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Abstract   

Multi-objective system reliability optimization has attracted the attention of several 

researchers, due to its importance in industry. In practice, the optimization regards multiple 

objectives, e.g., maximize the reliability, minimize the cost, weight and volume. In this paper, 

an adaptive particle swarm optimization (ADAP-PSO) is presented for multi-objective system 

reliability optimization. The approach uses a Lévy flight for some particles of the swarm, for 

avoiding local optima and insuring diversity in the exploration of the search space. The                

multi-objective problem is converted to a single-objective problem by resorting to the 

weighted-sum method and a penalty function is implemented to handle the constraints. Nine 

numerical case studies are presented as benchmark problems for comparison; the results show 

that the proposed approach has superior performance than a standard PSO.  

Keywords: Multi-objective optimization; Reliability-redundancy optimization; Adaptive 

particle swarm optimization (ADAP-PSO). 

Notations 

Rs system reliability. 

Qs =1Rs, system unreliability (failure probability).
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m number of subsystems in the system.  

ri reliability of each component in subsystem i, 1≤i≤m. 

r =(r1, r2,…, rm), vector of component reliabilities for the system. 

ni number of components in subsystem i, 1≤i≤m. 

n =(n1, n2,…, nm), vector of redundancy allocation for the system. 

Ri 1 (1 ) in
ir   , reliability of the ith subsystem, 1≤i≤m. 

ni, max maximum number of components in subsystem i, 1≤i≤m. 

M number of constraints. 

gj jth constraint function, j=1,…, M. 

C(ri) ( / ln ) i
i iT r

  , cost of each component with reliability ri in             

subsystem i, 1≤i≤m.
 

T operating time during which the component must not fail (mission time). 

wi weight of each component in subsystem i, 1≤i≤m. 

vi volume of each component in subsystem i, 1≤i≤m. 

βi, αi parameters (shaping and scaling factors, respectively) of each component 

at subsystem i, 1≤i≤m. 

W, C upper limits on the weight and cost of the system, respectively. 

V upper limit on the sum of the subsystems’ products of volume and weight. 

Ws, Cs weight and cost of the system, respectively. 

Vs,  sum of the subsystems’ products of volume and weight. 

exp(ni/4) term accounting the interconnecting hardware.   

1. Introduction  

System reliability optimization aims at having in each subsystem, an optimal number of 

allocated redundant components, or allocated reliabilities, or both. The goal is to maximize 

the overall system reliability, subject to the limits of cost, weight and volume [1]. The 

problem may be single-objective or multi-objective (i.e., only one objective is considered or 

multiple objectives, under design constraints), according to the goal of the application. 

The redundancy allocation problem involves integer variables and the reliability allocation 

problem involves real variables; then, the reliability-redundancy allocation problem is mixed. 

Various methods have been proposed for solving reliability optimization problems (ROPs). 

These methods may be divided into two main categories [1,2]: mathematical programming 

(exact, such as Branch & Bound [3], dynamic programming [4], surrogate constraint [5], 
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branch-and-cut algorithm [6] and approximation, such as linear programming [7], mixed 

integer linear programming [8]), heuristic [9] and metaheuristic methods, such as genetic 

algorithms [10–13], artificial bee colony [14], particle swarm optimization [15], cuckoo 

search [16], and penalty-guided stochastic fractal search [17]. The genetic algorithms have 

been successfully implemented for multi-objective RAMS  (reliability, availability, 

maintainability and safety) [11] and condition-based maintenance [18] optimization problems. 

In particular, the metaheuristics, often called artificial intelligence methods or intelligent 

computation, have proven their effectiveness in solving reliability optimization problems for 

realistic systems and are currently considered the most promising solution methods. They are 

able to find optimal solutions in reasonable CPU time [19,20]. Zhang et al. [21] combined the 

bare-bones particle swarm optimization with the sensitivity-based clustering (BBMOPSO). 

The system reliability, cost and weighted have been generated in the Pareto front. Fang et al. 

[22] used the nondominated sorting binary differential evolution (NSBDE) algorithm to 

optimize the system resilience and cost. Kong et al. [23] used a simplified version of particle 

swarm optimization (SPSO) to optimize the system reliability with multiple strategy choices. 

Abouei [24] implemented a modified version of the GA (MVGA) by considering the standby 

strategy in the optimization of the system reliability. Recently, the system availability of a 

parallel-series system has been optimizing by resorting to the genetic algorithm (GA), 

differential evolution (DE), particle swarm optimization (PSO), cuckoo optimization 

algorithm (COA), and flower pollination algorithm (FPA) [25]. In [26,27], the authors used 

the nondominated sorting genetic algorithm II (NSGA-II) to optimize the system reliability 

and cost as both objectives. 

Dealing with both objectives of design is a great challenge for the decision maker. On the 

other hand, most of the previous approaches are limited and need to be more efficient in the 

search for optimal solutions. The goal of this paper is to propose a novel solution approach 
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based on an adaptive particle swarm optimization (ADAP-PSO), for solving the multi-

objective system reliability optimization problem. The multi-objective problem is converted 

to a single-objective by using the weighted-sum method [28]. The remainder of the paper is 

organized as follows: Section 2 presents the multi-objective system reliability optimization 

problem and mentions various techniques for its solution. Section 3 describes the adaptive 

particle swarm optimization implemented. Nine numerical case studies of systems with 

various subsystems’ configurations are presented in Section 4. Results and discussion are 

given in Section 5. Finally, the last Section concludes this paper with some remarks.  

2. Multi-objective system reliability optimization 

The general mathematical multi-objective system reliability optimization is written as 

follows: 

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

Maximize ( , ) ( , ,..., ; , ,..., )

Minimize ( , ) ( , ,..., ; , ,..., )

Minimize ( , ) ( , ,..., ; , ,..., )

Minimize ( , ) ( , ,..., ; , ,..., )

s s m m

s s m m

s s m m

s s m m

R r n R r r r n n n

V r n V r r r n n n

C r n C r r r n n n

W r n W r r r n n n









                              (1) 

 

subject to 

min( , )sR r n R                                                       (2) 

max( , )sV r n V                                                       (3) 

max( , )sC r n C                                                       (4) 

max( , )sW r n W                                                       (5) 

 

,max0.5 1; 1 , 1, 2,..., ;

0.5,1 ;

i i i

i i

r n n i m

r n 

    

  
                                (6) 

where Rs(•) is the overall system reliability, Rmin is its minimum allowable value, Vs(•) is the 

sum of the subsystems’ products of volume and weight, Vmax is its upper limit, Cs(•) is the 

system cost, Cmax is its upper limit, Ws(•) is the system weight and Wmax is its upper limit; ri 
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and ni are the reliability and the number of redundant components in the ith subsystem, 

respectively, and m is the number of subsystems in the system. 

The methods for solving the multi-objective optimization problems are diverse and can be 

classified in three main categories: 

 Weighted-sum method by assigning weights to each function in order to convert the 

multi-objective problem to a single-objective problem [28]. 

 Optimize one objective and include the other objectives as constraints [29]. 

 Generate and analyse the set of Pareto optimal solutions [11,30]. 

In this paper, the weighted-sum method is implemented to solve the multi-objective system 

reliability optimization problem. The objective functions of Eq.(1) are converted to a                

single-objective function as follows:   

1 2 3 4Minimize ( , ) s s s sf r n Q V C W                                     (7) 

where Qs is the unreliability (failure probability) of the system (Qs=1Rs) and =(1, 2, 3, 

4) is the weight vector, such that 
4

1
1.aa




  The values of i depend on the targets of the 

decision maker. 

3. Adaptive particle swarm optimization  

The particle swarm optimization (PSO) has been proposed by Kennedy and Eberhart [31]. It 

is inspired by the movement mode of swarms in nature, such as birds and fishes. The 

comprehensive concepts of PSO can be referred to [31,32,20,33]. In this paper, some particles 

fly using a Lévy flight for diversification and finding the best solutions by exploring the 

search space of the multi-objective system reliability optimization problem. The objectives 

are normalized in a single-objective by resorting to the weighted-sum method described in 

Eq.(7). Furthermore, a penalty function is used to handle the constraints.  
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The fitness value of each particle is evaluated after handling the constraints by adding 

penalty terms to Eq.(7): 

Fitness value = ( , ) ( , )f r n r n                                                     (8) 

where ψ(r1, r2,…, rm, n1, n2, …, nm) is the penalty function. 

The penalty function is computed as follows [17,34]: 

2 2
1 2 1 2 1 2

2 2
3 4

( , ,..., , , ,..., ) max(0, ( , )) max(0, ( ))

max(0, ( , )) max(0, ( ))

m m s s

s s

r r r n n n R r n V n

C r n W n

  

 

   

   
     (9) 

where l (l=1,…,4) is the penalty factor. If the operand is negative, then, the absolute value is 

taken; otherwise, it is set to zero. The vector of the variables for the redundancy numbers is 

rounded to the nearest positive integer value before evaluating the fitness. 

In practice, some particles in a swarm may fly a bit farther than the majority of particles 

and their position could be more interesting to explore for finding food and habitat. These 

particles, then, perform a random walk, using the Lévy flight, as done in the cuckoo              

search (CS) algorithm in the successive search iterations for finding new solutions to the 

optimization problem [35–37]. Some authors have tried to combine the principles of PSO and 

CS for solving optimization problems. In [38], each particle has a limit value of the solution 

and in case that the particle is unable to improve this solution, then, this value is increased; on 

the contrary, if this limit has been exceeded, then, the particle performs a Lévy flight into the 

search space. In [39], the velocity of the particles is updated using the Lévy flight. In [40], the 

Lévy flight has been applied to the inertia coefficient of PSO. In [41], the Lévy flight has been 

applied to a percentage of particles except the global best particle, which uses a polynomial 

mutation. 

In the current proposed algorithm, at each iteration, L particles move using a Lévy flight: 

    
1 Lévy( )t t

z zx x                                                                  (10) 
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where 1t
zx   is the new solution, z is the index of the particle travelling according to a Lévy 

flight (z=1,...,L),  is the step size scaling factor (it is advised to keep =1), and Lévy() is the 

Lévy distribution. 

 The approach proposed is called an Adaptive Particle Swarm Optimization (ADAP-PSO) 

and the baseline is: 

Step 1: Input the parameters. 

Step 2: Initialize particles. 

Step 3: Evaluate the fitness of each particle of the swarm and handle the constraints. 

Step 4: If the fitness value is better than the best fitness value (pbest) thus far, then, set the 

current value as the new pbest. 

Step 5: Select the particle with the best fitness value of all the particles as the gbest. 

Step 6: Move (ML) particles using the following equation: 

1
1 1 2 2( ) ( )t t t t t t

j j j j jv v C pbest x C gbest x                                (11) 

where M is the number of particles in the swarm, L is the number of particles flying using a 

Lévy flight model, j is the index of the particle in the swarm (j=1,…,ML), 
1t

jv 
is the velocity 

at the (t+1)th iteration,  is the inertia weight (we use =0.5 as a medium value), C1 and C2 

are acceleration constants (it is advised to keep C1=C2=2), 1 and 2 are random numbers 

uniformly distributed in [0,1], and 
t
jx  is the position of the particle. 

Step 7: Move L particles with a Lévy flight. 

Step 8: Update the position of the particles. 

The position of the (ML) particles is updated using the following equation: 

1 1t t t
j j jx x v                                                               (12) 
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Step 9: Repeat Steps 3 to 8 until the number of iterations is reached; then, display the 

optimal solutions. 

The pseudo-code of the ADAP-PSO implemented is described in Algorithm 1 and its 

flowchart is represented in Figure 1, where M is the number of particles in the swarm, L is the 

is the number of particles flying using a Lévy flight model, NIter is the number of iterations.  

(1,…,4) is the vector of the penalty factor and =(1, 2, 3, 4) is the weight vector.    

Algorithm 1 – Pseudo-code of the implemented ADAP-PSO. 

1:  Input the parameters: M, L, NIter, ϕ1, ϕ2, ϕ3, ϕ4, 1, 2, 3, 4. 

2:  Initialize particles.  

3:  While K≤NIter 

4:        Evaluate the fitness according to Eq.(8). 

5:        Update pbest. 

6:        Update gbest. 

7:        Move (ML) particles using Eq.(11). 

8:        Move L particles using Eq.(10). 

9:        Update position of the (ML) particles using Eq.(12). 

10:  End While 

11:  Display the results. 

Insert: Figure 1  Flowchart of the implemented ADAP-PSO. 

The ADAP-PSO starts with random particles and the loop begins until the number of 

iterations has been reached. The loop evaluates the fitness value using Eq. (8) and both 

positions are updated (pbest and gbest). (ML) and L particles are moved by resorting to            

Eqs. (10) and (11), respectively. At this stage, the overall solution is improved by updating the 

position of the (ML) particles using Eq. (12). 

4. Numerical case studies 

In this section, we present nine case studies for different system configurations. 



9 
 

4.1. Series system 

Insert: Figure 2  Series system. 

Insert: Table 1  Data used in series system and complex -bridge- system. 

The multi-objective optimization problem of the series system represented in Figure 1 [5,17] 

is written as follows: 

 

5

1

5
2

1

5

1

5

1

Maximize ( , ) 1 (1 )

Minimize ( )

Minimize ( , ) ( / ln ) exp( / 4)

Minimize ( ) exp( / 4)

i

i

n
s i

i

s i i

i

s i i i i

i

s i i i

i

R r n r

V n v n

C r n T r n n

W n w n n











   
 



  











                           (13) 

subject to 

min( , )sR r n R                                                          (14) 

max( )sV n V                                                          (15) 

max( , )sC r n C                                                         (16) 

max( )sW n W                                                          (17) 

                         

 0.5 1, 0.5,1 ; 1 5, ; 1,2,...,5i i i ir r n n i          

The minimum allowable system reliability is 0.90 (Rmin=0.9). The data are reported            

in Table 1. 

4.2. Series-parallel system 

Insert: Figure 3  Series–parallel system. 

Insert: Table 2  Data used in series-parallel system. 

 

The series-parallel here considered (see Table 2 and Figure 3 [14])  is written as follows:  
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   

 

1 2 3 4 3 4 5

5
2

1

5

1

5

1

Maximize ( , ) 1 1 1

Minimize ( )

Minimize ( , ) ( / ln ) exp( / 4)

Minimize ( ) exp( / 4)

i

s

s i i

i

s i i i i

i

s i i i

i

R r n R R R R R R R

V n v n

C r n T r n n

W n w n n









       



  









         (18) 

subject to 

min( , )sR r n R                                                                   (19) 

max( )sV n V                                                                    (20) 

max( , )sC r n C                                                                 (21) 

max( )sW n W                                                                 (22) 

                         

 0.5 1, 0.5,1 ; 1 5, ; 1,2,...,5i i i ir r n n i          

where Rmin=0.9. 

4.3. Complex (bridge) system 

Insert: Figure 4  Complex (bridge) system. 

Figure 4 shows the configuration of the complex (bridge) system [14]; the mathematical 

definition of the related multi-objective optimization problem is given as follows: 

      

 

5 1 3 2 4 5 1 2 3 4

5
2

1

5

1

5

1

Maximize ( , ) 1 1 1 1 1

Minimize ( )

Minimize ( , ) ( / ln ) exp( / 4)

Minimize ( ) exp( / 4)

i

s

s i i

i

s i i i i

i

s i i i

i

R r n R Q Q Q Q Q R R R R

V n v n

C r n T r n n

W n w n n









        



  









   (23) 

subject to 

min( , )sR r n R                                                                  (24) 

max( )sV n V                                                                    (25) 

max( , )sC r n C                                                                 (26) 
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max( )sW n W                                                                 (27) 

                         

 0.5 1, 0.5,1 ; 1 5, ; 1,2,...,5i i i ir r n n i          

where Rmin=0.9. 

4.4. Overspeed protection system 

Insert: Figure 5  Overspeed protection system. 

Insert: Table 3  Data used in overspeed protection system. 

The details of the overspeed protection system (see Figure 4 and Table 3) are given in [17]. 

The multi-objective optimization problem of this system can be written as follows: 

 

4

1

4
2

1

4

1

4

1

Maximize ( , ) 1 (1 )

Minimize ( )

Minimize ( , ) ( / ln ) exp( / 4)

Minimize ( ) exp( / 4)

i

i

n
s i

i

s i i

i

s i i i i

i

s i i i

i

R r n r

V n v n

C r n T r n n

W n w n n











   
 



  











           (28) 

subject to 

min( , )sR r n R                                                                  (29) 

max( )sV n V                                                                  (30) 

max( , )sC r n C                                                                 (31) 

max( )sW n W                                                                 (32) 

 0.5 1, 0.5,1 ; 1 10, ; 1,2,..., 4i i i ir r n n i          

where Rmin=0.9999. 

4.5. Complex bridge network system  

Insert: Figure 6  Complex bridge network system. 

Figure 6 shows the complex bridge network system [17]. The multi-objective problem can be 

written as follows: 
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1 2 3 4 5 1 4 2 5 2 3 4 1 3 5 1 2 3 4 5

2 3 4 5 1 3 4 5 1 2 4 5 1 2 3 5 1 2 3 4

5

1 2 3 4 5

1

Maximize ( , , , , ) 2

Minimize ( , , , , ) exp
1

s

i
s i

ii

R r r r r r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r r r r r r

b
C r r r r r a

r

    

    

 
  

 


            (33) 

                             

subject to 

0.5 1, for 1,2,3,4,5ir i                                                      (34) 

0.99 1sR                                                            (35) 

where 1, 0.0003,i ia b i   . 

4.6. Life-support system in a space capsule 

The multi-objective optimization problem of the life-support system in a space capsule 

considered here gives rise to two cases, derived from the single-objective problem solved           

in [42] (Case 1) and in [17,42] (Case 2), respectively. 

Case 1:  

        
22

1 2 3 4 3 1 4 3 2 1 4

4

1 2 3 4

1

Maximize ( , , , ) 1 1 1 1 1 1 1 1

Minimize ( , , , ) 2 i

s

s i i

i

R r r r r r r r r r r r

C r r r r K r




              

 
  (36) 

subject to 

0.5 1, for 1,2,3,4ir i                                               (37) 

0.9 ( , ) 1sR r n                                                            (38) 

where K1=K2=100, K3=200, K4=150, and i=0.6 i. 

Case 2: 

         
22

1 2 3 4 3 1 4 3 2 1 4

4

1 2 3 4

1

Maximize ( , , , ) 1 1 1 1 1 1 1 1

Minimize ( , , , ) tan
2

i

s

s i i

i

R r r r r r r r r r r r

C r r r r K r






              

  
   

  


   (39) 

 
0.5 1, for 1,2,3,4ir i                                                   (40) 

0.99 ( ) 1sR r                                                            (41) 
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where K1=K2=25, K3=50, K4=37.5, and , and i=1 i. 

4.7. Large scale reliability-redundancy allocation problem 

Insert: Table 4  Data used in large scale reliability-redundancy allocation problem. 

Table 4   reports the data for the large scale reliability-redundancy allocation problem [17,43]; 

the multi-objective problem can be written as follows: 

 

 

20

1

20
2

1

20

1

20

1

Maximize ( , ) 1 (1 )

Minimize ( )

Minimize ( , ) ( / ln ) exp( / 4)

Minimize ( ) exp( / 4)

i

i

n
s i

i

s i i

i

s i i i i

i

s i i i

i

R r n r

V n v n

C r n T r n n

W n w n n











   
 



  











                           (42) 

 

 

subject to 

min( , )sR r n R                                                          (43) 

max( )sV n V                                                             (44) 

max( , )sC r n C                                                        (45) 

max( )sW n W                                                         (46) 

                         

 0.5 1, 0.5,1 ; 1 10, ; 1,2,..., 20i i i ir r n n i          

where Rmin=0.88. 

4.8. Pharmaceutical plant 

Insert: Figure 7  Pharmaceutical plant. 

Insert: Table 5  Data used in pharmaceutical plant. 
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The single-objective optimization problem of the pharmaceutical plant (see Figure 7 and 

Table 5)  has been proposed in [44] and solved in [17]. The multi-objective problem of this 

system can be written as follows: 

 

10

1

5
2

1

5

1

5

1

Maximize ( , ) 1 (1 )

Minimize ( )

Minimize ( , ) ( / ln ) exp( / 4)

Minimize ( ) exp( / 4)

i

i

n
s i

i

s i i

i

s i i i i

i

s i i i

i

R r n r

V n v n

C r n T r n n

W n w n n











   
 



  











                              (47) 

subject to 

min( , )sR r n R                                                             (48) 

max( )sV n V                                                              (49) 

max( , )sC r n C                                                             (50) 

max( )sW n W                                                              (51) 

                         

6 60.5 1 10 , 0,1 10 ; 1 5, ; 1,2,...,5i i i ir r n n i             
   

where Rmin=0.95. 

5. Results and discussion 

The developed ADAP-PSO has been implemented using Matlab 2015 and run on a PC with 

the following specifics: Intel Pentium Processor G620, Sandy Bridge, 2.60GHz, 4GB of 

RAM, 3Mo Cache, Windows 7 - 64 bits. A PSO has been run for the same problems, on the 

same computer. The number of particles in the swarm is 20 (M=20) for each algorithm and 

the number of particles flying according to a Lévy flight in the ADAP-PSO is 5 (L=5). For the 

series system, series-parallel system, complex bridge system, overspeed protection system, 

large scale reliability-redundancy allocation problem, and the pharmaceutical plant, the 
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weights are equally fixed to 0.25 (a=0.25, a=1,…,4) for Rs, Vs, Cs and Ws, respectively. For 

the complex bridge network and life-support system in a space capsule (cases 1 and 2), the 

value of  is 0.5 (1=2=0.5) for both Rs and Cs. We consider that there is no preference 

between the objectives, i.e., the weights are equal for each objective. However, the decision 

maker may change these values, according to her/his preferences on the targets. The values of 

the cost, weight and volume are assumed in arbitrary units. 

Tables 614 report the results of PSO and ADAP-PSO for the numerical case studies 

illustrated in Section 4. The optimal solutions, the number of function evaluations (NFE) 

needed by each algorithm for converging to the optimal solutions, and the CPU time required 

are compared. The bold represents the best values. 

Insert: Table 6  Results for the series system. 

Insert: Table 7  Results for the series-parallel system. 

From Table 6, it can be observed that the ADAP-PSO provides better results (Rs=0.91; 

Vs=73; Ws=164.99906) than the PSO (Rs=0.90924; Vs=88; Ws=189.42752). Also, the              

ADAP-PSO uses fewer function evaluations (600) for shorter CPU time (10.2 s) than the PSO 

(1000 and 25.8 s, respectively). Thus, the ADAP-PSO has outperformed the PSO in solving 

the multi-objective series system, despite that the PSO achieves a smaller system cost Cs. The 

results reported in Table 7 for the series-parallel system also reveal that the computations of 

the ADAP-PSO are better than those of the PSO, as discussed for the series system. 

Insert: Table 8  Results for the complex (bridge) system. 

In Table 8, the optimal results of the ADAP-PSO for the complex (bridge) system are: 

Rs=0.90011, Vs=15, Cs=49.14271 and Ws=62.88688, whereas those of the PSO are: 

Rs=0.90011, Vs=21, Cs=32.83563 and Ws=78.99422. Therefore, it can be observed that the 
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values of Vs and Ws provided by the ADAP-PSO are better. Furthermore, the NFE and CPU 

time of the ADAP-PSO are smaller, i.e., (700, 13.1 s) vs. (1240, 32 s). 

Insert: Table 9  Results for the overspeed protection system. 

Insert: Table 10  Results for the complex bridge network system. 

Insert: Table 11  Results for the life-support system in a space capsule (Case 1). 

Insert: Table 12  Results for the life-support system in a space capsule (Case 2). 

Tables 9 and 10 show that the values of Cs, NFE, and CPU time for the ADAP-PSO are 

smaller than those of the PSO for the overspeed protection system and the complex bridge 

network system, respectively. In Table 11, the results of the ADAP-PSO for the life-support 

system in a space capsule (Case 1) are: Rs=0.90111, Cs=642.34313, NFE=480 and CPU 

time=8.4 s, whereas those of the PSO are: Rs=0.9, Cs=647.78277, NFE=1080 and CPU 

time=24.6 s. It can be observed that the ADAP-PSO has again outperformed the PSO. For 

Case 2 (see Table 12), the ADAP-PSO has also outperformed the PSO, despite that the value 

Rs=0.99 is the same. 

Insert: Table 13  Results for the large scale reliability-redundancy allocation problem. 

Insert: Table 14  Results for the pharmaceutical plant. 

In Table 13, the results for the large scale reliability-redundancy allocation problem, 

consisting of 40 mixed real-integer decision variables, show again that the ADAP-PSO is 

better than the PSO. The same is seen in Table 14 for the pharmaceutical plant. On the other 

hand, it can be observed that the standard deviations (SD) of the ADAP-PSO are smaller than 

those of the PSO. It reveals that the ADAP-PSO is more stable when solving the current 

problem. Finally, Figure 8 clearly shows that the PDP-PSO required the fewer number of 

function evaluations.  
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6. Conclusions 

In this paper, we have proposed a novel solution method for the multi-objective system 

reliability optimization problem. An adaptive particle swarm optimization (ADAP-PSO) has 

been developed, based on the Lévy flight of some particles in the swarm at each search 

iteration for efficiently exploring the search space, ensuring the diversity, and avoiding local 

optima. The multi-objective problem has been converted to a single-objective problem by the 

weighted sum method and the constraints have been handled by a penalty function.  

Nine single-objective numerical case studies from the literature have been considered and 

solved with the proposed ADAP-PSO and the standard PSO. The results have been compared 

and the ADAP-PSO has outperformed the simple PSO in terms of fitness values, number of 

function evaluations and CPU time. In our future works we intend to investigate complex 

industrial problems to show the practical value of the approach. 
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Table captions 

Table 1 – Data used in series system and complex -bridge- system. 

Table 2 – Data used in series-parallel system. 

Table 3 – Data used in overspeed protection system. 

Table 4 – Data used in large scale reliability–redundancy allocation problem. 

Table 5 – Data used in pharmaceutical plant. 

Table 6 – Results for the series system. 

Table 7 – Results for the series-parallel system. 

Table 8 – Results for the complex (bridge) system. 

Table 9 – Results for the overspeed protection system. 

Table 10 – Results for the complex bridge network system. 

Table 11 – Results for the life-support system in a space capsule (Case 1). 

Table 12 – Results for the life-support system in a space capsule (Case 2). 

Table 13 – Results for the large scale reliability-redundancy allocation problem. 

Table 14 – Results for the pharmaceutical plant. 

Figure captions 

Figure 1 – Flowchart of the implemented ADAP-PSO. 

Figure 2 – Series system. 

Figure 3 – Series-parallel system. 

Figure 4 – Complex (bridge) system. 

Figure 5 – Overspeed protection system. 

Figure 6 – Complex bridge network system. 

Figure 7 – Pharmaceutical plant. 

 

 

 

 

 

 

 

 

 

 

 



22 
 

 

 

Table 1 – Data used in series system and complex (bridge) system. 

Subsystem i 105αi βi vi wi V C W T (h) 

1 2.330 1.5 1 7 110 175 200 1000 

2 1.450 1.5 2 8  

3 0.541 1.5 3 8 

4 8.050 1.5 4 6 

5 1.950 1.5 2 9 

 

 

 

 

 

 

Table 2 – Data used in series-parallel system. 

Subsystem i 105αi βi vi wi V C W T (h) 

1 2.500 1.5 2 3.5 180 175 100 1000 

2 1.450 1.5 4 4  

3 0.541 1.5 5 4 

4 0.541 1.5 8 3.5 

5 2.100 1.5 4 4.5 

 

 

 

 

 

 

Table 3 – Data used in overspeed protection system. 

Subsystem i 105αi βi vi wi V C W T (h) 

1 1.0 1.5 1 6 250 400 500 1000 

2 2.3 1.5 2 6  

3 0.3 1.5 3 8 

4 2.3 1.5 2 7 
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Table 4 – Data used in large scale reliability-redundancy allocation problem. 

Subsystem i 105αi βi vi wi V C W T (h) 

1 0.6 1.5 2 8 600 700 900 1000 

2 0.1 1.5 5 9 
 

3 1.2 1.5 5 6 

4 0.3 1.5 4 10 

5 2.9 1.5 4 8 

6 1.7 1.5 1 9 

7 2.6 1.5 1 9 

8 2.5 1.5 4 7 

9 1.3 1.5 4 9 

10 1.8 1.5 3 8 

11 2.4 1.5 3 9 
 

12 1.3 1.5 1 8 

13 1.2 1.5 1 7 

14 2.1 1.5 3 10 

15 0.9 1.5 4 6 

16 1.3 1.5 5 7 

17 1.9 1.5 1 7 
 

18 2.7 1.5 4 8 

19 2.8 1.5 2 9 

20 1.5 1.5 1 9 

 

Table 5 – Data used in pharmaceutical plant. 

Subsystem i 105αi βi vi wi V C W T (h) 

1 0.611360 1.5 4 9 289 553 483 1000 

2 4.032464 1.5 5 7 
 

3 3.578225 1.5 3 5 

4 3.654303 1.5 2 9 

5 1.163718 1.5 3 9 

6 2.966955 1.5 4 10 

7 2.045865 1.5 1 6 

8 2.649522 1.5 1 5 

9 1.982908 1.5 4 8 

10 3.516724 1.5 4 6 
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Table 6  Results for the series system. 

Method (n1, n2, n3, n4, n5) (r1, r2, r3, r4, r5) Rs Vs Cs Ws NFE CPU (s) SD 

ADAP-PSO (3, 2, 2, 3, 2) (0.76606, 0.86232, 

0.89586, 0.69454, 

0.85095) 

0.91000 73 167.75780 164.99906 600 10.2 3.7E08 

PSO (3, 2, 3, 3, 2) (0.76226, 0.85684, 

0.82116, 0.68724, 

0.84569) 

0.90924 88 153.71193 189.42752 1000 25.8 5.1E03 

 

 

Table 7  Results for the series-parallel system. 

Method (n1, n2, n3, n4, n5) (r1, r2, r3, r4, r5) Rs Vs Cs Ws NFE CPU (s) SD 

ADAP-PSO (1, 1, 1, 1, 1) (0.73520, 0.77132, 0.79152, 

0.79278, 0.82612) 
0.90927 23 43.61613 25.03849 640 11.6 4.8E08 

PSO (2, 1, 1, 1, 1) (0.63311, 0.78775, 0.75261, 

0.75100, 0.76100) 
0.90900 29 34.07636 32.08545 1100 29.3 2.9E02 
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Table 8  Results for the complex (bridge) system. 

Method (n1, n2, n3, n4, n5) (r1, r2, r3, r4, r5) Rs Vs Cs Ws NFE CPU (s) SD 

ADAP-PSO (2, 1, 1, 1, 1) (0.68488, 0.84998, 

0.81378, 0.57235, 

0.57923) 

0.90011 15 49.14271 62.88688 700 13.1 1.6E11 

PSO (2, 2, 1, 1, 1) 

 

(0.63609, 0.71268, 

0.73690, 0.51368, 

0.50591) 

0.90011 21 32.83563 78.99422 1240 32 2.7E05 

 

 

 

Table 9  Results for the overspeed protection system. 

Method (n1, n2, n3, n4) (r1, r2, r3, r4) Rs Vs Cs Ws NFE CPU (s) SD 

ADAP-PSO (5, 5, 4, 5) 

 

(0.89134, 0.87504, 0.93966, 

0.87255) 
0.99990 173 359.15906 418.56759 660 12.6 3.9E12 

PSO (5, 5, 4, 5) 

 

(0.89040, 0.87481, 0.94066, 

0.87457) 
0.99990 173 362.11345 418.56759 1460 35.8 4.1E04 
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Table 10  Results for the complex bridge network system. 

Method (r1, r2, r3, r4, r5) Rs Cs NFE CPU (s) SD 

ADAP-PSO (0.93625, 0.93625, 0.79463, 

0.93625, 0.93625) 
0.99042 5.02032 800 14.7 1.3E10 

PSO (0.93625, 0.93626, 0.79461, 

0.93625, 0.93625) 
0.99042 5.02033 1680 40.2 2.7E06 

 

 

Table 11  Results for the life-support system in a space capsule (Case 1). 

Method (r1, r2, r3, r4, r5) Rs Cs NFE CPU (s) SD 

ADAP-PSO (0.5, 0.84296, 0.5, 0.5) 0.90111 642.34313 480 8.4 6.4E08 

PSO (0.5, 0.5, 0.88572, 0.5) 0.90000 647.78277 1080 24.6 5.1E05 

 

 

 

Table 12  Results for the life-support system in a space capsule (Case 2). 

Method (r1, r2, r3, r4, r5) Rs Cs NFE CPU (s) SD 

ADAP-PSO (0.82543, 0.89022, 0.62715, 0.72922) 0.99000 390.57229 540 9.6 2.7E08 

PSO (0.82515, 0.89022, 0.62832, 0.72885) 0.99000 390.59632 1380 30.1 8.3E05 
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Table 13  Results for the large scale reliability-redundancy allocation system. 

Method (n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13, 

n14,n15,n16,n17,n18,n19,n20) 

(r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r1

4,r15,r16,r17,r18,r19,r20) 

Rs Vs Cs Ws NFE CPU (s) SD 

ADAP-PSO (2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 2,  3,  3, 3,  3, 

3,  

3, 3, 3,  3) 

(0.91432, 0.95113, 0.82342, 

0.92682, 0.79160, 0.87902, 0.82813, 

0.80264, 0.84649, 0.82548, 0.86274, 

0.86767, 0.82950, 0.81622, 0.86856, 

0.85531, 0.83680, 0.82385, 0.80989, 

0.83882) 

0.88248 237 315.41744 446.88191 2040 32.7 4.9E06 

PSO (3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3,  

3, 3, 2, 3) 

 

(0.84786, 0.94708, 0.82790, 

0.92802, 0.80147, 0.88172, 0.80901, 

0.80075, 0.83150, 0.81812, 0.88752, 

0.84490, 0.84807, 0.81841, 0.86157, 

0.83602, 0.83042, 0.81191, 0.88257, 

0.82947) 

0.88000 247 293.84520 471.31037 4120 

 

71.4 1.8E03 
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Table 14  Results for the pharmaceutical plant. 

Method (n1,n2,n3,n4,n5,n6,n7,n8,n9,n10) (r1,r2,r3,r4,r5,r6,r7,r8,r9,r10) Rs Vs Cs Ws NFE CPU (s) SD 

ADAP-PSO (2, 3, 3, 3, 3, 3, 3, 4, 3, 3) 

 

(0.92469, 0.80899, 0.80789, 

0.82220, 0.85845, 0.81766, 

0.84563, 0.76321, 0.84496, 

0.81642) 

0.95015 266 507.81054 439.69862 1540 29.3 4.9E10 

PSO (3, 3, 3, 3, 3, 3, 3, 3, 3, 3) 

 

(0.89017, 0.81901, 0.83056, 

0.82097, 0.83260, 0.81388, 

0.80819, 0.83819, 0.83303, 

0.81810) 

0.95018 279 509. 17010 444.57000 3440 65.8 7.2E06 
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Figure 1 – Flowchart of the implemented ADAP-PSO. 

 

 

 

 

 
Figure 2 – Series system. 
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Figure 3 – Series-parallel system. 

 

 

 

 

Figure 4 – Complex (bridge) system. 

 

 

 

 
Figure 5 – Overspeed protection system. 
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Figure 6 – Complex bridge network system. 

 

 

 

 

 

 

Figure 7 – Pharmaceutical plant. 

 

Weighting 
machine 

Sifter 
machine 

Mass mixer Granulator  
Fluid bed 

dryer 

Octagonal 
blender 

Rotary 
compression 

machine  

Coating 
machine  

Air 
compressor  

Strip 
packing 
machine  

Raw 
material 

Finished  

        1         4 

        3 

        5         2 



32 
 

 

 

 

 

Figure 8  NFE required by each algorithm. 
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