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Abstract 8 

In this paper, a framework is proposed for integrating condition monitoring and inspection data in Dynamic 9 

Risk Assessment (DRA). Condition monitoring data are online-collected by sensors and indirectly relate to 10 

component degradation; inspection data are recorded in physical inspections that directly measure the component 11 

degradation. A Hidden Markov Gaussian Mixture Model (HM-GMM) is developed for modeling the condition 12 

monitoring data and a Bayesian network (BN) is developed to integrate the two data sources for DRA. Risk 13 

updating and prediction are exemplified on an Event Tree (ET) risk assessment model. A numerical case study and 14 

a real-world application on a Nuclear Power Plant (NPP) are performed to demonstrate the application of the 15 

proposed framework.  16 
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Acronyms 1 

ATWS  Anticipated Transient Without Scram 2 

BN   Bayesian Network 3 

DRA  Dynamic Risk Assessment 4 

EM   Expectation Maximization 5 

ETA   Event Tree Analysis 6 

FTA   Fault Tree Analysis 7 

HM-GMM Hidden Markov Gaussian Mixture Model  8 

IE   Initialing Event 9 

NPP   Nuclear Power Plant 10 

PF   Particle Filtering 11 

Notation 12 

A    Transition probability matrix  13 

π    Initial state distribution of the Markov degradation process 14 

( )ib x   Probability distribution of the degradation indicator x  when the degradation state is 
iS  15 

iC    The -i th consequence in the ET 16 

c ( )i kt   Condition monitoring data from the -i th safety barrier at 
kt t=  17 

( ) ( )k

Tr tc   Condition monitoring data from the -k th training sample at t  18 

( )d     Euclidean distance 19 

( )ETf    ET model 20 

K    Number of safety barriers with time-dependent failure probabilities 21 

M    Number of safety barriers in a system 22 

N    Number of consequences in the ET 23 

featuren   Number of features extracted from condition monitoring data 24 

Trn    Number of samples in the training data set 25 

iCP    Probability that consequence i  occurs, given that the initialing event has occurred 26 

, ( )
kCM t CMP S  Posterior distribution of the estimated degradation state from condition monitoring data, evaluated at27 
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kt  1 

, ( )
kINT tP S  Posterior distribution of the estimated degradation state by integrating condition monitoring data and 2 

inspection data, evaluated at 
kt  3 

Q    Number of health states 4 

INR    Reliability of the inspection 5 

MSBR    Reliability of the -M th safety barrier 6 

CMS    Estimated degradation state from condition monitoring data 7 

,CM MAPS   Most likely degradation state given the condition monitoring data 8 

INS    Estimated degradation state from inspection data 9 

S    True degradation state 10 

Trt    Length of the observation period for the training samples 11 

W     Working set that contains all the working states 12 

( ) ( )k

Tr tx   Health indicator of -k th training data at t  13 

( )tx    Health indicator of safety barrier at t  14 

μ    Vector of the mean values of the multivariate Gaussian distribution 15 

Σ    Covariance matrices of the multivariate Gaussian distribution 16 

( )t iS   Forward variable 17 

( )t iS   Backward variable  18 
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1. Introduction 1 

Probabilistic Risk Assessment (PRA) is widely applied to critical systems like space shuttles, nuclear power 2 

plants, etc [1]. Traditional PRA methods, like Event Tree Analysis (ETA) and Fault Tree Analysis (FTA), assume 3 

that the failure probabilities of the safety barriers are independent on time and their values are estimated based on 4 

statistical data [2]. However, in practice, the safety barriers undergo degradation processes like wear [3], fatigue [4], 5 

crack growth [5], etc., which increase their failure probabilities with time. Furthermore, the operational and 6 

environmental conditions of the system change with time and can also lead to time-dependent failure probabilities 7 

of the safety barriers [6, 7].  8 

Safety barriers are the physical and/or non-physical means installed in the system of interest, aiming to 9 

prevent, control, or mitigate undesired events or accidents [8], e.g., a sprinkler system in chemical industry [9], a 10 

reactor trip system in steam generator [10]. To account for the time-dependent failure behavior of safety barriers, 11 

Dynamic Risk Assessment (DRA) frameworks have been developed, which use data and information collected 12 

during the system life to update the estimated risk indexes [11]. Bayesian theory has been used to update the 13 

probabilities of the events in an ET [12, 13]. Near miss and precursor data have been exploited in a hierarchical 14 

Bayesian model of DRA for the offshore industry [14, 15]. A real-time DRA has been performed in [16, 17], based 15 

on a dynamic loss function that considers multiple key state variables in the process industry. In [18], BN and 16 

Bow-tie model have been employed for the dynamic safety assessment of a natural gas station. A condition-based 17 

PRA has been performed in [6] for a spontaneous steam generator tube rupture accident. A data-driven DRA model 18 

has been developed for offshore drilling operations, where real time operational data have been used to update the 19 

probability of the kick event [19]. In [20], statistical failure data and condition monitoring data have been integrated 20 

in a hierarchical Bayesian model for DRA. DRA of an ET has been developed in [10] by using condition 21 

monitoring data to update the events probabilities.  22 

In the existing methods, the data used for DRA can be broadly divided into two categories: statistical failure 23 

data and condition monitoring data. Statistical failure data refer to counts of accidents, incidents or near misses 24 

collected from similar systems [21]. For instance, in [22] and [23], DRA has been performed using near misses and 25 

incident data from similar processes. In [24], Bayesian theorem has been applied to update the failure probabilities 26 

of the safety barriers in a Bow-tie model for DRA. Statistical failure data are collected from a population of similar 27 

systems, which are seldom available in large number and this limits the application of the statistical failure 28 

data-based DRA methods in practice. Also, statistical data refer to a population of similar systems and do not 29 
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necessarily capture the plant-specific features of the target system. To address these issues, condition monitoring 1 

data are often used in DRA. Condition monitoring data refer to the online monitoring data collected by sensors that 2 

are installed in the target system for monitoring the degradation process of the safety barrier. For example, a 3 

condition-based fault tree has been used for DRA, where the condition monitoring data have been used to update 4 

the failure rates of the specific components and predict the reliability [25, 26]. Particle filtering (PF) has been used 5 

for DRA based on condition monitoring data from a nonlinear non-Gaussian process [27]. In [28], a Bayesian 6 

reliability updating method has been developed by using condition monitoring data considering the dependencies 7 

between two components. In [5], condition monitoring data from a passive safety system have been used for DRA, 8 

without considering the uncertainty in the condition monitoring data.  9 

Inspection data are collected by physical inspections performed by maintenance personnel [29]. They have 10 

been widely used for online reliability assessment. For example, a Bayesian method has been developed to merge 11 

experts’ judgment with continuous and discontinuous inspection data for the reliability assessment of multi-state 12 

systems [30]. A two-stage recursive Bayesian approach has been developed in [31], in order to update system 13 

reliability based on imperfect inspection data. Condition monitoring data and inspection data on wind turbine 14 

blades have been used separately for remaining useful life estimation in [32]. As inspections directly measure the 15 

component degradation, they provide valuable information complementary to condition monitoring data for DRA 16 

and can help reducing the impact of the uncertainty in the condition monitoring data on the result of DRA. 17 

However, to the best of our knowledge, no previous work has considered integrating condition monitoring data and 18 

inspection data for DRA.  19 

In this paper, we develop a new framework to integrate condition monitoring data and inspection data in DRA. 20 

Compared to the existing works, the original contributions lie in: 21 

(1) a Hidden Markov-Gaussian Mixture Model is developed for modeling condition monitoring data; 22 

(2) a Bayesian network model is developed to integrate condition monitoring data and inspection data for 23 

DRA; 24 

(3) a real-world application is performed. 25 

The rest of the paper is organized as follows. Sect. 2 introduces the engineering motivation and formally 26 

defines the problem. In Sect. 3, a HM-GMM is developed for reliability updating and prediction of the failure of 27 

safety barriers based on condition monitoring data. A Bayesian network model is developed in Sect. 4 to integrate 28 

the inspection data and condition monitoring data for DRA. The framework is tested in Sect. 5 through a numerical 29 
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example. In Sect. 6, it is applied for the DRA of a real-world NPP. Finally, conclusions and potential future works 1 

are discussed in Sect. 7. 2 

2. Problem definitions 3 

The framework developed in this paper is motivated by real-world PRA practices. We consider an event tree 4 

model developed for the PRA of an Anticipated Transient Without Scram (ATWS) accident of a Nuclear Power 5 

Plant (NPP) [2]. The occurrence probabilities of the basic events, associated to the reliability of the safety barriers 6 

in the ET, are estimated from statistical data and assumed to remain constant throughout the life of the NPP [2]. 7 

However, the safety barriers in practice degrade. For example, a safety barrier in the aforementioned ET is the 8 

recirculation pump [2]; according to [33], most failures of the recirculation pump are caused by the degradation of 9 

the bearings, which makes the reliability of the pump time-dependent. DRA is best suited to capture such 10 

time-dependencies. 11 

Two types of data can be used for the DRA of the ATWS accident. The first is inspection data. Take the 12 

bearing mentioned above as an example: through inspections, the degradation state of the bearing can be identified, 13 

e.g., healthy, minor degradation (e.g., outer race defect), medium degradation (e.g., roller element defect), severe 14 

degradation (e.g., inner race defect), etc. (see Figure 1). The second type of data is condition monitoring data: some 15 

observable signals, e.g., temperature, vibration, etc., that contain information on the degradation process are 16 

measured and used to infer the degradation state. For example, the vibration signals of bearings are often used as 17 

condition monitoring data to estimate the degradation state and update the reliability of bearings [34]. Inspection 18 

data usually give discrete degradation states, with uncertainty due to state classification by the maintenance 19 

operator. Condition monitoring data are subject to uncertainty due to observation noises and degradation state 20 

estimation errors. In this paper, a new framework is proposed to integrate condition monitoring data and inspection 21 

data for improving the accuracy and reducing the uncertainty of the risk assessment. 22 

 
   

(a) healthy state (b) minor degradation 

(outer race defect) 

(c) medium degradation 

(roller element defect) 

(d) severe degradation 

(inner race defect) 
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Figure 1 Degradation states of bearing [35].  1 

Without loss of generality, we consider a generic Even Tree (ET) model for DRA, but the framework is 2 

applicable to other risk assessment models as well. Let IE  represent the initialing event of the ET and assume that 3 

there are M  safety barriers ( SB ) in the ET, denoted by , 1,2, , ,iSB i M=
 
whose states can be working or failure. 4 

The sequences that emerge from the IE  depend on the states of the SBs  and lead to N  possible consequences, 5 

denoted by 
1 2, , , .NC C C  The generic risk index considered in this paper is the conditional probability that a 6 

specific consequence 
iC  occurs, given that the IE  has occurred: 7 

 { occurs has occured}, 1,2, , .
iC iP P C IE i N= =  (1) 8 

Conditioning on the occurrence of the ,IE  these probabilities are functions of the reliabilities 9 

, 1,2, ,
iSBR i M=  of the safety barriers along the specific sequences: 10 

 
1 2

( , , , ), 1,2, , .
i MC ET SB SB SBP f R R R i N= =  (2) 11 

where ( )ETf   is the ET model function. For example, in the ET in Figure 2, the risk index 
2CP

 
of the 12 

consequence 
2C  of the second accident sequence, in which the IE  occurs with certainty, the first 

1SB  functions 13 

successfully and the second 
2SB  fails to provide its function, can be calculated as: 14 

 2 1 2

1 2

( , )

(1 ).

C ET SB SB

SB SB

P f R R

R R

=

= −
 (3) 15 

 

Figure 2 Illustrative Event Tree model. 16 

Without loss of generality, we assume that in the ET: 17 

(1) Safety barriers 1 2, , , KSB SB SB  are subject to degradation processes and, therefore, their reliability 18 

functions are time-dependent, whereas 1 2, , ,K K MSB SB SB+ +  do not degrade and have constant reliability 19 

values; 20 

(2) Condition monitoring data are collected for 1 2, , , KSB SB SB  at predefined time instants 21 
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, 1,2, ;kt t k q= =   1 

(3) The collected condition monitoring data on the -i th safety barrier at 
kt t=  are denoted by c ( ),i kt  

2 

where 1,2, , , 1,2, ,i K k q= =  and 1 2( ) [ ( ), ( ), , ( )]i i i i qt c t c t c t=c  is a vector containing all the signals 3 

that are monitored, where q  is the length of the time series; 4 

(4) At ,Int t= inspections are performed on the safety barriers , 1,2, , .iSB i K=  The inspection data are 5 

denoted by , , 1,2, , .IN iS i K=  6 

The DRA tasks are formally defined as: 7 

(1) risk updating: at time , 1,2, , ,kt t k q= =  update the estimated risk indexes at the current time ,kt  8 

based on the integration of condition monitoring and inspection data available up to ;kt  9 

(2) risk prediction: at time ,kt t=
 
predict the values of the risk indexes at future times, based on the 10 

integration of condition monitoring and inspection data available up to .kt  11 

3. A Hidden Markov Gaussian Mixture Model for modeling condition monitoring data  12 

In this section, we develop a HM-GMM to model condition monitoring data. In Sect. 3.1, we formally define 13 

the HM-GMM. Then, in Sect 3.2, we show how to use the developed HM-GMM to estimate the degradation state 14 

of a safety barrier using condition monitoring data. The estimated degradation states are, then, used in Sect. 4 for 15 

data integration in DRA. 16 

3.1 Model formulations 17 

Without loss of generality, we illustrate the HM-GMM using the -i th safety barrier in the ET. For simplicity 18 

of presentation, we drop the subscript i  in the notations. An illustration of the model is given in Figure 3. It is 19 

assumed that the safety barrier degrades during its lifetime and the degradation process follows a discrete state 20 

discrete time Markov model ( )S t  with a finite state space 1 2( ) { , , , },QS t S S S  where ( )S t  represents the 21 

health state of the safety barrier, Q  is the number of health states, and 
1 2, , , QS S S  are in descending order of 22 

health (
1S  is the perfect functioning state, 

QS  is the failure state). The evolution of the degradation process is 23 

characterized by the transition probability matrix of the Markov process, denoted by ,A  where { }ijA a=
 
and 24 

( )1( ) ( ) , 1,2, , ,1 , .ij k j k ia P S t S S t S k q i j Q+= = = =    The initial state distribution of the Markov process is 25 

denoted by 1 2 ,Q   =  π  where ( )0( ) ,1 .i iP S t S i Q = =    It should be noted that repairs are not 26 



 

9 

considered in this paper to simplify the calculation. Therefore, ( )S t  can only transit to a worse state and cannot 1 

move backwards. Besides, the failure state 
QS  is an absorbing state, such that ( )1( ) ( ) 1k k Qp S t i S t S+ = = =  if and 2 

only if 
Qi S=  and ( )1( ) ( ) 0k k Qp S t i S t S+ = = =  for other values of .i  However, this model can be easily 3 

extended to repairable component: only the transition matrix needs to be modified to allow backward jumps, which 4 

represent the repair of the safety barrier. The developed algorithms, can, then, be extended naturally. 5 

The discrete time discrete state Markov process model is chosen because it is widely applied for quantitatively 6 

describing discrete state degradation processes in many practical applications [36]. For example, a discrete state 7 

Markov model has been used to model the bearing degradation process in [35]. The degradation process of a safety 8 

instrumented system is modeled by a Markov model for availability analysis [37, 38]. Although only Markov 9 

process-based degradation models are discussed in this paper, the developed methods for data integration into DRA 10 

can be easily extended to other degradation models.  11 

 

Figure 3 Description of the HM-GMM. 12 

As described in Sect. 2.1, condition monitoring data ( )tc  are available at , 1,2, , .kt t k q= =  In practice, 13 

( )tc  contains only raw signals, which cannot be directly used for degradation modeling and analysis. Feature 14 

extraction, as shown in Figure 3, is needed to extract degradation features from ( )tc . For example, vibration 15 

signals are usually used as condition monitoring data for bearings [24]. The raw vibration signals, however, need to 16 

be preprocessed to extract features for degradation characterization. The commonly used degradation features 17 

include entropy, root mean square (RMS), kurtosis, etc [39]. In this paper, we refer to these extracted features as 18 
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degradation indicators and denote them by ( ),tx  where 
1 2( ) ( ), ( ), , ( )

featurent x t x t x t =
 

x  and featuren  is the number 1 

of the degradation features.  2 

As the safety barrier degrades, the degradation indicator ( )tx  exhibits distinct patterns. To capture such 3 

patterns and the uncertainty associated with them, it is assumed that at each degradation state ,1 ,iS i Q   the 4 

values of the degradation indicators x  follow a multivariate Gaussian distribution 5 

( ) ( )( ) ( ( ) ) ( , ), 1,2, , ,i i

i ib p S t S N i Q= = = =x x x μ Σ  as shown in Figure 3. The mean values vector ( )i
μ  captures 6 

the degradation pattern at each degradation state, while the covariance matrix ( )i
Σ  captures the uncertainty in the 7 

condition monitoring data. An overall picture of the HM-GMM is given in Figure 3. Conceptually, we denote the 8 

HM-GMM compactly as ={ , , },Aλ π μ Σ,  where π  is the initial state distribution, A  is the transition probability 9 

matrix, 
1 2= , , Q

  μ μ μ μ
 
is a vector of the mean values and 

(1) (2) ( ), , , Q =    Σ  is a collection of the 10 

covariance matrices of the multivariate Gaussian distribution, respectively. 11 

3.2 Degradation states estimation based on condition monitoring data 12 

In this section, we show how to estimate the degradation states of the safety barriers based on the developed 13 

HM-GMM of the condition monitoring data. As shown in Figure 4, the estimation is made by an offline step and an 14 

online step. In the offline step, a HM-GMM is trained based on training data from a population of similar systems. 15 

The trained HM-GMM model, is, then, used in the online step for degradation state estimation based on the 16 

condition monitoring data.  17 

The offline step starts from collecting training data, denoted by ( )

1 2( ), 1,2, , , , , , .k

Tr Tr Trt k n t t t t= =c  The 18 

training data comprise of historical measurements of the degradation signals from a population of similar systems. 19 

To ensure the accuracy of HM-GMM training, it is required to collect as many as possible training samples, i.e., the 20 

sample size Trn  should be as large as possible. The raw training data are preprocessed in a feature extraction step, 21 

as shown in Figure 4, to extract the health indicators ( )

1 2( ), 1,2, , , , , , .k

Tr Tr Trt k n t t t t= =x  Depending on the nature 22 

of the degradation process condition, different feature extraction methods, e.g., time-domain, frequency domain, 23 

time-frequency analyses, etc., can be used [39]. Next, in the HM-GMM training step, the extracted degradation 24 

indicators are used to estimate the parameters { , , , }A=λ μ Σ  of the trained HM-GMM. In this paper, the 25 

Expectation Maximization (EM) algorithm [40] is employed for training the HM-GMM (see Sect. 3.2.1 for details). 26 
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The parameters λ  is the output of the offline step.  1 

The online step starts from collecting the condition monitoring data for the safety barrier, denoted by 2 

( ), 1,2, , .kt k q=c  The condition monitoring data should be of the same type and collected by the same sensors, as 3 

in the offline step. Then, the raw degradation signals are preprocessed and the health indicators ( ), 1,2, ,kt k q=x  4 

of the target safety barrier are extracted, following the same procedures as in the offline step. Next, the degradation 5 

state of the safety barrier is estimated, based on the HM-GMM trained in the offline step. In this paper, we use the 6 

forward algorithm for degradation state estimation [40], as presented in details in Sect. 3.2.2. The estimated 7 

degradation state based on only condition monitoring data, denoted by ( ),CM kS t  is, then, integrated with 8 

inspection data for DRA in Sect. 4. 9 

 

Figure 4 Degradation state estimation based on condition monitoring data. 10 

3.2.1 HM-GMM training 11 

In this section, we present in detail how to do HM-GMM training in the offline step. The parameters12 

{ , , , }A=λ μ Σ  are estimated by maximizing the likelihood of observing the ( )

1 2( ), 1,2, , , , , , :k

Tr Tr Trt k n t t t t= =x   13 

 

( )

( )

( )(1) (2)

( )

1

arg max ( ), ( ), , ( )

arg max ( )

Tr

Tr

n

Tr Tr Tr

n

k

Tr

k

P t t t

P t
=

=

= 

λ

λ

λ x x x λ

x λ
 (4) 14 

Let ( )( )

1

( )
Trn

k

Tr

k

L P t
=

 x λ  be the likelihood function of the observation data. Directly solving (4) is not possible 15 

in practice, as the likelihood function in (4) contains unobservable variables (the true degradation states ( )S t  in 16 

this case). Expectation Maximization (EM) algorithm [40] is applied to solve this problem, where the maximum 17 

likelihood estimator is found in an iterative way: the current values of the parameters are used to estimate the 18 

unobservable variables (Expectation phase); then, the estimated values of the unknown variables are substituted 19 
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into the likelihood function to update the maximum likelihood estimators of the parameters (Maximization phase). 1 

The iterative procedures are repeated until the maximum likelihood estimators converge. 2 

To apply the EM algorithm to the HM-GMM model, two auxiliary variables need to be defined first, i.e., 3 

forward variable ( )t iS  and backward variable ( ).t iS
 
The forward variable is defined as the probability of 4 

observing the health indicators up to the current time t  and that the true degradation state ( ) ,iS t S=  given a 5 

known HM-GMM :λ  6 

 1 2( ) ( ( ), ( ), , ( ), ( ) ).t i iS P t t t S t S = =x x x λ  (5) 7 

It is easy to verify that 8 

 

1 1

1 +1

1

( ) π ( ( )),

( ) ( ) ( ) ,1 ,1 ,1 -1,

i i i

Q

t j j t t i ij Tr

i

S b t

S b S a i Q j Q t t



 +

=

=

 
=       

 


x

x
 (6) 9 

where 
Trt  represents the observation time length and all the elements in π i

 are zero, except the one that 10 

corresponds to the -i th element being one. 11 

The backward probability ( )t iS  is defined as the probability of observing the health indicator 12 

( 1), ( 2), , ( )Trt t t+ +x x x  from 1t +  to the end of the observations, given that ( ) iS t S=  and the model parameters 13 

are :λ
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 ( ) ( ( 1), ( 2), , ( ) ( ) , ).t i Tr iS P t t t S t S = + + =x x x λ  (7)
 

15 

It is easy to verify that 1

1

( ) ( ( 1)) ( ),1 ,1 , ( ) 1, 1, 2, ,1.
Tr

Q

t j j ij t j t Tr Tr

i

S b t a S i j Q i t t t  +

=

 
= +    = = − − 
 
 x  16 

The iterative estimators for the transition probabilities, denoted by ,ija  can, then, be derived as follows [41]: 17 

 

( )

,

1 1

( )

,

1 1

( , )

,

( )

Tr Tr

Tr Tr

n t
k

Tr t i j

k t

ij n t
k

Tr t i

k t

S S

a

S





= =

= =

=



 (8) 18 

where 
( )

, ( , )k

Tr t i jS S  represents the probability of the -k th sample being in 
iS  at time t  and state jS  at time 19 

1,t +  and is calculated by [41]: 20 

 

( )( ) ( )

,

( ) ( ) ( ) ( )

, , , 1

( )

,

( , ) ( ) , ( 1) ( 1) ,

( ) ( ( 1)) ( )
,

( )

k k

Tr t i j i j Tr

k k k k

Tr t i ij Tr j Tr Tr t j

k

Tr t i

S S P S t S S t S t

S a b t S

S



 



+

= = + = +

+
=

x λ

x  (9) 21 



 

13 

where 
( )

, ( )k

Tr t iS  represents the probability of being in 
iS  at time t  given the health indicator ( ) ( )k

Tr tx  and λ  for 1 

the -k th training sample: 2 

 
( ) ( ) ( ) ( )

, , , ,( )

, ( )
( ) ( )

, ,

1

( ) ( ) ( ) ( )
( ) .

( ( ) )
( ) ( )

k k k k

Tr t i Tr t i Tr t i Tr t ik

Tr t i k Q
k kTr

Tr t i Tr t i

i

S S S S
S

p t
S S

   


 
=

= =


x λ

 (10) 3 

The estimator for the initial state probability π , 1,2, ,
i

i Q=  is calculated by [40]: 4 

 

( )

,

1

( )

π .

Tr

i

n
k

Tr t i

k

Tr

S

n


==


 (11) 5 

The estimators of the mean value vectors are derived as [41]: 6 

 

( ) ( )

,

1 1

( )

,

1 1

( ) ( )

.

( )

Tr Tr

Tr Tr

n t
k k

Tr t i Tr

k t
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Similarly, the covariance matrices of the Gaussian output are calculated by [41]: 8 
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Algorithm 1 below summarizes the procedures for training the HM-GMM based on the EM algorithm. In 10 

Algorithm 1,   measures the distance between the current and the previous estimators. In this paper, we use the 11 

absolute value for its calculation, and tol  is the tolerance of the error. In this paper, we set 41 10 .tol −=   12 

Algorithm 1: HM-GMM training based on EM algorithm. 

Inputs: ( )(1) (2)

0 0 0 0 0={ , , }, ( ), ( ), , ( );Trn

Tr Tr TrA t t tλ π μ Σ x x x,  

Outputs: ={ , , };Aλ μ Σ,
 

Step 1: 
0 ;=λ λ  

Step 2: Expectation phase: calculate the forward and backward variables, based on (5) and (7), respectively, using 

the current value of ;λ  

Step 3: Maximization phase: update λ  based on (8), (11)-(13), respectively; 

Step 4: If ,prev tol− λ λ  End; 
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Else, ,prev =λ λ  go to Step 2. 

3.2.2 Degradation state estimation 1 

In this paper, the forward algorithm [40] is employed to estimate the degradation state of the safety barriers in 2 

the online step. Let 
CMS  denote the estimated degradation state from condition monitoring data and 3 

( ),P , 1,2, ,
kCM t CMS k q=  represent the posterior distribution of 

CMS  given the condition monitoring data up to 4 

:kt  5 

 ( ) ( ), 1 2P ( ) ( ) , ( ) , ( ),
kCM t CM i k i kS S P S t S t t t= = = x x x λ  (14) 6 

The posterior probabilities defined in (14) can be easily calculated from the forward probabilities defined in (15): 7 
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 (15) 8 

In practice, the ( )
kt iS  in (15) is calculated recursively, based on (5). 9 

At each ,kt t=  the most likely degradation state, denoted by , ( ),CM MAP kS t  is, then, determined by finding the 10 

state with maximal posterior probability: 11 

 ( ), ,
1

( ) arg max P ,1 .
kCM MAP k CM t CM i

i Q

S t S S k q
 

 = =     (16) 12 

Algorithm 2 below summarizes the major steps used for estimating the degradation state. 13 

Algorithm 2 Forward algorithm for degradation state estimation at .kt t=  

Input: 
1

{ , , }, ( ), 1,2, , , ( );
kt i kA S i Q t 
−

= =λ μ Σ x,  

Output: ( ), ,P , ( );
kCM t CM CM MAP kS S t  

Step 1: Calculate ( ), 1,2, , ,
kt iS i Q =  by (6); 

Step 2: Calculate the posterior probability ( ),P
kCM t CMS  by (15); 

Step 3: Estimate the degradation state , ( )CM MAP kS t  by (16). 

4 Integrating condition monitoring data with inspection data for DRA 14 

In this section, we first show how to integrate the condition monitoring data with inspection data for reliability 15 
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updating and prediction of the safety barriers (Sect. 4.1). Then, in Sect. 4.2, we develop a DRA method based on 1 

the updated and predicted reliabilities.  2 

4.1 A Bayesian network model for data integration 3 

As in the previous sections, we illustrate the developed data integration method using the -i th safety barrier 4 

at .kt t=  For simplicity and to avoid confusion, we drop the i  and 
kt  in the notations. To update and predict the 5 

reliability, one needs to estimate the degradation state first. Let 
INS  denote the degradation state estimated from 6 

inspection data and S  denote the true degradation state. In practice, 
INS  is subject to uncertainty due to potential 7 

imprecision in the inspection and recording by the maintenance personnel. To model such uncertainty, in this paper, 8 

we assume that the reliability of inspection is ,INR  and that the maintenance personnel correctly identify the true 9 

degradation state with a probability ,INR  whereas an inspection error can occur with probability (1 ).INR−  When 10 

an inspection error occurs, it is further assumed that the probabilities for each of the possible degradation states 11 

being erroneously identified as the true degradation state are equal to each other: 12 

 

,

( ) 1
, ,

1

IN i

IN i IN

i

R S S

P S S S R
S S

Q

=


= = −
 −

 (17) 13 

where Q  is the number of degradation states. It is should be noted that other inspection models might also be 14 

assumed, depending on the actual problem setting. 15 

In this paper, a BN is developed to describe the dependencies among , , ,IN CMS S S  as shown in Figure 5. The 16 

BN in Figure 5 is constructed based on the assumption that given the true degradation state ,S  the estimated 17 

degradation state from condition monitoring data and inspection data are conditional-independent. 18 

 

Figure 5 A BN model for data integration. 19 

Based on the BN in Figure 5, we have  20 

 ( ) ( ) ( ) ( ), , .IN CM IN CMP S S S P S S P S S P S=  (18) 21 

In (18), ( )P S  measures the prior belief of the analysts on the current degradation states. We assume that ( )P S  22 
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is a uniform distribution over all the possible degradation states, indicating that there is no further information to 1 

distinguish the states.  2 

The conditional probability distribution ( )INP S S  describes the uncertainty in the inspections and is derived 3 

based on (17). In (17), the reliability of the inspection can be estimated from historical data or assigned based on 4 

expert judgments. The conditional probability distribution ( )CMP S S  measures the trust one has on the estimated 5 

degradation state based on condition monitoring data. Its values can be estimated from validation test data. 6 

However, in practice, as validation tests are not always available, ( )CMP S S  might also be assigned by experts 7 

considering the measurement uncertainty of the sensors and the distance between the neighboring degradation 8 

states. We give an example of how to determine ( )CMP S S  in the case study of Sect. 6. 9 

Once the condition monitoring data and inspection data are available, the observed values of 
INS  and 

CMS  10 

are known. Suppose we have CM jS S=  and .IN iS S=  It should be noted that we choose the state with maximal 11 

posterior probability from (16) as the observation value of .CMS  The two data sources can be naturally integrated 12 

by calculating the posterior distribution of S
 
given the two data sources, denoted by ( ).INTP S  Based on the BN 13 

in Figure 5, we have: 14 
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 (19) 15 

Given the estimated posterior distribution in (19), the reliability of the safety barrier can be updated. Suppose 16 

the current time is ,kt  the updated reliability can be calculated by: 17 

 ( ),( ) P ,
kSB k INT tS W

R t S


=  (20) 18 

where W  is the working set that contains all the working states; ( ),P
kINT t S  is the posterior probability of the true 19 

degradation state after integrating the two data sources at kt t=  and is calculated from (19). 20 

Furthermore, at ,kt t=  we can also predict the reliability of the safety barriers at a future time .Futt  For this, 21 

the distribution of the degradation states at Futt t=  is predicted first, using Chapman-Kolmogorov equation [42] 22 

and the trained model from the offline step: 23 
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( )

, ,( ) ( ) .
Fut k

Fut k

t t

INT t INT tP S P S A
−

=   (21) 1 

The reliability at ,kt t= can be predicted as:  2 

 
,( ) ( ).

FutSB Fut INT tS W
R t P S


=  (22) 3 

4.2 Dynamic risk assessment 4 

The updated reliabilities from (20), can, then, be substituted into (2) for DRA: 5 

 
1 2 1

( ) ( ( ), ( ), , ( ), , , ), 1,2, , ,
i K K MC k ET SB k SB k SB k SB SBr t f R t R t R t R R IE i N

+
= =  (23) 6 

where in (23), ( )
iSB kR t  is calculated by (20). Similarly, the risk index at a future time 

Futt  can be predicted by: 7 

 
1 2 1

( ) ( ( ), ( ), , ( ), , , ), 1,2, , ,
i K K MC Fut ET SB Fut SB Fut SB Fut SB SBr t f R t R t R t R R IE i N

+
= =  (24) 8 

where ( )
iSB FutR t  is calculated by (21) and (22). 9 

Figure 6 summarizes the major steps for the developed DRA method by integrating condition monitoring data 10 

with inspection data. It should be noted that in Figure 6, the risk updating is made at 
kt t= , while risk prediction is 11 

made for a given future time .Futt  12 

 

Figure 6 Procedures for DRA based on condition monitoring and inspection data. 13 

5. Numerical case study 14 

In this section, we apply the DRA framework for data integration (see Sect. 4.1) on a numerical case study. 15 
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The purpose is to test the updating and prediction of safety barrier reliability. Hence, only reliability updating and 1 

prediction are considered. The application of the overall DRA framework is done in Sect. 6 on a real-world case. 2 

Consider a component whose degradation process follows a discrete state discrete time Markov chain ( )S t  3 

with four discrete degradation states 
1 2 3 4, , , ,S S S S  where 

1 4S S  have increasing degrees of degradation from 
1S  4 

perfect state, to 
4S  failure state. The condition monitoring data are generated from a HM-GMM with known 5 

parameters values: 6 
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 (25) 7 

The degradation indicator comprises of three features, denoted by 
1 2,x x  and 

3 ,x  respectively. The size of 8 

the generated training data is 
410  and 

1 2 23, , ,t t t t=  are the time instants of data collection. Then, the training 9 

data can be represented as ( ) 4

1 2 23( ), 1,2, ,10 , , , , ,k

Tr t k t t t t= =x  where ( ) ( ) ( ) ( )

,1 ,2 ,3( ) ( ), ( ), ( ) .k k k k

Tr Tr Tr Trt x t x t x t =  x  The 10 

training data are used in the offline step for estimating the model parameters. Then, another sample, denoted by 11 

( ), 1,2, , ,CM CMt t t=x  is generated from the HM-GMM in (25) and used as condition monitoring data collected on 12 

the safety barrier monitored in the online step, as shown in Figure 7.  13 

 

Figure 7 The generated condition monitoring data for the monitored safety barrier. 14 

Based on the generated condition monitoring data, the reliability updating and prediction can be done using 15 
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Algorithm 1 and equations (20) and (22). Due to the noise in the condition monitoring data, the updated reliability 1 

is subject to uncertainty. The method in Figure 6 is applied to solve this problem by integrating condition 2 

monitoring data with inspection data. In this section, we test the performance of the developed data integration 3 

method under three possible scenarios: 4 

(1) Both condition monitoring data and inspection data correctly estimate the degradation state: this scenario 5 

is represented by choosing the time point 
3= ,t t  where the estimated degradation state from condition 6 

monitoring data and the true degradation state are both 
2 .S  The inspection data at 

kt  is generated to be 7 

exactly 
3 2( ) .INS t S=  8 

(2) Condition monitoring data correctly estimate the degradation state, but inspection data do not: this 9 

scenario is represented by choosing the time point 
7= ,t t  where the estimated degradation state from 10 

condition monitoring data and the true state are both 
3 ,S  whereas the inspection data at 

7t  is randomly 11 

sampled from , 1, , , 3.kS k Q k=   The state from the inspection data is 
3 2( ) .INS t S=  12 

(3) Inspection data correctly estimate the degradation state, but condition monitoring data do not: this 13 

scenario is generated by choosing the time point 
5= ,t t  where the estimated degradation state from 14 

condition monitoring data is 
5 2( ) ,CMS t S=  whereas the true degradation state is 

5 3( ) .S t S=  The 15 

inspection data at 
5t  are generated to be 

5 5 3( ) ( ) .INS t S t S= =  16 

In subsections 5.1-5.3, we apply the developed data integration method on the three scenarios above. 17 

5.1 Scenario Ⅰ: Both data sources are reliable 18 

The reliability updating and prediction processes are conducted following the procedures in Figure 6, at 
3.t t=  19 

The updated and predicted reliability are compared to those calculated based on only condition monitoring data and 20 

only inspection data, respectively. The comparison is shown in Figure 8. We also show the relative errors of the 21 

three methods with respect to the true values in Table 1. 22 

 23 

 24 
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Figure 8 Updated and predicted reliability at 
3t t=  (scenario Ⅰ). 1 

Table 1 Relative errors of the scenario I 2 

 3t t=  
4t t=  

5t t=  
6t t=  

7t t=  
8t t=  

9t t=  
10t t=  

Condition monitoring data-based method 0 4.8% 9.7% 14.5% 19% 23% 27% 31% 

Inspection data-based method 0 1.34% 0.9% 4.6% 8.7% 12.9% 17% 21% 

Integrated method 0 1.2% 0.9% 4.3% 7% 11.7% 15% 18.6% 

As shown in Figure 8 and Table 1, the proposed method provides a more accurate estimation and prediction of 3 

the reliability than the other two methods. This is because condition monitoring data are affected by noise from the 4 

data collection process, which results in uncertainty in the estimated degradation state. In this case, the state 5 

distribution estimated by the condition monitoring data is  6 

 
3, ( ) [0 0.8263 0.1737 0],CM t CMP S =  (26) 7 

whereas the one estimated by integrating the two data sources is   8 

 
3, ( ) [0.01 0.98 0.01 0].INT tP S =  (27) 9 

It can be seen that integrating the two data sources reduces the uncertainty in the degradation state estimation (note 10 

that at 3 ,t t=  the true degradation state is 2S ). Therefore, the updated and predicted reliabilities are more 11 

accurate than only using condition monitoring data. 12 

On the other hand, the transition probability matrix A  estimated from the offline step is 13 

 

0.6010 0.2125 0.0865 0.1

0 0.4483 0.3121 0.2395
.

0 0 0.4938 0.5062

0 0 0 1

A

 
 
 =
 
 
 

 (28) 14 
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Comparing (28) to the true values in (25), it can be seen that when the current state is 
2 ,S  the estimated A  tends 1 

to underestimate the reliability as it overestimates the transition probabilities to the failure states. As the inspection 2 

data estimate that the system is in 
2 ,S  using only inspection data tends to underestimate the reliability. Integrating 3 

the two data sources, as shown in (27), predicts that the safety barrier is also likely to be in 
1,S  which 4 

compensates the errors in the estimated λ  and results in more accurate reliability estimates.  5 

5.2 Scenario II: Condition monitoring data are reliable but inspection data are not 6 

The reliability updating and prediction processes are conducted following the procedures in Figure 6, at 7 

7 .t t=  The updated and predicted reliability are compared to those calculated based on only condition monitoring 8 

data and only inspection data, respectively. The comparison is shown in Figure 9. We also present the relative error 9 

of the three methods by comparing them to the true values in Table 2. 10 

 

Figure 9 Updated and predicted reliability at 
7t t=  (scenario II). 11 

Table 2 Relative errors of the scenario II 12 

 
7t t=  

8t t=  
9t t=  

10t t=  
11t t=  

12t t=  
13t t=  

14t t=  

Condition monitoring data-based method 0 12% 22% 33% 39% 46% 52% 57% 

Inspection data-based method 0 52% 98% 138% 173% 204% 232% 255% 

Integrated method 6% 34% 71% 96% 105% 137% 158% 197% 

As shown in Figure 9 and Table 2, the results obtained by the inspection-data based method have the largest 13 

estimation error. The proposed data integration method provides more accuracy than the inspection data-based 14 

method. This is expected, as in this case the inspection data fail to correctly estimate the degradation state. By 15 

integrating condition monitoring data, the incorrect information from inspection data can be somewhat corrected. 16 
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On the contrary, the estimation error of the data integration method is larger than that of the condition monitoring 1 

data-based method. This is because the data integration method is affected by the incorrect information from the 2 

inspection data. Trustworthiness of the inspection becomes essential, then.  3 

5.3 Scenario III: Inspection data are reliable but condition monitoring data are not 4 

The reliability updating and prediction are conducted following the procedures in Figure 6, at 
5.t t=  The 5 

updated and predicted reliability are compared to those calculated based on only condition monitoring data and 6 

only inspection data, respectively. The comparison is shown in Figure 10. We also present the relative errors of the 7 

three methods by comparing them to the true values in Table 3. 8 

 

Figure 10 Updated and predicted reliability at 
5t t=  (scenario III). 9 

Table 3 Relative errors of the scenario III 10 

 
5t t=  

6t t=  
7t t=  

8t t=  
9t t=  

10t t=  
11t t=  

12t t=  

Condition monitoring data-based method 0 16% 26% 14.5% 33% 38.5% 43% 46% 

Inspection data-based method 0 1.39% 2.9% 4.6% 8.6% 12.9% 16.9% 21% 

Integrated method 2% 10% 14% 17% 20% 23% 25% 27% 

As shown in Figure 10 and Table 3, the results obtained by the condition monitoring data-based method have 11 

the largest estimation errors. This is expected as in this case, the condition monitoring data fail to correctly estimate 12 

the degradation state. The proposed data integration method provides a more accurate result than the condition 13 

monitoring data-based method. This is because, by integrating inspection data, the incorrect estimation from the 14 

condition monitoring data can be compensated. However, the estimation error is larger than that of the inspection 15 

data-based method. This is because the data integration method also considers the incorrect information from the 16 

condition monitoring data.  17 
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In practical operation, the developed method can help the stakeholder/decision-makers to determine when to 1 

perform preventive maintenance on critical safety barriers. This is done by setting a minimum acceptable value for 2 

reliability and calculating the first time the reliability drops below this value. Traditionally, in preventive 3 

maintenance planning, the reliability is estimated using condition monitoring data. As shown in Figure 10, the 4 

reliability estimation based on condition monitoring data might sometimes yield imprecise results. The developed 5 

method, can, then, provide a more realistic assessment to support decision making regarding when a preventive 6 

replacement is needed. 7 

6. Application 8 

In this section, the developed method is applied for DRA of an Anticipated Transient Without Scram (ATWS) 9 

accident of a NPP [2]. The description of the case study is briefly introduced in Sect. 6.1. Then, in Sect. 6.2, the 10 

developed HM-GMM and the data integration process are presented. The results of the DRA are presented and 11 

discussed in Sect. 6.3.  12 

6.1 System description 13 

ATWS is an accident that can happen in a NPP. In this accident, the scram system, which is designed to shut 14 

down the reactor during an abnormal event (anticipated transient), fails to work [43]. An ET has been developed for 15 

PRA of the ATWS for a NPP in China [2], as shown in Figure 11. In Figure 11, T1ACM represents the failure of the 16 

automatic scram system and is the initialing event (IE) considered. Eleven safety barriers (
1 11SB SB ) are designed 17 

to contain the accident (Table 4). Depending on the states of the safety barriers, 23 sequences can be generated 18 

(
01 23SE SE− ) [2, 44]. The consequences of the sequences are grouped into two categories, based on their severity; 19 

the first group, 20 

 03 06 07 08 09 12 13 14 15 18 19 20 21 22 23{ , , , , , , , , , , , , , , },sC SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE=  (29) 21 

represents the event sequences with severe consequences, whereas the remaining event sequences have non-severe 22 

consequences [44]. The risk index Risk  considered in this paper is the conditional probability of having severe 23 

consequences, given the initialing event ( 1IE T ACM= ): 24 

 
1 2 1( ) ( , , , ),

MS ET SB SB SBRisk P C IE f R R R T ACM=  (30) 25 

where the model function ( )ETf  is determined from the ET in Figure 11 and 
1 2
, , ,

MSB SB SBR R R  are the 26 

reliabilities of the safety barriers, calculated based on the component failure probabilities in Table 4. It should be 27 
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noted that the failure probabilities for 
7SB  and 

8SB  change depending on the event sequence that occurs (see, 1 

e.g., 
7

(1)

,f SBP  and 
7

(2)

,f SBP  in Figure 11 and Table 4). 2 

 

Figure 11 ET for the ATWS [44]; at each branching, the upper branch corresponds to the non-failure of the safety barrier 3 
and the low branch corresponds to the failure of the safety barrier. 4 

In this original ETA of the ATWS, the failure probabilities in Table 4 are assumed to be constant values. In 5 

practice, however, these probabilities might change due to various degradation mechanisms. Take the recirculation 6 

pump as an example. According to [33], most field failures of the recirculation pump are caused by the degradation 7 

of the bearing inside the pump, which makes the failure probability of the recirculation pump time-dependent. In 8 

this paper, we make a DRA on the ET in Figure 11, considering the degradation of the bearing in the recirculation 9 

pump.  10 

The condition monitoring data of the bearing come from the bearing degradation dataset from university of 11 

Cincinnati [45]. The dataset contains four samples and for each sample, raw condition monitoring data are collected 12 

in real time by measuring the vibration acceleration signals. An illustration of the raw data is given in Figure 12. On 13 

the other hand, the inspection can be performed at some given time instants to identify the different degradation 14 

states. As shown in Figure 1, we distinguish from four degradation states in this case study. 15 

 16 

 17 
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Table 4 Safety barriers in the target system [2]. 1 

Safety barrier 
Failure probability

( )fP  Description 

Recirculation pump 

(
1SB ) 

31.96 10−  
Once the plant fails to scram, the recirculation pump is activated 

and used to limit power generation of the NPP. 

Safety valve (
2SB ) 51.01 10−  

Safety valves are opened to prevent over-pressurization of the 

reactor. 

Boron injection (
3SB ) 51 10−  

Liquid boron should be injected manually by the operator within 

the allowable time to shut down the reactor safely. 

Automatic 

Depressurization 

System (ADS) inhibit 

(
4SB ) 

21.37 10−  
ADS is designed to decrease the pressure of the reactor in order to 

start the low-pressure system. 

Early high-pressure 

makeup (
5SB ) 

28.45 10−  

The system is supposed to work automatically when automatic 

actuation alarm appears, indicating that the water level is lowering 

to level 2. 

Long-term 

high-pressure makeup 

(
6SB ) 

32.13 10−  
The long-term high-pressure system is used to maintain the water 

level in the vessel 24 hours after the start. 

Manual reactor 

depressurization (
7SB ) 

7

7

(1)

,

(2)

,

0.45,

0.9

f SB

f SB

P

P

=

=
 

The operator depressurizes the vessel manually to avoid core 

melt-down. In 
04 09 ,SE SE− the failure probability is 

7

(1)

, ,f SBP

whereas, in 
10 15 ,SE SE−  the failure probability is 

7

(2)

, .f SBP  

Reactor inventory 

makeup at low pressure 

(
8SB ) 

8

8

8

(1) 6

,

(2) 6

,

(3) 5

,

1.12 10 ,

3.4 10 ,

9.49 10

f SB

f SB

f SB

P

P

P

−

−

−

= 

= 

= 

 

If the low pressure system fails as well as the high-pressure 

system, then the reactor inventory makeup at lower pressure needs 

to be activated. In 
04 07 ,SE SE− the failure probability is 

8

(1)

, ,f SBP  

while, in 
10 14 ,SE SE−  the failure probability is 

8

(2)

, .f SBP  In 

16 20 ,SE SE−  the failure probability is 
8

(3)

, .f SBP  

Vessel overfill 

prevention (
9SB ) 

0.875  
The operator needs to monitor the water level and make sure the 

level is not too high to cause core melt-down. 

Long-term heat 

removal (
10SB ) 

52.03 10−  

The long-term heat removal system is initialized to cool down the 

suppression pool and containment in order to maintain the other 

supporting systems in working states. 

Vessel inventory 

makeup after 

containment (
11SB ) 

0.4  
This measure supplies the proper amount of water to protect the 

fuel from melting when containment failure happens. 

 2 
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Figure 12 Raw data for the bearing 1 in the test #1 at 10 minutes. 1 

6.2 Dynamic risk assessment  2 

DRA of the ATWS is carried out following the procedures in Figure 6, where the real data set from [45] is 3 

used as historical training data. In the offline step, feature extraction needs to be conducted first. Three features are 4 

extracted from the vibration signals using the time domain method: 5 
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where 
1x  is the average power of vibration, 

2x  is the root mean square, 
3x  is the mean value of vibration. In 7 

(31), f  is the sampling frequency, 1( )i it t f−−   is the number of sampling points in time interval 
1[ , ],i it t−

 and 8 

jc
 
is the vibration signal. The extracted degradation indicators are shown in Figure 13. 9 
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(a) 

1( ) :x t  average power of vibration (b) 
2 ( ) :x t  root mean square 

 
(c) 

3 ( ) :x t  mean value of vibration  

Figure 13 Extracted degradation indicators. 1 

Algorithm 1 is applied to train a HM-GMM with four discrete degradation states based on the extracted 2 

degradation indicators: 3 
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 The online condition monitoring data are generated using the bootstrap sampling: 410  bootstrap samples are 5 
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generated from the training data set. A HM-GMM λ  is, then, trained based on these samples using Algorithm 1: 1 
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The HM-GMM λ  in (33) is, then, treated as the true degradation model and used to generate the condition 3 

monitoring data for the bearing that is monitored in the online step. The generated condition monitoring data are 4 

shown in Figure 14. 5 

 
Figure 14 The generated condition monitoring data. 6 

Inspections are conducted at three time instants, i.e., 30( ),t d=  35( )t d=  and 50( ),t d=  respectively. The 7 

inspection data at the three time instants are given in Table 5. In Table 5, we also show the true degradation states 8 

obtained from the true degradation model in (33) and the estimated degradation states using condition monitoring 9 

data and Algorithm 2. 10 

The estimated degradation state INS  and CMS  are, then, integrated using (19). Note that in (17), the 11 

reliability of the inspection data is set to 0.8.INR =  Then, the value of ( )INP S S  in (19) can be derived easily 12 

from (17). The values of ( )CMP S S
 

are assigned by considering the distance between the neighboring degradation 13 

states: the closer the states are, the more likely a misclassification might happen. For example, the normalized 14 

distance between 
2S  and 

3S  is: 15 
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and the normalized distance between 
3S  and 

4S  is: 2 
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where ( )d  is the Euclidean distance. Thus, we set 2 3( ) 0.1CMP S S S S= = =  and 4 3( ) 0.2.CMP S S S S= = =  The 4 

values of the other elements in ( )CMP S S  are determined in a similar way and reported in Table 6. Once the 5 

integrated estimation of the degradation state is obtained, risk updating and prediction can be performed by (23) 6 

and (24), respectively. 7 

Table 5 Values of , CMS S  and 
INS  at different time instants. 8 

 30( )t d=  35( )t d=  50( )t d=  

S  2S  
3S  

3S  

CMS  
2S  

2S  
3S  

INS  
2S  

3S  
2S  

Table 6 Values of ( )CMP S S . 9 

 1S S=  2S S=  3S S=  4S S=  

1( )CMP S S S=  0.9 0 0 0 

2( )CMP S S S=  0.05 0.9 0.1 0.1 

3( )CMP S S S=  0.05 0.1 0.9 0.1 

4( )CMP S S S=  0 0 0 0.8 

6.3 Results and discussion 10 

The results of risk updating and prediction at 30,35t =  and 50( )d  are given in Figure 15. In Figure 15, we 11 

also show the results from using only condition monitoring data and inspection data, for comparison. 12 
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(a) 30( )t d=  (b) 35( )t d=  

 
(c) 50( )t d=  

Figure 15 The results of risk updating and prediction. 1 

As shown in Figure 15(a), at 30( ),t d=  the results from all the three methods are close to each other. This 2 

can be explained from Table 5: at 30( ),t d=  both data sources correctly identify the true degradation states. 3 

However, when compared to the true risk values, the updated and predicted risks from all the three methods show 4 

relatively large discrepancies. This discrepancy is mainly due to the estimation errors in the offline step (see (32) 5 

and (33)), as we have only four samples in the training data set. A possible way to increase the accuracy of risk 6 

updating is, then, to increase the sample size of the training data in the offline step.  7 

It can be seen from Table 5 that at 35( ),t d=  the inspection data give correct information on the current 8 

degradation state while condition monitoring data do not. From Figure 15(b), it can be seen that the developed 9 

data-integration method improves the DRA results from the condition monitoring data-based method, as it 10 

integrates the correct information from inspection data. On the other hand, when the inspection data fail to give the 11 

correct information ( 50( )),t d=  it can be seen from Figure 15(c) that the developed data integration method can 12 

also correct the misleading results obtained from using only the inspection data. Hence, in general, applying the 13 
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developed data integration method can achieve a more robust DRA result than using the two data sources 1 

individually. 2 

In Figure 16, we compare the developed DRA method with the conventional ETA method in [2]. It can be seen 3 

from Figure 16 that the results from the developed DRA method are closer to the true risk values than those of the 4 

standard ETA. This is because through the integration of inspection and conditon monitoring data, the developed 5 

method is able to capture the time-dependent behavior of the recirculation pump resulting from the degradation of 6 

the bearing. The standard ETA, however, fails to capture such time-dependencies as it assumes that the event 7 

probabilities do not change although the real system/component ages over time. 8 

  
(a) 30( )t d=  (b) 35( )t d=  

 
(c) 50( )t d=  

Figure 16 Comparisons of traditional ETA and DRA. 9 

Additionally, as can be seen from Figure 16, the true risk is higher than the one estimated by the developed 10 

method. However, it does not mean that the proposed model always underestimates the risk. For instance, in Figure 11 

10, the developed model actually overestimates the risk by underestimating the component reliability. The 12 

inaccuracy of the risk estimation is caused by the imprecise estimation of the parameters in the HM-GMM 13 

(equation 32), which is primarily due to the small training sample size in the offline training of the HM-GMM (see 14 



 

32 

Figure 4). It can be seen from equations (32) and (33) that, since we have only 4 samples in the offline training 1 

phase, the estimated transition probability differs from its true value. Particularly, the probability of system remains 2 

in 
3S  given that it enters 

3 ,S  is estimated to be 33 0.9565,a =  which is larger than its true value 
33 0.7150.a =  3 

As 
4S  is the failure state, this indicates that the trained HM-GMM trends to overestimate the reliability of the 4 

safety barrier, and, hence, underestimate the risk in Figure 16. The inaccuracy of the estimation is caused by the 5 

fact that we have only 4 samples in the offline training phase of the case study (as it is a real dataset). To have a 6 

more bounding risk estimation, we could increase the sample size of the training data used to estimate the 7 

parameters of the HM-GMM. In the numerical case study (Section 5), we show an ideal case where we have 410  8 

training samples. It can be seen from Figure 8 that the estimation accuracy is satisfactory if we have enough 9 

training data. 10 

A major issue with the EM algorithm (Algorithm 1) is that, when the sample size is small, there is large 11 

uncertainty on the estimated parameter values. This uncertainty, if not properly addressed, might greatly impact the 12 

estimation accuracy of the reliability of the safety barriers, and, then, the calculated risk. One way to capture the 13 

parametric uncertainty in the estimated parameters is to use Bayesian inference [20, 46, 47], where posterior 14 

distribution of the parameters, rather than point estimators, are calculated to represent the parametric uncertainty. 15 

The uncertainty in the parameter estimation can be represented in terms of the credible intervals. By propagating 16 

the parametric uncertainty, credibility interval can also be obtained for the estimated risk, which can help the 17 

decision-makers understand the confidence on the risk estimations.  18 

7. Conclusions 19 

In this paper, a framework has been presented to integrate condition monitoring data and inspection data for 20 

DRA. A HM-GMM has been developed to estimate the degradation states of the safety barriers based on the 21 

condition monitoring data. The estimated degradation states are integrated with the inspection data for DRA by a 22 

BN model. A numerical case study and a real-word application on a NPP accident risk assessment model (an ET) 23 

have been conducted. The results show that, as expected, integrating the two data sources into the DRA gives more 24 

accurate and robust results than using any one of the two individual data sources.  25 

There are few challenges to be addressed when applying the developed model to real-life large-scale systems 26 

(of systems). The first one is that, to ensure the accuracy of the developed method, a large number of training 27 

samples is needed. This could be a challenge for real-world systems, especially for newly designed ones. To solve 28 
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this challenge, the training algorithm of the HM-GMM can be extended to Bayesian inference algorithms, which 1 

might reduce the required sample size. Another challenge is that, for large-scale systems, there may not be only one 2 

safety barrier that degrades. The developed model needs, therefore, be extended to cover problems with multiple 3 

degrading components.  4 

The current method only considers a discrete time discrete state Markov model as the degradation model. A 5 

future work is to extend the developed framework to other degradation models, e.g. the Brownian motion model 6 

[48], Gamma process model [49], etc. Moreover, in the current framework, the parameters of HM-GMM are 7 

estimated offline; in the future, online updating of the parameters can be considered in order to improve the 8 

accuracy of the DRA.  9 
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