PSO, despite that the value Rs=0.99 is the same.

Insert: Table 13  Results for the large scale reliability-redundancy allocation problem.

Insert: Table 14  Results for the pharmaceutical plant.

In Table 13, the results for the large scale reliability-redundancy allocation problem, consisting of 40 mixed real-integer decision variables, show again that the ADAP-PSO is better than the PSO. The same is seen in Table 14 for the pharmaceutical plant. On the other hand, it can be observed that the standard deviations (SD) of the ADAP-PSO are smaller than those of the PSO. It reveals that the ADAP-PSO is more stable when solving the current problem. Finally, Figure 8 clearly shows that the PDP-PSO required the fewer number of function evaluations.

Conclusions

In this paper, we have proposed a novel solution method for the multi-objective system reliability optimization problem. An adaptive particle swarm optimization (ADAP-PSO) has been developed, based on the Lévy flight of some particles in the swarm at each search iteration for efficiently exploring the search space, ensuring the diversity, and avoiding local optima. The multi-objective problem has been converted to a single-objective problem by the weighted sum method and the constraints have been handled by a penalty function. Nine single-objective numerical case studies from the literature have been considered and solved with the proposed ADAP-PSO and the standard PSO. The results have been compared and the ADAP-PSO has outperformed the simple PSO in terms of fitness values, number of function evaluations and CPU time. In our future works we intend to investigate complex industrial problems to show the practical value of the approach.
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	Table

Table 1 -

 1 Data used in series system and complex (bridge) system.

	Subsystem i	10 5 αi	βi	vi	wi	V	C	W	T (h)
	1	2.330	1.5	1	7	110	175	200	1000
	2	1.450	1.5	2	8				
	3	0.541	1.5	3	8				
	4	8.050	1.5	4	6				
	5	1.950	1.5	2	9				

Table 2 -

 2 Data used in series-parallel system.

	Subsystem i	10 5 αi	βi	vi	wi	V	C	W	T (h)
	1	2.500	1.5	2	3.5	180	175	100	1000
	2	1.450	1.5	4	4				
	3	0.541	1.5	5	4				
	4	0.541	1.5	8	3.5				
	5	2.100	1.5	4	4.5				

Table 3 -

 3 Data used in overspeed protection system.

	Subsystem i	10 5 αi	βi	vi	wi	V	C	W	T (h)
	1	1.0	1.5	1	6	250	400	500	1000
	2	2.3	1.5	2	6				
	3	0.3	1.5	3	8				
	4	2.3	1.5	2	7				

Table 4 -

 4 Data used in large scale reliability-redundancy allocation problem.

	Subsystem i	10 5 αi	βi	vi	wi	V	C	W	T (h)
	1	0.6	1.5	2	8	600	700	900	1000
	2	0.1	1.5	5	9				
	3	1.2	1.5	5	6				
	4	0.3	1.5	4	10				
	5	2.9	1.5	4	8				
	6	1.7	1.5	1	9				
	7	2.6	1.5	1	9				
	8	2.5	1.5	4	7				
	9	1.3	1.5	4	9				
	10	1.8	1.5	3	8				
	11	2.4	1.5	3	9				
	12	1.3	1.5	1	8				
	13	1.2	1.5	1	7				
	14	2.1	1.5	3	10				
	15	0.9	1.5	4	6				
	16	1.3	1.5	5	7				
	17	1.9	1.5	1	7				
	18	2.7	1.5	4	8				
	19	2.8	1.5	2	9				
	20	1.5	1.5	1	9				

Table 5 -

 5 Data used in pharmaceutical plant.

	Subsystem i	10 5 αi	βi	vi	wi	V	C	W	T (h)
	1	0.611360 1.5	4	9	289	553	483	1000
	2	4.032464 1.5	5	7				
	3	3.578225 1.5	3	5				
	4	3.654303 1.5	2	9				
	5	1.163718 1.5	3	9				
	6	2.966955 1.5	4	10				
	7	2.045865 1.5	1	6				
	8	2.649522 1.5	1	5				
	9	1.982908 1.5	4	8				
	10	3.516724 1.5	4	6				

Table 6 

 6 Results for the series system.

	Method	(n1, n2, n3, n4, n5)	(r1, r2, r3, r4, r5)	Rs	Vs	Cs	Ws	NFE	CPU (s)	SD
	ADAP-PSO (3, 2, 2, 3, 2)	(0.76606, 0.86232, 0.89586, 0.69454,	0.91000 73	167.75780 164.99906 600	10.2	3.7E08
			0.85095)							
	PSO	(3, 2, 3, 3, 2)	(0.76226, 0.85684,	0.90924 88	153.71193 189.42752 1000	25.8	5.1E03
			0.82116, 0.68724,							
			0.84569)							

Table 7 

 7 Results for the series-parallel system.

	Method	(n1, n2, n3, n4, n5) (r1, r2, r3, r4, r5)	Rs	Vs	Cs	Ws	NFE	CPU (s) SD
	ADAP-PSO (1, 1, 1, 1, 1)	(0.73520, 0.77132, 0.79152,	0.90927 23	43.61613	25.03849	640	11.6	4.8E08
			0.79278, 0.82612)						
	PSO	(2, 1, 1, 1, 1)	(0.63311, 0.78775, 0.75261, 0.75100, 0.76100)	0.90900 29	34.07636	32.08545	1100	29.3	2.9E02

Table 8 

 8 Results for the complex (bridge) system.

	Method	(n1, n2, n3, n4, n5) (r1, r2, r3, r4, r5)	Rs	Vs	Cs	Ws	NFE	CPU (s) SD
	ADAP-PSO (2, 1, 1, 1, 1)	(0.68488, 0.84998, 0.81378, 0.57235,	0.90011 15	49.14271	62.88688 700	13.1	1.6E11
			0.57923)					
	PSO	(2, 2, 1, 1, 1)	(0.63609, 0.71268,	0.90011 21	32.83563	78.99422 1240	32	2.7E05
			0.73690, 0.51368,					
			0.50591)					

Table 9 

 9 Results for the overspeed protection system.

	Method	(n1, n2, n3, n4) (r1, r2, r3, r4)	Rs	Vs	Cs	Ws	NFE	CPU (s) SD
	ADAP-PSO (5, 5, 4, 5)	(0.89134, 0.87504, 0.93966, 0.87255)	0.99990 173	359.15906	418.56759	660	12.6	3.9E12
	PSO	(5, 5, 4, 5)	(0.89040, 0.87481, 0.94066, 0.87457)	0.99990 173	362.11345	418.56759	1460	35.8	4.1E04

Table 10 

 10 Results for the complex bridge network system.

	Method	(r1, r2, r3, r4, r5)	Rs	Cs	NFE	CPU (s)	SD
	ADAP-PSO (0.93625, 0.93625, 0.79463, 0.93625, 0.93625)	0.99042	5.02032	800	14.7	1.3E10
	PSO	(0.93625, 0.93626, 0.79461, 0.93625, 0.93625)	0.99042	5.02033	1680	40.2	2.7E06

Table 11 

 11 Results for the life-support system in a space capsule (Case 1).

	Method	(r1, r2, r3, r4, r5)	Rs	Cs	NFE	CPU (s)	SD
	ADAP-PSO (0.5, 0.84296, 0.5, 0.5)	0.90111	642.34313	480	8.4	6.4E08
	PSO	(0.5, 0.5, 0.88572, 0.5)	0.90000	647.78277	1080	24.6	5.1E05

Table 12 

 12 Results for the life-support system in a space capsule (Case 2).

	Method	(r1, r2, r3, r4, r5)	Rs	Cs	NFE	CPU (s) SD
	ADAP-PSO (0.82543, 0.89022, 0.62715, 0.72922)	0.99000	390.57229	540	9.6	2.7E08
	PSO	(0.82515, 0.89022, 0.62832, 0.72885)	0.99000	390.59632	1380	30.1	8.3E05

Table 14 

 14 Results for the pharmaceutical plant.

	Method	(n1,n2,n3,n4,n5,n6,n7,n8,n9,n10) (r1,r2,r3,r4,r5,r6,r7,r8,r9,r10)	Rs	Vs	Cs	Ws	NFE	CPU (s) SD
	ADAP-PSO (2, 3, 3, 3, 3, 3, 3, 4, 3, 3)	(0.92469, 0.80899, 0.80789, 0.82220, 0.85845, 0.81766,	0.95015 266 507.81054 439.69862 1540	29.3	4.9E10
			0.84563, 0.76321, 0.84496,					
			0.81642)					
	PSO	(3, 3, 3, 3, 3, 3, 3, 3, 3, 3)	(0.89017, 0.81901, 0.83056, 0.82097, 0.83260, 0.81388,	0.95018 279 509. 17010 444.57000 3440	65.8	7.2E06
			0.80819, 0.83819, 0.83303,					
			0.81810)