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Abstract 10 

Concerns on the impacts of disruptive events of various nature on business operations have increased 11 

significantly during the past decades. In this respect, business continuity management (BCM) has been proposed as 12 

a comprehensive and proactive framework to prevent the disruptive events from impacting the business operations 13 

and reduce their potential damages. Most existing business continuity assessment (BCA) models that numerically 14 

quantify the business continuity are time-static, in the sense that the analysis done before operation is not updated to 15 

consider the aging and degradation of components and systems which influence their vulnerability and resistance to 16 

disruptive events. On the other hand, condition monitoring is more and more adopted in industry to maintain under 17 

control the state of components and systems. On this basis, in this work, a dynamic and quantitative method is 18 

proposed to integrate in BCA the information on the conditions of components and systems. Specifically, a particle 19 

filtering-based method is developed to integrate condition monitoring data on the safety barriers installed for system 20 

protection, to predict their reliability as their condition changes due to aging. An installment model and a stochastic 21 

price model are also employed to quantify the time-dependent revenues and tolerable losses from operating the 22 

system. A simulation model is developed to evaluate dynamic business continuity metrics originally introduced. A 23 

case study regarding a nuclear power plant (NPP) risk scenario is worked out to demonstrate the applicability of the 24 

proposed approach. 25 
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Acronyms 29 

BCA business continuity assessment 30 

BCM business continuity management 31 

BCV business continuity value 32 

DBC dynamic business continuity 33 

DBCA dynamic business continuity assessment 34 

DRA dynamic risk assessment 35 

ET  event tree 36 

MBCO minimum business continuity objective 37 

MTPD maximum tolerable period of disruption 38 

NPP  nuclear power plant 39 

PDF  probability density function 40 

PF  particle filtering 41 

PRA  probabilistic risk assessment 42 

RCS  reactor coolant system  43 

RTO  recovery time objective 44 

RUL remaining useful life 45 

SGTR steam generator tube rupture 46 

Notation 47 

a    Crack size 48 

([ , ])BCV t t T+  Business continuity value at t  with reference to a time horizon T  49 

oC    Operation cost 50 

pC    Repayment cost  51 

1SC    First consequence 52 

2SC    Second consequence 53 

pD    Down payment 54 

EDBCV  Expected value of dynamic business continuity at time t  55 

( )f    State function 56 
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( )ETf    Event tree model 57 

( )h     Observation function 58 

tolIN   Total investment 59 

dL    Direct loss 60 

inL    Indirect loss 61 

tolL    Tolerable loss 62 

sN    Sample size of PF 63 

PN    Repayment period  64 

([ , ])BFP t t T+  Probability of business failure in [ , ]t t T+  65 

([ , ])BIP t t T+  Probability of business interruption in [ , ]t t T+  66 

IDP    Indirect loss per unit of time 67 

q    Time length of condition monitoring 68 

0Q    Initial funding 69 

recvt    Recovery time 70 

T    Time length of BC estimation 71 

( )i

k    Weight of particle i  72 

    Indicator function  73 

    Interest rate 74 

k    Observation noise at kt t=   75 

st    Intensity of rupture event (for static business continuity) 76 

K    Stress intensity factor 77 

    Stress range 78 

  79 
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1. Introduction 80 

Business organizations are faced with threats from various disruptive events, such as natural disasters[1, 2], 81 

intentional attacks [3] and hardware failures [4], etc. As reported in [5, 6], 43% of the companies that have suffered 82 

from severe disruptive events have been permanently closed. Among these companies, around 30% failed within two 83 

years. Being prepared for disruptive events, including prevention in pre-event phase and response in post-event phase, 84 

is, then, important for modern businesses [7]. This is the reason why business continuity management (BCM) has 85 

received increasing attention in recent years as a holistic risk management method to cope with disruptive events [8-86 

12]. BCM is formally defined in [13] as “holistic management process that identifies the potential threats to an 87 

organization and the potential impacts they may cause to business operations those threats, if realized, might cause, 88 

and which provides a framework for building organizational resilience with the capability of an effective response 89 

that safeguards the interest of its key stakeholders reputation, brand and value-creating activities”. Compared to 90 

conventional risk analysis method, BCM not only focuses on the potential hazards and their impacts, but also 91 

considers how to mitigate the consequence and quickly recover from the disruption. Therefore, it provides a 92 

framework for building organizational resilience that safeguards the interests of the business stakeholders.  93 

Most existing works mainly discuss BCM from a management perspective [14]. For instance, the necessity and 94 

benefit of implementing BCM in a supply chain has been discussed in qualitative terms in [11]. In [15], a framework 95 

for the design, implementation and monitoring of BCM programs has been proposed. In [16], the evolution of BCM 96 

related to crisis management has been reviewed, in terms of practices and drivers of BCM. In [17], BCM has been 97 

compared with conventional risk management methods, showing that BCM considers not only the protection of the 98 

system against the disruptive event, but also the recovery process during and after the accident. The importance of 99 

reliability and simulation in BCM has been discussed in [18]. In [19], a framework for information system continuity 100 

management has been introduced. Standards concerning BCM of the Brazilian gas supply chain have been discussed 101 

in [20]. A practice on BCM in Thailand has been reviewed and a few suggestions on BCM approaches have been 102 

presented in [21]. In [22], the conceptual foundation of BCM has been presented in the context of societal safety. 103 

From an engineering point of view, it is needed to define numerical indexes that support quantitative business 104 

continuity assessment (BCA). A few numerical indexes have been defined in [13], e.g., maximum tolerable period of 105 

disruption (MTPD), minimum business continuity objective (MBCO) and recovery time objective (RTO). However, 106 

these numerical indexes are usually directly estimated based on expert judgements. Only a few attempts exist 107 

concerning developing quantitative models to evaluate these numerical indexes. For example, a statistical model 108 



 

5 

integrating Cox’s model and Bayesian networks has been proposed to model the business continuity process [23]. In 109 

[24], a simulation model has been developed to analyze the business continuity of a company considering an outbreak 110 

of pandemic disease, where the business continuity is characterized by the operation rate and the plant-utilization 111 

rate. In [5], an integrated business continuity and disaster recovery planning framework has been presented and a 112 

multi-objective mixed integer linear programing has been used to find efficient resource allocation patterns. In [9], 113 

BCM outsourcing and insuring strategies have been compared based on the organization characteristics and the 114 

relevant data through a two-step, fuzzy cost-benefit analysis. Moreover, in [10], an enhanced risk assessment 115 

framework equipped with analytical techniques for BCM systems has been proposed. Two probabilistic programming 116 

models have been developed to determine appropriate business continuity plans, given epistemic uncertainty of input 117 

data in [25]. In [26], a new model for integrated business continuity and disaster recovery planning has been presented, 118 

considering multiple disruptive incidents that might occur simultaneously. An integrated framework has been 119 

developed in [12] for quantitative business continuity analysis, where four numerical metrics have been proposed to 120 

quantify the business continuity level based on the potential losses caused by the disruptive events.  121 

Most quantitative BCA models mentioned above are time-static in the sense that the analysis is performed before 122 

the system of interest comes into operation, with no further consideration of the changes that occur due to aging and 123 

degradation. In particular, in practice, business continuity is influenced by the degradation of safety barriers. On the 124 

other hand, the advancing of sensor technologies and computing resources has made it possible to retrieve information 125 

on the state of components and systems, by collecting and elaborating condition monitoring data [27, 28]. For 126 

example, a condition-based fault tree has been used for dynamic risk assessment (DRA) [29], where the condition 127 

monitoring data are used to update the failure rates of specific components and predict their reliability. In [30], a 128 

Bayesian reliability updating method has been developed for dependent components by using condition monitoring 129 

data. In [4], a holistic framework that integrates the condition monitoring data and statistical data has been proposed 130 

for DRA. A sequential Bayesian approach has been developed in [31], for dynamic reliability assessment and 131 

remaining useful life prediction for dependent competing failure processes. Usually, information fusion can add 132 

values for decision support [32]. A quantitative model for information risks in supply chain has been developed where 133 

the proposed model can be updated when new data are available [33].  134 

In this paper, we propose a framework for DBCA that integrates condition monitoring data and allows updating 135 

the business continuity analysis using information collected during system operation. It should be noted that in this 136 

paper, we focus on “business continuity assessment” rather than “business continuity management”. That is, we are 137 
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concerning developing quantitative models to evaluate the numerical business continuity metrics, which are further 138 

used in BCM process as quantitative requirements. The developed model contributes to the existing research on BCA 139 

in three aspects: 140 

1) An integrated DBCA model is proposed, which can provide for BCA updating in time. 141 

2) New dynamic business continuity metrics are introduced. 142 

3) A simulation-based algorithm is developed to calculate the dynamic business continuity metrics. 143 

The remainder of this paper is organized as follows. In Section 2, numerical metrics for DBCA are proposed. 144 

An integrated framework of DBCA is developed in Section 3. Section 4 describes the application of the proposed 145 

framework on a nuclear power plant (NPP) accident. Section 5 discusses applicability of the proposed DBCA method. 146 

Eventually, Section 6 concludes this work. 147 

2. Numerical metrics for dynamic business continuity assessment 148 

Business process is the process of producing products or supporting services by an organization. The business 149 

process of an organization can be characterized by a performance indicator, whose value reflects the degree to which 150 

the objective of the business is satisfied. For instance, for a NPP, this indicator can be monthly electricity production. 151 

As reviewed in Section 1, there are a few numerical indexes for quantifying the continuity of a business process 152 

(MTPD, MBCO, RTO, etc.) [13]. These numerical indexes, however, focus only on one specific phase of the whole 153 

process. For example, RTO focuses only on the post-disruption recovery phase., MBCO focuses only on the post-154 

disruption contingency activities. In this paper, we use the numerical business continuity indexes developed in [12], 155 

which are defined in a more integrated sense that they are able to cover the whole process, from pre-disruption 156 

preventions to post-disruption contingency and recovery.  157 

In the quantitative framework developed in [12], the business continuity is quantified based on the potential 158 

losses caused by the disruptive events. The business process is divided into four sequential stages: preventive stage, 159 

mitigation stage, emergency stage and recovery stage. Various safety measures are designed in different stages to 160 

guarantee the continuity of the business process. Business continuity value (BCV) was formally defined as [12]: 161 

 
tol

([0, ])
([0, ]) 1

L T
BCV T

L
= −  (1) 162 

where L  denotes the loss in [0, ]T  from the disruptive event; T  is the evaluation horizon for the assessment 163 

(e.g., the lifetime of the system); 
tolL  is the maximum loss that can be tolerated by an organization, which manifests 164 
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system tolerance ability against disruptive event [34]. Negative value of BCV means that L  is higher than ,tolL  165 

which is unacceptable for the targeted system. When 0,BCV =  it implies that the loss is exactly what the system 166 

can maximally tolerate. Regarding 1,BCV =   it means no loss has been generated. Equation (1) measures the 167 

relative distance to a financially dangerous state by taking into account the possible losses generated by the business 168 

disruption. It should be noted that only one business process is considered in this paper, while in practice, an 169 

organization might be involved in multiple business processes at the same time. For multiple-business system, the 170 

developed framework can be naturally extended based on the potential losses and profit generated by the different 171 

business processes together.  172 

The business continuity metrics discussed above are time-static in nature. In practice, however, various factors 173 

influencing the business continuity are time-dependent. These dynamic influencing factors can be grouped into 174 

internal factors and external factors. Internal factors are related to the safety barriers within the system of interest, 175 

such as the dynamic failure behavior of the safety barriers (e.g., corrosion [35], fatigue crack [36], and wear [37]). 176 

External factors refer to the influence from external environment. For example, variations in the price of products 177 

will affect the accumulated revenue of the organization, and, then, the tolerable loss in Equation (1). To consider 178 

these factors, the business continuity metrics are extended to the dynamic cases:  179 

 
tol

([ , ])
([ , ])=1- ,

( )

L t T t
DBCV t t T

L t

+
+  (2) 180 

where t  is the time instant when the dynamic business continuity assessment is carried out; ([ , ])DBCV t t T+  181 

represents the business continuity value evaluated at time ,t  for a given evaluation horizon of ;T  ([ , ])L t t T+  182 

represents the potential losses in [ , ];t t T+  tol ( )L t  denotes the maximal amount of losses that the company can 183 

tolerate at :t   beyond that level of losses, it will have difficulties in recovering. It is assumed that once an 184 

organization suffer a loss beyond ,tolL   it is unable to recover from the disruption due to the financial critical 185 

situations. The physical meaning of DBCV is the relative distance to a financial dangerous state at time ,t   by 186 

considering the possible losses in [ , ]t t T+   due to business disruption; it measures the dynamic behavior of 187 

business continuity in a time interval of interest [ , ].t t T+  By calculating the DBCV at different ,t  the dynamic 188 

behavior of business continuity can be investigated. 189 

In [12], two kinds of losses need to be considered when calculating ([ , ]) :L t t T+  direct loss and indirect loss  190 

Direct loss, denoted by d ([ , ])L t t T+ , represents the losses that are caused directly by the disruptive event, including 191 
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structural damage of the system. For example, in a NPP leakage event, 
d[ , ]L t t T+  includes all equipment damage 192 

directly caused by the event. Indirect loss, denoted by in ([ , ]),L t t T+   is the revenue loss suffered during the 193 

shutdown of the plant [38]. Hence, the total loss is calculated by: 194 

 d in([ , ]) ([ , ]) ([ , ]).L t T T L t t T L t t T+ = + + +  (3) 195 

In terms of other types of accident, for instance, workplace accidents, damages to the surroundings, etc. they 196 

may also affect the business continuity. Due to page limits, we did not include them in the developed model in this 197 

paper. However, the developed method can be naturally generalized by including more initiating events in the analysis.  198 

The DBCV defined in (2) is a random variable. Three numerical metrics are, then, proposed for its 199 

quantification:  200 

  EDBCV E DBCV=  (4) 201 

 
BI ([ , ]) Pr( 1, )P t t T BCV t+ =   (5) 202 

 
BF ([ , ]) Pr( 0, )P t t T BCV t+ =   (6) 203 

EDBCV  is the expected value of the dynamic business continuity value. A higher EDBCV  indicates higher 204 

business continuity. BI ([ , ])P t t T+  represents the probability that at least one disruptive event causes business 205 

interruption in time interval [ , ];t t T+  BF ([ , ])P t t T+  is the probability that business failure occurs in [ , ],t t T+  206 

i.e., of the event that the losses caused by the disruptive event are beyond .tolL   It is assumed that once an 207 

organization suffers a loss beyond ,tolL   it is unable to recover from the disruption due to the financial critical 208 

situations. In this work, both of current time t  and the estimation horizon T  have influences on BCV. We manage 209 

to propose a real-time BCA by considering the time-dependent variables.  210 

3. An integrated framework for dynamic business continuity assessment 211 

In this section, we first present an integrated modeling framework for the dynamic business continuity metrics 212 

defined in Section 2. Then, particle filtering (PF) is used to estimate the potential loss tolL   in real time using 213 

condition monitoring data (Section 3.2). The quantification of tolerable losses tolL  is, then, discussed in Section 3.3. 214 

3.1 The integrated modeling framework 215 

To model the dynamic business continuity, we make the following assumptions: 216 

1) The evolution of the disruptive event is modeled by an event tree (ET). Depending on the states of safety 217 

barriers, different consequences can be generated from an initialing event. These consequences can be 218 
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grouped into different categories based on their severities. Each consequence generates a certain amount 219 

of loss. However, it should be noted that different consequences might have the same degree of losses. 220 

According to their severities, possible consequences of a disruptive event are classified as , 1,2 , ,iC i n=  221 

where n   is the number of severity level. The severity and duration of the business interruption 222 

corresponds to different losses. 223 

2) Some safety barriers in the ET are subject to degradation failure processes. Condition monitoring data are 224 

available for these safety barriers at predefined time instants , 1,2, , .kt k q=  225 

3) The other safety barriers have constant failure probabilities. 226 

4) Recovery means repairing the failed component and restarting the business. The time for the recovery from 227 

consequence iC  is a random variable , ,recv it  with a probability density function (PDF) , .recv if  228 

An integrated framework for DBCA is presented in Figure 1. The DBCA starts from collecting condition 229 

monitoring data, denoted as ,kc  which is collected from sensors and can be used to characterize the degradation 230 

states of the component. The degradation of the safety barriers is estimated based on the condition monitoring data 231 

and used to update the estimated losses. Then, the potential profits are predicted and used to calculate the tolerable 232 

losses. Finally, the dynamic business continuity metrics can be calculated.  233 

 

Figure 1. Integrated modeling framework for DBCA. 234 

3.2 Loss modeling 235 

To capture the dynamic failure behavior of a safety barrier as it ages in time, PF is employed in this work to 236 

estimate its degradation and predict its remaining useful life (RUL) based on condition monitoring data [39-41]. PF 237 
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is applied because of its capability of dealing with the complex non-linear dynamics and non-Gaussian noises that 238 

are often encountered in practice [42, 43]. 239 

Suppose the degradation process of a safety barrier can be described by Equation (7), in which the current state 240 

kx  at the k − th discrete time step depends on the previous state 
1.kx −

 Here, f  is a non-linear function and 
k  241 

represents process noise that follows a known distribution. In practice, Equation (7) is often determined based on 242 

physics-of-failure models [39]: 243 

 
1( , )k k kf −=x x  (7) 244 

A sequence of condition monitoring data 
kz  is assumed to be collected at predefined time points .kt  The 245 

sequence of measurement values is assumed to be described by an observation function: 246 

 ( , )k k kh=z x σ  (8) 247 

where h  is the observation function (possibly nonlinear), 
kσ  is the observation noise vector sequence of known 248 

distribution. The measurement data 
kz  are assumed to be conditionally independent given the state process .kx249 

Equation (8) quantifies the observation noise from the sensors. 250 

The PF follows two steps [44]: 251 

1) Filtering step, where the available condition monitoring data zk   are used to estimate the current 252 

degradation state of the system. 253 

2) Prediction step, in which the RUL is predicted based on the estimated degradation state and the condition 254 

monitoring data.  255 

In the filtering step, the posterior PDF of variable kx   is approximated by the sum of weighted particles 256 

 ( ) ( ), :i i

k kx  257 

 
( ) ( )

1 2

1

( , , , ) ( )
sN

i i

k k k k k

i

p z z z  
=

 −x x x  (9) 258 

where 1 2( , , , )k kp z z zx  is the estimated posterior PDF of ,kx    is the Dirac Delta function, 
( )i

k  is the 259 

weight assigned to particle 
( )i

kx   and is generated by sequential importance sampling [32]. When the new 260 

measurement kz  is available, the required posterior distribution of the current state kx  can be obtained by updating 261 

the prior distribution: 262 
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1

1

( ) ( )
( )

( ) ( )

k k k k

k k

k k k k k

p z p
p

p z p d

−

−

=



x x z
x z

x x z x
 (10) 263 

where ( )k kp z x  is the likelihood function that can be derived from the observation function (8). Generally, if the 264 

samples 
( )i

kx  are drawn from the sampling distribution ( ),k kp x z  then, the particle weight can be updated with 265 

a new observation ,kz  as follows [32]: 266 

 

( ) ( ) ( )

1( )

1

0: 1

(z ) ( )
.

( , )

i i i

k k k ki i

k k i i

k k k

p p

p
 

−

−

−

=
x x x

x x z

（）
 (11) 267 

Note that the weights are normalized as
( )

1

1.
sN

i

k

i


=

=  268 

Algorithm 1 summarizes the major steps of PF [45].  269 

Algorithm 1: Procedures of PF. 

Inputs:  ( ) ( )

1 1, , zi i

k k k− −x  

Outputs: ( ) ( )

1
,

sN
i i

k k i


=
x  

For 1i =  to sN  do  

( ) ( )

1~ ( )i i

k k kp  −x x  using (7), 

( ) ( ) ( )( , )i i i

k k k kp z x  using (11), 

End for  

For 1i =  to sN  do 

    
( ) ( ) ( )

1

/
sN

i i i

k k k

i

  
=

   

End for 
1

( ) 2

1

( )
sN

i

eff k

i

N 

−

=

 
  

 
  

If eff sN N  then 

     ( ) ( )

1
,

sN
i i

k k i


=
x resample  ( )( ) ( )

1
,

sN
i i

k k i


=
x  

End if  

Return  ( ) ( )

1
,

sN
i i

k k i


=
x  

Then, in the prediction step, the RUL associated to the i− th particle at kt t=  can be estimated through state 270 

function (7) by simulating the evolution trajectory of the particles until they reach the failure threshold :thz   271 

  ( ) ( )

( ) ( )

1
( 1 ) , ,i i

th th

i i

k th th thT T
RUL T k x z x z

−
= − −    (12) 272 
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where 
( )i

thT  is the first time the particle reaches the threshold .thz  Thus, the PDF of the RUL can be generated by: 273 

 ( ) ( ) ( )

1

, ( ).
sN

i i

k th k k

i

p RUL z RUL RUL 
=

 −z  (13) 274 

The predicted 
( ) , 1,2, ,i

k sRUL i N=  can, then, be used in a simulation process to generate samples of the total 275 

loss ,L  according to Equation (3). The procedures are summarized in Algorithm 2, where IDP  is the indirect loss 276 

per unit of time.  277 

Algorithm 2: Generating samples for the losses 

Input:  ( ) ( )

1
,

sN
i i

k k i
RUL T

=
，  

Output: 
( )i

kL  

Initial value ( )

1 20, 0, 0, , 0;i

k kL t t T t T t= = = = + =  

,pseudo kRUL    randomly select one element from  ( )

1
,

pN
i

k k
RUL

=
  where 

( )i

kRUL   is selected with probability 

( ) ;i

k  

Calculate ( )

,

i

k k pseudo kT t RUL= +  

While t T  
( )

1 1 1; ;i

kt t t t TTF= = +  

if 1t T  

( ) ( )i i

k kL L=  

else 

Using the event tree determine the consequence; 

Using the 
,recv if  generate the ;recvt  

2 1 ;recvt t t= +  

     If 2t T  

( ) ( )

2( )i i

k k d IDL L L T t P= + + −   

else 2t t=  

( ) ( )i i

k k d recv IDL L L t P= + +   

end if 

end if 

end while  

 278 

3.3 Tolerable losses modeling   279 

Budget limitations are the primary driver of resilience-enhancing investments [46], which influence protection, 280 

prevention, and recovery capabilities of system. Tolerable losses tolL  depend on the cash flow of the company and 281 

also the risk appetite of the decision maker [13]. In this paper, we assume that at ,kt  the organization can tolerate 282 

up to   (in percentage) of its cash flow ( )kQ t  at :kt   283 

 ( ) ( )tol k kL t Q t =   (14) 284 
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For example, 0.1 =  means 10%  of the current cash flow can be used to withstand potential losses caused by a 285 

disruptive event. In practice, the value of   should be determined by the decision maker and reflects his/her risk 286 

appetite. 287 

We make the following assumptions to model the dynamic behavior of cash flows: 288 

(1) At 0,t =  there is an initial capital of 0Q . 289 

(2) Installment is used for the company to purchase the asset, where an equal repayment of pC  is payed each 290 

month for PN  months. 291 

It is noteworthy that the cash flow ( )Q t  depends on the profit earned by the normal operation of the asset: 292 

 0

1

( ) ( ) ( ) ( )),
k

k k o k p i

i

Q t Q I t C t C t(
=

= + − −   (15) 293 

where 0Q  is the initial capital, ( )kI t  is the accumulated revenues of the organizations up to kt  by selling the 294 

product of the asset. For example, in a NPP, ( )kI t  is determined by the electricity price ; in oil exploitation, ( )kI t  295 

depends on the petroleum price [47]. ( )o kC t  is the operational cost in [0, ],kt  which is assumed to be not changing 296 

over time. ( )p iC t  is the amount of repayment of the installment in 1[ , ],i it t−  which can be modeled by (see [48] for 297 

details): 298 

 
tol

p

( )
(1 ) ,P

p N

p

IN D
C

N


−
= +  (16) 299 

where tolIN   denotes the total investment and equals the whole value of the system, pD   represents the down 300 

payment,   is the interest rate,   is an indicator function: 301 

 
1,   

,
0,  

Pif t N

otherwise



= 


 (17) 302 

where PN  is the repayment period. 303 

4. Application 304 

In this section, we consider the development of DBCA in a case study regarding a disruptive initialing event for 305 

a NPP [49]. The business continuity of the NPP is evaluated at different ages 1,2, ,40t =  (year) and different 306 

evaluation horizons 1,2, ,60T =  (year). The evaluation is made with reference to a specific risk scenario, with 307 

the initialing event being the steam generator tube rupture (SGTR). 308 
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The targeted system is briefly introduced in Section 4.1. Subsequently, in Section 4.2, the RUL prediction for a 309 

SGTR and the modeling of the potential losses are conducted. The time-dependent tolL  is calculated in Section 4.3. 310 

The results of the DBCA are presented and discussed in Section 4.4.  311 

4.1 System description 312 

For illustrative purposes, it is assumed that the NPP has one reactor with a capacity of 550  MW. It is also 313 

assumed that the NPP is subject to the threat of only one disruptive event, the SGTR. The whole value of the NPP is 314 

910 €  and the operator purchases the NPP using an installment, where the down payment is 
85 10 €  and the 315 

repayment period is 10 years with an interest rate of 2%.  316 

SGTR is a potential accident that is induced by the degradation of the tubes in the steam generator, which can 317 

lead to tube cracking and rupture [50]. Steam generator tubes transfer the heat from the reactor core to the cooling 318 

water that is transformed into steam to drive turbines and produce electricity [49]. The steam generator tube is often 319 

manufactured with alloy material to attain high structural integrity and prevent leakage of radioactive materials. An 320 

ET has been developed for the probabilistic risk assessment (PRA) of the SGTR for a NPP in South Korea, as shown 321 

in Figure 2. In Figure 2, eight safety barriers ( 1 8SB SB ) are designed to control the accident and mitigate its impact 322 

(Table 1). Depending on the states of the safety barriers, 28 sequences are generated ( 1 28S S ). Based on the degree 323 

of their severities, the consequence of the sequences can be categorized into two groups. The first group,  324 

 1 1 2 4 6 7 9 11 12 14 16 20 24, , , , , , , , , , ,SC SE SE SE SE SE SE SE SE SE SE SE SE=  (18) 325 

represents the event sequences in which a SGTR occurs but the consequence is contained by the safety barriers 326 

without causing severe damages. The remaining event sequences form the second group 2SC  and represent severe 327 

consequences of core damage. Regarding 
1,SC  albeit no severe losses are caused, normal production of the NPP is 328 

disturbed because the ruptured tube has to be repaired. For 
2 ,SC  it is assumed that the NPP has to be shut down 329 

permanently and the losses incurred are denoted by 
CD .C  330 
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Figure 2. ET for SGTR accident initialing event [49]. 331 

Table 1. Safety barriers in the target system [51, 52]. 332 

Safety barrier Failure probability Description 

Reactor trip (RT) 4

RT 1.8 10P −=   When there is off-normal condition, the protection system 

automatically inserts control rods into the reactor core to 

shut down the nuclear reaction. 

High pressure safety injection (HPI) 4

HPI 4.6 10P −=   Inject cool water (at a pressure of about 13.79 MPa) into the 

reactor coolant system (RCS) to cool the reactor core and 

provide RCS inventory make-up. 

Main steam isolation valve (SGISOL) 4

SGI 1.0 10P −=   A valve used to isolate the affected steam generator (SG). 

Maintain the affected SG pressure 

(MSGP) 

4

M 1.5 10P −=   Maintain the affected SG pressure through the pressurizer. 

Secondary heat removal (SHR) 5

SHR 3.4 10P −=   Heat removal by unaffected SG. 

Reactor coolant system pressure control 

(RCSPCON) 

2

RCSM 1.0 10P −=   Open the turbine bypass valve to control the secondary side 

pressure. 

Low pressure safety injection (LPI) 4

LPI 4.6 10P −=   Inject cool water (at a pressure of about 1.03MPa) to cool 

down the RCS and provide RCS inventory make-up. 

Refill RWT (RWT) 8

RWT 2.4 10P −=   Refill water storage tank. 

The crack growth process that leads to SGTR can be monitored through non-destructive inspection (e.g., 333 

ultrasonic testing [53], eddy current testing [54]). In practice, this is done during planned shutdowns of the NPP, often 334 

during the refueling stage. The condition monitoring data collected from these inspections are, then, used for the 335 

dynamic business continuity assessment. 336 

4.2 Particle filtering and loss modeling 337 

The first step is to update the occurrence probability of the initiating event, based on the condition monitoring 338 

data. It is noteworthy that, due to the lack of real data, the condition monitoring data employed in the case study is 339 
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generated from a known physical model. For illustrative purposes, the evolution of the tube crack growth process is 340 

assumed to follow the Paris-Erdogan model, which has been applied to model SGTR in [52, 55], 341 

 
d

( ) , ,
d

ma
C K K a

t
 =   =   (19) 342 

where a  is the crack length, C  and m  are constant parameters related to the component material properties, 343 

K  is the stress intensity factor,   is the stress range. The model can be rewritten in the form of a state transition 344 

function [56]: 345 

 1( ) dkm

k k k ka C a t a  −=  +  (20) 346 

The crack size ka   at kt t=   is obtained from non-destructive inspection, such as ultrasonic testing; the 347 

corresponding observation kz  is: 348 

 ,k k kz a = +  (21) 349 

where 
k  is the observation noise with 

2(0, ).k oN   350 

Due to environment and measurement noise, the measured crack lengths are different from the true values. In 351 

this paper, we generate the true value of cracks in Figure 3 using a theoretical model with known parameters and 352 

generate the observation data by adding a random noise. The purpose of using PF is to estimate the true crack length 353 

from the noised observation data and predict the RUL. The number of particles simulated is 5000.sN =  It should 354 

be noted that for the tube degradation process, the state vector x   includes the crack size a   and the model 355 

parameter variables ,C  .m  The initial values for these variables are drawn uniformly from the intervals of values 356 

listed in Table 2: 357 

 

2

1

2

1

(0, )
.

(0, )

k k c

k k m

C C N

m m N





−

−

 = +


= +
 (22) 358 

Table 2. Initial intervals for the parameters. 359 

Parameters  Initial interval 

C  [0.1,0.2]  

m  [1.1,1.3]  

c  3 2[0.9 10 ,0.2 10 ]− −   

m  3 2[0.9 10 ,0.2 10 ]− −   

o  
[0.65,0.85]
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 360 

The results of PF are shown in Figure 4, where we find that the RUL prediction results become more accurate 361 

when more condition monitoring data are available.  362 

  

  

Afterwards, the loss ([ , ])L t t T+   in Equation (2) can be calculated. The losses caused by a SGTR event, 363 

include the direct losses and indirect losses. In this case study, the direct losses, denoted by d ,L  equal to the value 364 

of the damaged equipment. For the consequence 1SC , dL  is identical to the value of the ruptured tube. For the 365 

consequence 
2 ,SC  L  equals the value of the NPP production since the NPP has to be shutdown. In this paper, we 366 

assume that if 
2SC  occurs, we have 95 10L =  € [57]. 367 

The indirect losses 
inL   are calculated considering the revenue losses during the recovery process, which 368 

depends on the recovery time and electricity price. Due to the common use of lognormal distribution for modeling 369 

the repair process [58-60], we also assume that the recovery time follows a lognormal distribution with the parameters 370 

summarized in Table 3, where   and   are parameters of the lognormal distribution, whose PDF is 371 

 

2

2
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21
, 0
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0,                                 0.
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 

−
−

 
= 




 (23) 372 

Then, the value of 
inL  is calculated by Monte Carlo simulation. 373 

Table 3. Values of the recovery model parameters. 374 

Parameter Description Value 

Figure 3. Crack growth process. 

 

Figure 4. RUL prediction results.  
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  The mean value of the lognormal 

distribution. 

1 year 

  The variance value of the lognormal 

distribution. 

0.1 year2 

 375 

4.3 Tolerable loss modeling  376 

We assume that the decision-maker of the NPP determines that the organization can tolerate losses up to 10% 377 

of the cash flow. Therefore, we have 0.1. =  For the NPP, ( )kI t  depends on the electricity price, which often 378 

exhibits large variabilities. In this paper, we use the following model, as much as possible incorporating the features 379 

of electricity price (such as seasonal volatility, time-varying mean reversion and seasonally occurring price spikes) 380 

to simulate the stochastic behavior of the electricity price [61]: 381 

 d ( )( )d ( )d dt p t t tx t x t t W Z   = − + +  (24) 382 

where tx  is the electricity price at , 0t    and p  is the mean value of the price, tW  is a standard Brownian 383 

motion and 
tZ  is a compound Poisson process with levy measure (d ) ( )d ,x g x x =    is the jump intensity 384 

and g  is the density of the jump size distribution, ( )t  is a positive stochastic process which satisfies: 385 

 ( ) ( ) ( )t s t t = +  (25) 386 

where ( )s t   is a deterministic, time-dependent and positive seasonal component, which is often modeled by a 387 

trigonometric function: 388 

 2 4
1 1 3 5

2π 2π
( ) sin( ) ( ) .

5 251

a t a t
S t a a a

+ +
= + +  (26) 389 

The value of the seasonal component parameters are shown in Table 4. 390 

Table 4. Values of the seasonal component parameters of the spot prices. 391 

Parameter  Value 

1a  0.41 

2a  1.90 

3a  0.40 

4a  43.11 

5a  0.29 

 392 
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( )t  is a stochastic process, representing the stochastic part of the time change. The Cox-Ingersoll-Ross process 393 

[62] is used to model ( ),t  394 

 2 2d ( ) ( ( ))d ( ) d ( ).t t t t W t     = − +  (27) 395 

By using Itô's lemma [61], Equation (24) can be solved and we can derive the following form:  396 

 
0 0 0

( ) (0) ( ( ))d ( )d ( ) d ( ).

t t t

x t x x t t t B t Z t   = + − + +    (28) 397 

The parameters of the stochastic electricity model are tabulated in Table 5, which is estimated from the German 398 

EEX1 (a market platform for energy and commodity products), from 12.03.2009 until 31.12.2013. The interested 399 

readers may refer to details and derivations in [61].  400 

Table 5. Parameters in the stochastic electricity model [61]. 401 

Parameter Value 

𝑥0 40 

ɵ 0.22 

μ 50 

σ 5.98 

dt 1 

λ 0.12 

μ1 1.02 

σ1 1.35 

 402 

Eventually, the generated stochastic electricity price trajectory is shown in Figure 5.  403 

 

1 https://www.eex.com 
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Figure 5. Simulated time-varying electricity price trajectory for 1500 months. 404 

The operation cost ( )o kC t  in Equation (15) is set as constant 20€/MWh, which includes the cost of uranium 405 

fuel and the cost of disposing used fuel and wastes [63]. Finally, the cash flow at different time points is shown in 406 

Figure 6. We can see that the accumulated profit is small at the beginning. This is because this period is still under 407 

the repayment period and a large amount of the revenue is used for repaying the installment. After 10t =  years, the 408 

repayment is paid off and, thus, the profit increases significantly. 409 

 

Figure 6. Profit trajectory at different estimation points. 410 

4.4 Results 411 

A DBCA is conducted using Algorithm 2. The analyses investigate the dynamic business continuity behavior 412 

for the plant at different ages 1,2, ,40t =  (years) and under different evaluation horizons 1,2, ,60T =  (years), 413 

as shown in Figures 7~9. To show the difference between DBCA and (time-static) BCA, a comparison is also carried 414 

out. For the BCA, the occurrence of SGTR is assumed to follow a Poisson process, where 37.0 10st −=   per year 415 
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[49]. The estimated time horizon is chosen to be the lifetime of the NPP, 60T =  years. The time-static business 416 

index is defined as: 417 

 

tol

(0, )
(0, ) 1

L T
BCV T

L
= −  (29) 418 

where BCV  is the business continuity value; 
tolL  is the tolerable losses and is assumed to be a constant value, 419 

which equals 
0Q  (i.e., the initial capital). The recovery time model for the BCA is identical to the one employed in 420 

DBCA. 421 

The results from the time-static and time-dependent BCA are compared in Figure 7~9, where the true value is 422 

generated based on a theoretical model with known parameters. Abscissa axis shows the estimation horizon ,T  and 423 

the vertical axis stands for the different BCV indexes. Therefore, these results show the business continuity of NPPs 424 

at different age ( ),t  if it is operated for different lengths of time ( ).T  425 

  
(a) EDBCV (b) 

BFP  

 
(c) 

BIP  
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Figure 7. Business continuity metrics at t=1 year. 426 

 
 

(a) EDBCV (b)
BFP  

 
(c) 

BIP  

Figure 8. Business continuity metrics at t=10 years. 427 

  
(a) EDBCV (b) 

BFP  



 

23 

 
(c) 

BIP  

Figure 9. Business continuity metrics at t=40 years. 428 

1) At each ,t   with the increase of the estimation horizon ,T   the DBCV decreases. This means that 429 

regardless of the age t  of the NPP, the longer the NPP is operated, the worse its business continuity: this 430 

is logical, as it is primarily caused by the tube’s degradation process. No rupture is supposed to occur at the 431 

beginning of system operation. Subsequently, as the crack grows, rupture will occur eventually and lead to 432 

system failure. In addition, the dynamic business continuity (DBC) indexes curves drop (Figure 7 (a), 433 

Figure 8 (a), Figure 9 (a)) or rise (Figure 7 (b, c), Figure 8 (b, c), Figure 9 (b, c)) significantly after a certain 434 

value of .T  In practice, intervention measures like overhauls need to be taken before this ,T  in order to 435 

prevent serious losses from occurring failures and ensure the business continuity. 436 

2) For the same estimation horizon ,T  with the increase of NPP age ,t  the EDBCV moves toward left, 437 

which means the financial safety margin is narrowing over time .t  This is because the steam generator 438 

tube is getting closer to a dangerous state as the NPP ages. 439 

3) When T  is beyond a certain value, the business continuity metrics becomes invariant. This is mainly 440 

because when T  is sufficiently long, the rupture event will surely happen and after that no loss occurs 441 

any more. 442 

4) There are plateau sections in the curves of EBCV (Figure 7 (a), Figure 8(a), Figure 9 (a)); the height of 443 

these plateaus increases with time ,t  which makes sense because the system potential profits increase over 444 

time .t  445 

5) The comparison between DBCA and time-static BCA shows that the time-static BCA grossly 446 

underestimates the damage of SGTR on system business and, thus, underestimates the NPP’s business loss. 447 
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Moreover, the results from the DBCA using condition-monitoring data are closer to the true BCV than 448 

those of the time-static BCA. This is because the DBCA using condition monitoring data incorporates the 449 

time-dependent behavior of SGTR degradation. 450 

6) Confidence interval quantifies the level of confidence that the BCV metrics are captured by the interval. 451 

From Figures 7~9, we can see that with more data available, the width of confidence interval is narrowing. 452 

That is because, the more condition monitoring, the more precise of the component state estimation and 453 

the less uncertainty in the BCA results.  454 

5 Discussion  455 

In this work, although the developed method is only applied on a case study of NPP, it can also be applied in a 456 

wide variety of scenarios. To apply the developed method for DBCA, a system needs to satisfy the following premises: 457 

(1) the business continuity is related to financial losses; (2) the system behavior and/or the profit of the system are 458 

potentially time-dependent; (3) condition monitoring data are available to describe the time-dependent system 459 

behaviors. For instance, in the example of oil storage tanks in [4], the profits of the oil storage tank depend on the 460 

price of the oil and are therefore time-dependent. Lithium batteries are used to drive some critical safety barriers. As 461 

the Lithium battery is subject to degradation, the performance of the safety barriers is also time-dependent. Besides, 462 

condition monitoring data are available from the mounted sensors and can be used for online updating the failure 463 

probability of the safety barriers. Therefore, the developed methods can be applied for DBCA of the oil tanks. For IT 464 

service, the profits also exhibit time-dependent behaviors. The failure behaviors of the hardware in the IT 465 

infrastructure are also time-dependent due to the presence of various degradation failure mechanisms. If condition 466 

monitoring data are available to monitor the state of the hardware, the developed model can also be applied for a 467 

DBCA. 468 

Compared to the original time-static BCA method, the developed model captures the time-dependent features 469 

of both profits and system failure behaviors. Therefore, the proposed method can more precisely quantify the business 470 

continuity that exhibits time-dependent behaviors. However, the price we need to pay is that our model is more 471 

complex in both model development and analysis. In practice, we often need to choose the most appropriate method 472 

based on a tradeoff between the complexity of the modelling and the accuracy of the results. For example, for systems 473 

whose failure behavior is not time-dependent or not significant to safety, the traditional time-static BCA method 474 

might be sufficient. However, for safety critical systems that have significant time-dependency (e.g., NPP), the 475 

developed method is preferred due to its potential to provide a more accurate assessment.  476 
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It should be noted that in this work, we assume that the operation costs (including the inspection and maintenance 477 

cost) do not change over time (as seen in Equation (15)). This assumption is reasonable for NPP, because NPPs are 478 

usually designed with a large margin so that even though they reach their designed life, their performance does not 479 

degrade very severely. However, for other products, these costs might also be time-dependent and increasing with 480 

time. This fact should be considered for a more precise modelling. 481 

Moreover, to illustrate the proposed DBCA model, we use a stochastic electricity model to predict the electricity 482 

price as it considers a large variety of features contributing to electricity price variations (such as seasonal volatility, 483 

time-varying mean reversion and seasonally occurring price spikes). The predicted electricity price is shown in Figure 484 

5. It should be noted that the predicted values here are used to illustrate the developed method only. There are 485 

numerous factors that have the potential influence on the electricity price (such as new energy source and new 486 

consumption patterns), which make the predicted results inevitably subject to various sources of uncertainty 487 

concerning the long-time span for prediction. Therefore, when the developed method is applied in practice, up-to-488 

date electricity information should be used, instead of this predicted value, in order to reduce the uncertainty and 489 

assessment errors.  490 

It should be noted that in this work, we only look at disruptive events that are caused by safety related hazards. 491 

In practice, however, the problem of business continuity might also be caused by disruptive events other than safety 492 

related hazards, e.g., strike, natural hazards. The developed models can be extended to capture also these disruptive 493 

events. 494 

6. Conclusions 495 

In this paper, a DBCA method that integrates condition monitoring data is proposed. Two factors that influence 496 

the dynamic behavior of business continuity are considered explicitly. The first one is the dynamics of the 497 

degradation-to-failure process affecting the safety barriers. Condition monitoring data are used to update and predict 498 

the time-dependent failure behavior by PF. The second factor is the time-dependent profit and tolerable losses. This 499 

is quantified by applying a stochastic price model and an installment model. A simulation-based framework is 500 

developed to calculate the time-dependent business continuity metrics originally introduced. A case study regarding 501 

the analysis of an accident initiated by SGTR in a NPP shows that the proposed framework allows capturing the 502 

dynamic character of business continuity.  503 

The outcomes of such dynamic analysis can provide insights to stakeholders and decision-makers, that can help 504 

them to identify when best to take actions for preventing serious losses and ensuring business continuity.  505 
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