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1. Introduction 1 

In Risk-Informed Decision-Making (RIDM), risk metrics are first calculated through Multi-Hazards Risk 2 

Aggregation (MHRA) by combining all the relevant information on risk from different contributors (hazard groups) 3 

and, then, used to support Decision-Making (DM) (EPRI, 2015). A fundamental criticism of the current practice is 4 

that the aggregation is conducted by a simple arithmetic summation of the risk metrics from different hazard groups, 5 

without considering the heterogeneity in the degrees of maturity and realism of the risk analysis for each hazard 6 

group (EPRI, 2015). For example, in Nuclear Power Plants (NPP), the Probabilistic Risk Assessment (PRA) for 7 

internal events has been developed for many years and considered relatively mature compared to external events 8 

(EPRI, 2015) or to fire (Siu et al., 2015). Simply adding up the risk indexes can be misleading because it does not 9 

consider any information on the trust in the risk indexes calculated for each hazard group. This is a real problem as 10 

the results of the PRAs to be aggregated often involve different hazard groups with different levels of realism and 11 

trustworthiness.  12 

Various factors contributing to the trustworthiness of risk analysis have been discussed in the literature, including 13 

the strength of background knowledge, conservatism, plausibility and realism of assumptions, uncertainty, level of 14 

sophistication and details in the analysis, value-ladenness of the assessors, experience, number of approximations 15 

and assumptions made in the analysis, etc. (EPRI, 2012), (EPRI, 2015). Communicating these factors to the decision 16 

maker can better inform decision making (Flage and Aven, 2009), (EPRI, 2012), (Aven, 2013b), (EPRI, 2015), 17 

(Veland and Aven, 2015). For this, some experts propose a broad representation of risk that highlights uncertainties 18 

rather than probability (Flage and Aven, 2009), (Aven, 2013b), (Aven and Krohn, 2014). In Aven (2013a), the risk is 19 

described in terms of events, consequences, uncertainty (𝐴, 𝐶, 𝑈)  and a structure is presented for linking the 20 

elements of a Data-Information-Knowledge-Wisdom hierarchy to this perspective. In (Flage and Aven, 2009), the 21 

authors apply the concept of uncertainty as the main component of risk, whereas the probability is regarded as an 22 

epistemic-based expression of uncertainty. Their argument is that for decision making purposes, a broad and 23 

comprehensive representation of risk is required to cover the events, consequences, predictions, uncertainty, 24 

probability, sensitivity, and knowledge. In addition, they propose a simple and practical method to classify uncertainty 25 

factors and evaluate the background knowledge given the following criteria: the inter-alia assumptions and 26 

presuppositions (solidity of assumptions), historical field data (availability of reliable data), understanding of 27 

phenomena, and agreement among experts.  28 

Some attempts are also found in the literature that focus on treating the uncertain assumptions as an implication 29 
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of new risk perspectives. Aven (2013b) proposed a method for assessing the assumption deviation risk by three 1 

elements: (i) the degree of the expected deviation of the assumption from reality and its consequences (ii) a measure 2 

of uncertainty of the deviation and consequences; (iii) the knowledge on which the assumptions are based. Berner 3 

and Flage (2016) summarize four approaches for treating uncertain assumptions: (i) law of total expectation; (ii) 4 

interval probability; (iii) crude strength of knowledge and sensitivity categorization; (iv) assumption deviation risk. 5 

In this work, they extend the method in Berner and Flage (2015) that evaluates the assumption deviation risk based 6 

on three criteria: belief in the deviation from the assumption, sensitivity of the risk index and its dependency on the 7 

assumption, and SoK on which the assumptions are made. Six settings are identified for the corresponding scenarios 8 

resulting given the three criteria. Guidance for treating the uncertainty related to the deviation of assumptions is given 9 

for each setting. Finally, an application of Numeral Unit Spread Assessment Pedigree (NUSAP) is proposed for 10 

analyzing the strength, importance, and potential value-ladenness of assumptions through a pedigree diagram (Van 11 

Der Sluijs et al., 2005), (Boone et al., 2010), (Kloprogge et al., 2011), (De Jong et al., 2012). The pedigree diagram 12 

uses seven criteria for evaluating the quality of assumptions: (i) plausibility; (ii) inter-subjectivity peers; (iii) inter-13 

subjectivity stakeholders; (iv) choice space; (v) influence of situational limitations; (vi) sensitivity to view and 14 

interests of the analyst (vii) and influence on results (Van Der Sluijs et al., 2005), (Boone et al., 2010), (Kloprogge 15 

et al., 2011), (De Jong et al., 2012).  16 

In addition, some attempts are found in the literature for directly evaluating the trustworthiness and other relevant 17 

quantities. In Bani-Mustafa et al. (2017), the trustworthiness of risk assessment models is evaluated through a 18 

hierarchical tree that covers the different factors including modeling fidelity, SoK, number of approximations, amount 19 

and quality of data, quality of assumptions, number of model parameters, etc. Trustworthiness is also measured in 20 

the literature in terms of maturity and credibility. For example, in Model and Simulation (M&S) and information 21 

system, a capability maturity model is used to assess the maturity of a software development process in the light of 22 

its quality, reliability, and trustworthiness (Paulk et al., 1993). A predictive capability maturity model has been 23 

developed to assess the maturity of M&S efforts through evaluating the representation and geometric fidelity, physics 24 

and material model fidelity, code and solution verification, model validation and uncertainty quantification, and 25 

sensitivity analysis (Oberkampf et al., 2007). In (Zeng et al., 2016), a hierarchical framework has been developed to 26 

assess the maturity and prediction capability of a prognostic method for maintenance decision making purposes. The 27 

hierarchical tree covers different attributes that are believed to affect the prediction capability of prognostic methods 28 

and the trustworthiness of the results. In (Nasa, 2013), a framework is proposed for assessing the credibility of M&S 29 
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through eight criteria: (i) verification; (ii) validation; (iii) input pedigree; (iv) results uncertainty (v) results robustness; 1 

(vi) use history; (vii) M&S management; (viii) people qualification. In (Bani-Mustafa et al., 2017), the trust of the 2 

model is evaluated based on the level of maturity of the risk assessment model through four main criteria: (i) 3 

uncertainty; (ii) knowledge; (iii) conservatism; (iv) sensitivity. Also, the quality of M&S is assured by the American 4 

Society of Mechanical Engineers (ASME) through verification and validation (Schwer, 2009). Verification is 5 

concerned with evaluating the accuracy of the computational model in representing the conceptual and mathematical 6 

model, and validation is concerned with evaluating the accuracy of the model in representing reality (Schwer, 2009). 7 

As seen from the discussions above, there are a number of works concerned with the realism and trustworthiness 8 

of risk assessment. These works, however, discuss the contributors to trustworthiness separately: different 9 

frameworks cover different aspects of the trustworthiness based on different terminologies. A unified and complete 10 

framework that covers all the factors contributing to trustworthiness is lacking. Besides, the current state of the art 11 

only focuses on the evaluation of trustworthiness but does not consider how to integrate the trustworthiness into the 12 

results of risk assessment, neither does it show how to aggregate the risk of different contributors with different levels 13 

of trustworthiness. 14 

In this work, we define the trustworthiness of risk assessment as a metric that reflects the degree of confidence 15 

in the background knowledge that supports the PRA, as well as in the suitability, comprehensiveness and 16 

completeness of the PRA model formulation and implementation in a way that reflects, to the best possible, reality. 17 

With this, the objective is, then, to provide a new approach for MHRA considering trustworthiness. Compared to the 18 

existing works, the contributions of the current work include:  19 

(i) a unified framework is developed for the evaluation of trustworthiness in risk assessment; 20 

(ii) a method is developed to integrate the trustworthiness in the result of the risk assessment of a single 21 

hazard group;  22 

(iii) an approach is developed for MHRA considering the trustworthiness of risk assessment.  23 

The rest of this paper is organized as follows. In Section 2, we present a hierarchical framework for assessing 24 

the trustworthiness of PRA models and in Section 3 we show how to apply it in practice. In Section 4, we show how 25 

to aggregate the risks considering trustworthiness. Section 5 applies the developed methods to a case study from the 26 

nuclear industry. Finally, in Section 6, we conclude this paper and discuss the potential future work. 27 

2. A hierarchical framework for assessing the trustworthiness of a risk model 28 

As illustrated previously, various factors have been discussed in the literature in relation to the trustworthiness 29 
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of risk assessment. In this paper, we only focus on some of the most relevant factors. For example conservatism, 1 

uncertainty, level of sophistication and details in the analysis, experience, number of approximations and assumptions 2 

made in the analysis are identified in (EPRI, 2012) and (EPRI, 2015) as fundamental factors that influence the realism 3 

and trustworthiness of a risk analysis. Background knowledge that supports the risk assessment is also widely 4 

accepted as an essential contributor to the trustworthiness (Flage and Aven, 2009), (Aven, 2013a), (Aven, 2013b), 5 

(EPRI, 2012), (EPRI, 2015), (Bani-Mustafa et al., 2018). The assumptions that are inevitably made because of 6 

incomplete knowledge or for simplifying the analysis (Kloprogge et al., 2011) are considered crucial for the 7 

suitability of risk representation and hence, the trustworthiness of its analysis (Boone et al., 2010), (Kloprogge et al., 8 

2011), (De Jong et al., 2012), (Berner and Flage, 2016). The conservatism is also identified as a pivotal contributor 9 

to the realism, maturity, and trustworthiness of risk assessment (Aven, 2016), (Bani-Mustafa et al., 2017). Sensitivity 10 

analysis is also needed for a comprehensive description of risk (Flage and Aven, 2009), (Bani-Mustafa et al., 2017). 11 

Other factors for evaluating the credibility of M&S include verification, validation, input pedigree, result uncertainty, 12 

result robustness, use history, M&S management and people qualification (Nasa, 2013). 13 

The factors mentioned above are included in the trustworthiness assessment framework proposed in this paper. 14 

Other relevant factors are also considered, for a complete representation of trustworthiness. The trustworthiness of 15 

risk assessment is defined in this paper as the degree of confidence that the background knowledge is strong enough 16 

to support the PRA and that the PRA model is suitable, correctly and robustly made to make the best use of the 17 

available knowledge in order to reflect to the best, reality. Obviously, the background knowledge that supports a risk 18 

assessment affects significantly the trustworthiness of its results (Flage and Aven, 2009), (Aven, 2013a), (Aven, 19 

2013b), (Bani-Mustafa et al., 2018). However, having a strong background knowledge is not sufficient to ensure the 20 

trustworthiness in the results: the fidelity of the modeling should be also verified. This gives rise to the need of a 21 

technically adequate and mature model that is known for its high quality and representativeness of reality (Oberkampf 22 

et al., 2007), (Nasa, 2013), (Zeng et al., 2016). In addition, the modeling process should follow a high quality and 23 

thorough application procedure, in order to have trustworthy risk analysis results (IAEA, 2006), (Oberkampf et al., 24 

2007), (Schwer, 2009), (Nasa, 2013), (Zeng et al., 2016). Hence, the suitability of the selected model and the quality 25 

of its application are considered as relevant attributes in the proposed framework. In fact, since the risk metrics are 26 

calculated as a result of modeling and simulation, it is intuitive to understand that the trustworthiness of the risk 27 

assessment results can be affected by: the suitability of the selected model, the comprehensiveness and correctness 28 

of the application of the model, as well as the background knowledge that supports the modeling and analysis. Besides, 29 
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having results that are highly sensitive to changes in the input is an indication that the assessment is less trustworthy, 1 

as the results might be dramatically affected by even a small change in the input parameters and assumptions (Flage 2 

and Aven, 2009), (Bani-Mustafa et al., 2017). Accordingly, the robustness of the results is regarded as another factor 3 

that affects the trustworthiness of risk analysis. In this framework, we use the acronym SoK to represent the strength 4 

of the background knowledge that supports the risk assessment and the term “modeling fidelity” to represent the 5 

suitability of the selected model, the quality of its application and the robustness of the results, as shown in Figure 1. 6 

These two top-level attributes are further decomposed into more tangible sub-attributes. 7 

It should be noted that in general, knowledge includes explicit knowledge, which can be documented and 8 

transferred directly, and implicit knowledge, which is possessed by individuals and cannot be documented or 9 

transferred directly. The SoK defined in Figure 1 only concerns the explicit knowledge, whereas implicit knowledge 10 

is mostly related to the construction and application of the model. Hence, implicit knowledge is viewed as related to 11 

the modeling fidelity. The background knowledge is evaluated in Flage and Aven (2009) considering: (i) availability 12 

of reliable data; (ii) phenomenological understanding; (iii) quality and plausibility of assumptions; (iv) agreement 13 

among peers. In Bani-Mustafa et al. (2018), the background knowledge is evaluated by (i) the solidity of assumptions; 14 

(ii) the availability of reliable data; (iii) the understanding of phenomena. Each attribute is further broken down into 15 

more tangible sub-attributes that define it. For example, the reliability of data is evaluated by its completeness, 16 

consistency, validity, accuracy, and timeliness (Bani-Mustafa et al., 2018). 17 

The quality of assumption is evaluated in the literature by different factors. For example, in an application of 18 

Numeral Unit Spread Assessment Pedigree (NUSAP), the quality of assumptions is evaluated by (i) plausibility; (ii) 19 

inter-subjectivity peers; (iii) inter-subjectivity stakeholders; (iv) choice space; (v) influence situational limitations; 20 

(vi) sensitivity to view and interests of the analyst (vii) and influence on results (Van Der Sluijs et al., 2005), (Boone 21 

et al., 2010), (Kloprogge et al., 2011). In this paper, we group these factors into three main categories (Bani-Mustafa 22 

et al., 2018): (i) quality of assumptions; (ii) value-ladenness; (iii) sensitivity. Value ladenness is, in turn, considered 23 

as an independent variable that affects the quality of the assumptions and is evaluated using seven main criteria (i) 24 

the personal knowledge; (ii) the sources of information; (iii) the non-biasedness; (iv) the relative independence; (v) 25 

the past experience; (vi) the performance measure; (vii) the agreement among peers (Zio, 1996), (Bani-Mustafa et 26 

al., 2018). 27 

Nevertheless, some of the SoK attributes are more related to the implicit knowledge and affect the construction 28 

and formulation of the modeling process and, hence, they are considered under modeling fidelity and not under SoK. 29 
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For example, the quality and solidity of assumptions are more related to modeling fidelity, since they affect the 1 

formulation of the model. Also, since assumptions are made by experts and inevitably affected by their subjectivity, 2 

agreement among peers is considered as a sub-attribute under solidity of assumptions.  3 

In this paper, only the availability of reliable data and phenomenological understanding from (Flage and Aven, 4 

2009) are considered for evaluating the SoK. As said earlier, the quality and solidity of assumptions are treated under 5 

modeling fidelity. Finally, we add another attribute to cover the data and information related directly to the known 6 

hazards. The known potential hazards attributes are next broken down into three sub-attributes that cover: the number 7 

of documented known hazards, the accident analysis report and the expert's knowledge about the hazards. The data 8 

and phenomenological understanding attributes are further broken into sub-attributes and leaf attributes (illustrated 9 

in Figure 1) according to the framework proposed in (Bani-Mustafa et al., 2018).  10 

Other factors related to the suitability of the model and quality of application are also found in the literature. 11 

Examples of these factors are: conservatism, level of sophistication and details in the analysis, experience, number 12 

of approximations and assumptions made in the analysis, sensitivity, results robustness, use history, level of details 13 

and verification (Paté-Cornell, 1996), (Flage and Aven, 2009), (EPRI, 2012), (Nasa, 2013), (EPRI, 2015), (Aven, 14 

2016), (Bani-Mustafa et al., 2017). These attributes are allocated in the hierarchy according to their relevance to the 15 

modeling fidelity and categorized in three groups, i.e., suitability of selected model, quality of the application and 16 

robustness of the results, whereas other attributes have been added to complement the overall framework for the 17 

trustworthiness of the risk assessment. The overall hierarchical framework is presented in Figure 1, and detailed 18 

definitions of the attributes, sub-attributes and “leaf” attributes are given in Table 1-4. 19 

  20 
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Table 1 Definition of trustworthiness attributes (Level 1) 

Attribute Definition 

Modeling fidelity (𝑀𝐹 = 𝑇1) The degree of confidence that the selected PRA model is technically adequate for describing 

the problem of interest and that the model is implemented in a trustable way so that the 

results can reasonably represent reality, relative to the decision making involved 

The strength of knowledge (𝑆𝑜𝐾 =

𝑇2) 

The amount of high-quality explicit knowledge that is available to support the PRA 

 

Table 2 Definition of trustworthiness attributes (Level 2) 

Attribute Definition 

Robustness of the results (𝑅𝑜𝑅 =

𝑇1,1) 

The capability of the PRA results to remain unaffected by small variations in model 

parameters or model assumptions 

Suitability of the model (𝑆𝑜𝑀 =

𝑇1,2) 

The technical adequacy of the tool, maturity and ability to model the problem of interest 

Quality of application (𝑄𝐴𝑝 = 𝑇1,3) The degree to which the analysis is implemented with the minimum required levels of details 

and modeling adequacy that have the degree of quality, suitable for supporting the 

application of interest 

Knowledge of potential hazards and 

accident evolution processes (𝑃𝑜𝐻 =

𝑇2,1) 

The availability of documentation and knowledge of abnormal events, accidents and their 

evolutions, from similar systems 

Phenomenological understanding 

(𝑃ℎ = 𝑇2,2) 

The knowledge that supports the comprehension of the system functionality and the related 

phenomena 

Data (𝐷 = 𝑇2,3) The amount and quality of data needed for estimating the model parameters 

 2 

Table 3 Definition of trustworthiness attributes (Level 3) 

Attribute Definition 



 

10 

 

Model sensitivity (𝑀𝑆 = 𝑇1,1,1) The degree to which the model output varies when one or several parameters change 

Impact of assumptions (𝐼𝑜𝐴 = 𝑇1,1,2) The degree to which the model output varies when one or several assumptions change 

 

Robustness of the model (𝑅𝑜𝑀 =

𝑇1,2,1) 

The capability of the model to keep its performance when applied to a different problem 

settings 

Suitability of the model for the 

problem (𝑆 = 𝑇1,2,2) 

The ability to capture all the important details and characterizations of the problem of 

interest 

Historical use (𝐻𝑈 = 𝑇1,2,3) The degree of confidence gained in this method by the long historical usage 

Conservatism (𝐶𝑣 = 𝑇1,3,1) The intentional acts for overestimating the risk by making conservative assumptions out of 

cautiousness 

The accuracy of calculations (𝐴𝑐𝐶 =

𝑇1,3,2) 

The degree of the voluntarily accepted error in the calculation, e.g., significant figures, 

simulation errors, and cutoff errors 

 

Quality of assumptions (𝑄𝑜𝐴 =

𝑇1,3,3) 

The degree to which the assumption is valid, representing reality and supporting the model 

Verification (𝑉𝑟 = 𝑇1,3,4) The degree of assurance that the analysis maintains the requirements of quality control 

standards and obtains the acceptance from different analysts 

Level of sophistication (𝐿𝑜𝑆 = 𝑇1,3,5) The degree of treatment of the problem, and amount of effort and details invested in the 

problem given its requirement (requirement and complexity) 

Number of known hazards (𝑁𝐻 =

𝑇2,1,1) 

The documented experience on known hazards that might affect the system of interest 

 

Availability of accident analysis 

reports (𝑁𝐻 = 𝑇2,1,2) 

The availability of technical reports that cover thoroughly the different sequences of any 

abnormal activity, incident or accident in the time frame and the progressions of each phase 

Experts knowledge about the hazard 

(𝑁𝐻 = 𝑇2,1,3) 

The undocumented experience possessed by experts on known hazards 

Years of experience (𝑌𝐸 = 𝑇2,2,1) The amount of experience (measured in years) regarding a specific phenomenon 

Number of experts involved (𝑁𝐸 =

𝑇2,2,2) 

The number of experts who are explicitly or implicitly involved in understanding the 

phenomena and the risk analysis 
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Academic studies on the phenomena 

(𝐴𝐸 = 𝑇2,2,3) 

The number of academic resources, i.e., articles, books, etc., available about the phenomena 

of interest 

Industrial evidence and applications on 

the phenomena (𝐼𝐸 = 𝑇2,2,4) 

The number of industrial applications and reports related to the specific phenomena or 

events of interest 

Amount of available data (𝐴𝐷 =

𝑇2,3,1) 

The amount of data that are needed to evaluate the model parameters 

Reliability of data (𝑅𝐷 = 𝑇2,3,2) The degree to which the properties of data satisfy the requirements of risk analysis 

 1 

Table 4 Definition of trustworthiness attributes (Level 4) 2 

Attribute Definition 

The plausibility of assumptions (𝑃𝑙 =

𝑇1,3,3,1) 

The degree of realism of the statements made in the analysis, in cases of lack of 

knowledge or to facilitate the problem solution 

Value ladenness of assessors (𝑉𝐿 = 𝑇1,3,3,2) The experts’ degree of objectivity, professionalism, skills and competencies, past 

fulfillment of assigned missions and level of achievement 

Agreement among peers (𝐴𝑔 = 𝑇1,3,4,1) The degree of resemblance between the peers on the analysis and assumptions made, if 

they were asked to perform the analysis separately 

Quality assurance (𝑄𝐴 = 𝑇1,3,4,2) The degree of following the standards in the process of implementing the analysis 

Level of granularity (𝐿𝑜𝐺 = 𝑇1,3,5,1) The depth of analysis and subdivision of the problem constituting elements 

Number of approximations (𝑁𝑜𝐴 =

𝑇1,3,5,2) 

The intentional simplifications made to facilitate the modeling 

Level of details (𝐿𝑜𝐷 = 𝑇1,3,5,3) The degree with which the important contributing factors are captured in the modeling 

compared to the requirement of the analysis (e.g., the dependency among components) 

Completeness (𝐿𝑜𝐷 = 𝑇2,3,2,1) The degree to which the collected data contain the needed information for the risk 

modeling and assessment 

Consistency (𝐿𝑜𝐷 = 𝑇2,3,2,2) The degree of homogeneity of data from different data sources 

Validity (𝐿𝑜𝐷 = 𝑇2,3,2,3) The degree to which the data are collected from a standard collection process and satisfy 

the syntax of its definition (documentation related) 
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Timeliness (𝐿𝑜𝐷 = 𝑇2,3,2,4) The degree to which data correctly reflect the reality of an object or event 

Accuracy (𝐿𝑜𝐷 = 𝑇2,3,2,5) The degree to which data are up-to-date and represent reality for the required point in 

time 

3. Evaluation of the level of trustworthiness  1 

In this section, a bottom-up method for evaluating the level of trustworthiness is developed in Section 3.1. Then, 2 

a combination of Dempster Shafer Theory (DST) and Analytical Hierarchy Process (AHP) are used in Section 3.2 to 3 

determine the weights of the attributes/sub-attributes in the method proposed in Section 3.1. 4 

3.1. Evaluation of the trustworthiness 5 

In this framework, five levels of trustworthiness are defined with their corresponding settings: 6 

1. Strongly untrustworthy (𝑇 = 1) : represents the minimum level of trustworthiness and, therefore, the 7 

decision maker has the lowest confidence in the result of the PRA. The analysis is made based on weak 8 

knowledge and/or nonrealistic analysis, leading to an estimated value that might be far from the real one. 9 

Further analysis and justifications need to be implemented on the risk analysis to enhance its 10 

trustworthiness. Otherwise, the risk assessment is not considered representative and one should not rely on 11 

its results to support any kind of decision making. 12 

2. Untrustworthy (𝑇 = 2): represents a low level of trustworthiness and, therefore, the decision maker has 13 

low confidence in the results of the PRA. At this level, the analysis is made based on relatively weak 14 

knowledge and/or nonrealistic analysis, leading to unrealistically estimated risk values. Further analysis 15 

and justifications need to be implemented on the risk analysis to enhance its trustworthiness. The decision 16 

maker can use the results with caution and only as a support for decision making. 17 

3. Moderately trustworthy (𝑇 = 3): represents a moderate level of trustworthiness and, therefore, the decision 18 

maker has an acceptable level of confidence in the results of the PRA. The analysis is made based on 19 

relatively moderate knowledge and/or relatively realistic analysis. The decision maker can rely cautiously 20 

on the model output to make the decision. 21 

4. Trustworthy (𝑇 = 4): represents a high level of trustworthiness and, therefore, the decision maker has quite 22 

high confidence in the results of the PRA. The analysis is made on a relatively high level of knowledge 23 

and realistic analysis. The decision maker can rely confidently on the models output to make decisions. 24 
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5. Highly trustworthy (𝑇 = 5): represents the maximum level of trustworthiness. At this level, the PRA model 1 

outputs accurately predict the risk index with a proper characterization of parametric uncertainty. The 2 

decision maker can rely on the models output to support decision making involving severe consequences, 3 

e.g., loss of human lives. 4 

In practice, the trustworthiness of risk assessment might be between two of the five levels defined above: for 5 

example, 𝑇 =  2.6 means that the level of trustworthiness is between untrustworthy and moderately trustworthy. 6 

In this paper, the level of trustworthiness of risk assessment is evaluated using a weighted average of the “leaf” 7 

attributes in Figure 1. 8 

 𝑇 = ∑ 𝑊𝑖 ∙ 𝐴𝑖
𝑛
𝑖   (1) 9 

where 𝑊𝑖 is the weight of the leaf attribute that measures its relative contribution to the trustworthiness of risk 10 

assessment; 𝐴𝑖  is the trustworthiness score for the i-th leaf attribute, evaluated based on the scoring guidelines 11 

presented in the Appendixes; 𝑛 is the number of the leaf attributes (in Figure 1, we have 𝑛 = 27). The weights 12 

𝑊𝑖  are determined based on Dempster Shafer-Analytical Hierarchy Process (DST-AHP) (Dezert et al., 2010), as 13 

discussed in Section. 3.2.  14 

3.2. Dempster Shafer Theory - Analytical Hierarchy Process (DST-AHP) for trustworthiness attributes 15 

weight evaluation 16 

The weights of the different attributes in Figure1 can be determined using the AHP method to compare their 17 

relative importance with respect to the trustworthiness of risk assessment (Saaty, 2008). AHP is used because it can 18 

decrease the complexity of the comparison process, as it allows comparing only two criteria at a time, rather than 19 

comparing all the criteria simultaneously, which could be very difficult in complex problems. It should be noted that 20 

since there are no alternatives to be compared in this framework, pairwise comparison matrixes of AHP are only used 21 

for deriving the attributes (criteria) weights.  22 

To consider the fact that experts are subjective, not fully reliable and might have conflicting viewpoints, as well 23 

as considering the incomplete knowledge of the experts, Dempster-Shafer-Analytical Hierarchy Process (DST-AHP) 24 

is used. This allows combining multiple sources of uncertain, fuzzy and highly conflicting pieces of evidence with 25 

different levels of reliability (Dezert et al., 2010), (Jiao et al., 2016). In this method, the assessors are asked to identify 26 

the focal sets that comprise of a single or group of criteria. The experts determine the criteria contained in the focal 27 

sets in such a way that they are able to compare them (the focal sets), given their knowledge. Then, pairwise 28 
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comparison matrices are constructed for the focal sets. Using focal sets instead of single criteria allows taking into 1 

account the partial uncertainty between possible criteria. The basic belief assignments (BBA) of the corresponding 2 

focal sets are derived from the pairwise comparison matrices. The BBAs from different experts are combined using 3 

the Dempster fusion rule. The weights for each criterion are assumed to be BBA of the corresponding focal element 4 

(single criterion), and are derived based on the maximum belief-plausibility principle in Dempster-Shafer theory, or 5 

on the maximum subjective probability obtained by probabilistic transformations using the transferable belief model 6 

(Dezert et al., 2010), (Dezert and Tacnet, 2011), (Jiao et al., 2016). Again, note that in this work, this method is 7 

applied only to derive the relative weights of the criteria, rather than using it to rank alternatives. Similar ideas have 8 

been used in Tayyebi et al. (2010), Ennaceur et al. (2011). The procedure for calculating the weights of the leaf 9 

attributes based on DST-AHP is presented below. 10 

I. Constructing pairwise comparison matrices 11 

First, the experts are asked to construct pairwise comparison matrices (also known as knowledge matrices) to 12 

compare the relative importance of the attributes and sub-attributes in the same level of the hierarchy with respect to 13 

their parent attribute. For example, the pairwise comparison matrix for the attribute modeling fidelity (𝑇1) is a 3 × 3 14 

matrix that compares the relative importance of the modeling’ fidelity daughter attributes: 15 

𝑇1,1 𝑇1,2 𝑇1,3

𝑇1,1

𝑇1,2

𝑇1,3

= [

1 𝑀𝐹12 𝑀𝐹13

𝑀𝐹21 1 𝑀𝐹23

𝑀𝐹31 𝑀𝐹32 1
] 16 

where the columns correspond to the pairwise comparisons of the daughter attributes: robustness of the results (𝑇1,1), 17 

suitability of the selected model (𝑇1,2), and quality of the application (𝑇1,3), respectively. The element 𝑀𝐹𝑖𝑗 is 18 

assigned by assessing the relative importance of attribute 𝑖 to attribute 𝑗 following the scoring protocols in (Saaty, 19 

2008). For example, the element 𝑀𝐹12 is assigned by comparing the relative importance of 𝑇1,1 𝑡𝑜 𝑇1,2. 20 

Compared to conventional AHP comparison matrices, the expert is free to choose, based on his/her belief, the 21 

elements of the pairwise comparison matrix. These elements can be focal elements that represent a single criteria, 22 

e.g., {𝐴} or a distinct group of criteria, e.g., {𝐴, 𝐵} that are comparable favorably (to the best of expert's knowledge) 23 

to the universal set that contains all the criteria, which allows accounting for the uncertainty in the judgment (Beynon, 24 

Cosker and Marshall, 2001), (Ennaceur, Elouedi and Lefevre, 2011), (Jiao et al., 2016). For example, the expert can 25 

choose a focal set of {𝑆𝑜𝑀, 𝑄𝐴𝑝}  if he/she believes that it can be compared favorably to the universal 26 

set {𝑆𝑜𝑀, 𝑄𝐴𝑝, 𝑅𝑜𝑅}; i.e., the set of {𝑆𝑜𝑀, 𝑄𝐴𝑝} can be compared to {𝑆𝑜𝑀, 𝑄𝐴𝑝, 𝑅𝑜𝑅} (the sub-attributes SoM, 27 
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QAp, RoR were defined in Table 1-4). Then, the expert is asked to fill the pairwise comparison matrices to represent 1 

his/her belief in the relative importance of a given set (of one or multiple attributes) compared to the others. Favoring 2 

the universal set {𝑆𝑜𝑀, 𝑄𝐴𝑝, 𝑅𝑜𝑅} over {𝑆𝑜𝑀, 𝑄𝐴𝑝}, means that the universal set contains an element that is not 3 

contained in the other set, and at the same time it is more important than the elements of the other set, i.e., 𝑅𝑜𝑅 is 4 

more important than 𝑆𝑜𝑀 and 𝑄𝐴𝑝. Finally, as in the conventional AHP method, the consistencies of the matrixes 5 

need to be tested and the assessors are asked to update their results if the consistency is lower than the required value 6 

(Saaty and Vargas, 2012).  7 

II. Computing the weights 8 

In this step, the weights are derived using the conventional AHP technique, according to which the normalized 9 

principal eigenvector of the matrix represents the weights. A good approximation for solving the eigenvector problem 10 

in case of high consistency is to normalize the columns of the matrix and, then, average the rows for obtaining the 11 

weights. For more details on AHP and deriving the weights from pairwise comparison matrices, the reader might 12 

refer to (Saaty, 2013). Please note that, as mentioned earlier, the weights derived from the pairwise comparison 13 

matrices are assumed to be the BBA of the associated focal sets. 14 

III. Reliability discounting 15 

Usually, multiple experts are involved in evaluating the weights. Each expert is regarded as an evidence source. 16 

Reliability of an evidence source represents its ability to provide correct measures of the considered problem (Jiao et 17 

al., 2016). Shafer’s reliability discounting is often used to consider the reliability of the source information in DST-18 

AHP (Shafer, 1976): 19 

 𝑚𝛿(𝐴) = {
𝛿 ∙ 𝑚(𝐴)      ∀𝐴 ⊆Θ,  A ≠Θ

(1 − 𝛿) + (𝛿) ∙ 𝑚(Θ),   A =Θ
  ,  𝛿 ∈ [0,1] (2) 20 

where Θ represents the complete set of criteria, 𝐴 is the focal element in the power set 2Θ, 𝑚(𝐴) is the BBA 21 

for 𝐴, 𝑚𝛿(𝐴) is the discounted BBA, 𝛿 is the reliability factor. A value of 𝛿 = 1 means that the source is fully 22 

reliable and a value of 𝛿 = 0  means that the source is fully unreliable. The reliability factor of the experts is 23 

determined by the decision maker, based on their previous knowledge and experience.  24 

IV. Combination of experts opinions 25 

Next, Dempster’s rule of combination (Shafer, 1976) is used to combine two independent pieces of evidence 26 

assigned by different experts. The discounted BBAs from different experts are combined by (Jiao et al., 2016): 27 
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 𝑚1,2
𝛿 (𝐶) = (𝑚1

𝛿 ⊕ 𝑚2
𝛿)(𝐶) = {

                           0                               𝐶 = 𝜙,
1

1−𝐾
∙ ∑ 𝑚1

𝛿(𝐴) ∙ 𝑚2
𝛿(𝐵) 𝐴∩𝐵=𝐶≠𝜙 𝐶 ≠ 𝜙,

 (3) 1 

where 𝑚1,2
𝛿 (𝐶) is the new BBA resulting from the combination of the two discounted BBA 𝑚1

𝛿(𝐴) and 𝑚2
𝛿(𝐵) of 2 

the two experts. 𝐾 is the conflict factor in the opinions of experts and given by: 3 

 𝐾 = ∑ 𝑚1
𝛿(𝐴) ∙ 𝑚2

𝛿(𝐵)𝐴∩𝐵=𝜙  (4) 4 

V. Pignistic probability transformation 5 

The belief functions resulted from the discounting and combination are defined for focal sets (might contain one 6 

or multiple leaf attributes). To obtain the weights of each leaf attribute, the masses (𝑚1,2
𝛿 (𝐶)) assigned to the focal 7 

sets need to be transformed into masses for the basic elements. In this paper, the transferable belief model proposed 8 

by (Smets and Kennes, 1994) is used for the transformation. In this method, the masses 𝑚1,2
𝛿 (𝐶) on the credal level 9 

are converted to the pignistic level using the insufficient reason principle (Smets and Kennes, 1994), (Aregui and 10 

Denœux, 2008): 11 

 𝑤(𝑥) = ∑
𝑚(𝐶)

1−𝑚(𝜙)

1𝐶(𝑥)

|𝐶|
, ∀𝑥 ∈ 𝛩𝐶⊆𝛩,𝐶≠𝜙   (5) 12 

where 𝑤(𝑥)  denotes the belief assignment of a single element (𝑥)  on the pignistic level, 1𝐶  is the indicator 13 

function of 𝐶: 1𝐶 = 1, 𝑖𝑓 𝑥 ∈ 𝐶 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. |𝐴| is the length of A (the number of elements in the focal set). 14 

The mass functions obtained from the pignistic probability transformation represent the relative “believed weights” 15 

of the attributes. 16 

After obtaining the local weights of the leaf attributes with respect to their parent attribute, the global weights 17 

with respect to the top-level attribute, i.e., the trustworthiness, need to be determined. This can be done by multiplying 18 

the weight of the daughter attribute by the weights of the upper parent attributes in each level. For example, the 19 

“global weight” of the historical use with respect to the trustworthiness, denoted by 𝑊𝑔𝑙𝑜𝑏𝑎𝑙(𝐻𝑈), is calculated by:  20 

 𝑊𝑔𝑙𝑜𝑏𝑎𝑙(𝐻𝑈) = 𝑤(𝐻𝑈) × 𝑤(𝑆𝑜𝑀) × 𝑤(𝑀𝐹)   21 

where 𝑤(𝐻𝑈), 𝑤(𝑆𝑜𝑀) 𝑎𝑛𝑑 𝑤(𝑀𝐹) are the local weights of the historical use, the suitability of the model, and the 22 

modeling fidelity. For simplicity reasons, hereafter the global weights for the leaf attributes are denoted by 𝑊𝑖 and 23 

in the framework of Figure 1, we have 𝑖 = 1,2, ⋯ ,27. 24 

 25 

4. Evaluation of the risk considering trustworthiness levels 26 

In this section, the “weighted posterior” method (Groen and Mosleh, 1999) is used for integrating the risk index 27 

with the trustworthiness of the PRA for a single hazard group (Section 4.1). In Section 4.2, a structured methodology 28 
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is developed for determining the weights in the Bayesian “weighted posterior” model. Finally, MHRA considering 1 

the level of trustworthiness is discussed in Section 4.3. 2 

4.1. Evaluation of the risk of a single hazard group 3 

After evaluating the level of trustworthiness for the PRA of a given hazard group, the next question is how to 4 

integrate the estimated risk from the PRA with the level of trustworthiness. In this paper, we develop a Bayesian 5 

averaging model for integrating the trustworthiness based on the “weighted posterior” method (Groen and Mosleh, 6 

1999). Let us consider two scenarios: the risk assessment is trustable, denoted by 𝐸𝑇, and its complement, i.e., the 7 

risk assessment is not trustable (𝐸𝑁𝑇). The risk after the integration can, then, be calculated as: 8 

 𝑅𝑖𝑠𝑘|𝑇 = 𝑃(𝐸𝑇) ∙ Risk|𝐸𝑇 + (1 − 𝑃(𝐸𝑇)) ∙ Risk|𝐸𝑁𝑇  (6) 9 

where 𝑅𝑖𝑠𝑘|𝑇 is the estimation of risk after considering the trustworthiness of the PRA; 𝑃(𝐸𝑇) is the subjective 10 

probability that 𝐸𝑇  will occur and is dependent on the trustworthiness of the risk assessment; Risk|𝐸𝑇  is the 11 

estimated risk from the PRA. Due to the presence of epistemic (parametric) uncertainty in the analysis, Risk|𝐸𝑇 is 12 

often expressed as a subjective probability distribution of the risk index. Risk|𝐸𝑁𝑇 is an alternate distribution of the 13 

risk when the decision maker thinks the PRA is not trustable. In this paper, we assume Risk|𝐸𝑁𝑇  is a uniform 14 

distribution in [0,1], indicating no preference on the value of the risk index. Similar models have been used in 15 

literature to consider unexpected events in risk analysis (Kaplan and Garrick, 1981). For example, Kazemi and 16 

Mosleh (2012) developed a similar model to calculate the default risk in similar scenarios considering the unexpected 17 

events. 18 

The following steps summarize how to use Eq. (6) to evaluate the risk given the trustworthiness of the risk 19 

assessment: 20 

i. The risk distribution Risk|𝐸𝑇 is evaluated for each hazard group using conventional PRA considering the 21 

parametric uncertainty propagation. 22 

ii. The level of trustworthiness of PRA of the corresponding hazard group is assessed, using the procedures in 23 

Section 3. 24 

iii. The subjective probability of trusting the PRA is determined by the detailed procedures described in Section 25 

4.2. 26 

iv. The level of trustworthiness is integrated in the risk using Eq. (6). 27 

4.2. Determining the probability of trusting the PRA 28 

The probability 𝑃(𝐸𝑇) in Eq. (6), which represents the decision maker’s belief that the risk assessment results 29 
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are correct and accurate, needs to be elicited from the decision makers. The elicitation process needs to be organized 1 

and structured to ensure the quality of the elicitation.  2 

Different methods can be found in the literature for the assessment of a single probability using experts 3 

elicitation, such as probability wheels, lotteries betting, etc. (Jenkinson, 2005). In this work, we choose the “certainty 4 

equivalent gambles” for the elicitation. Before presenting the procedure for this method, some general 5 

recommendations need to be followed to ensure the quality of the elicitation process (Jenkinson, 2005): 6 

i. Background and preparation: uncertain events need to be defined clearly. 7 

ii. Identification and recruitment of experts: The experts who are conducting the elicitation are chosen 8 

carefully with low-value ladenness, and a preference of being both substantively and normatively 9 

skilled. 10 

iii. Motivating experts: the purpose and use of the work need to be explained to the experts, to motivate 11 

them for the elicitation. 12 

iv. Structuring and decomposition: the dependencies and functional relationships need to be first identified 13 

by the client and agreed on and modified by the experts if necessary.  14 

v. Probability and assessment training: the experts need to be trained to elicit probabilities. 15 

vi. Probability elicitation and verification: the expert needs to elicit the probabilities paying caution to zero 16 

values, cognitive biases, etc. After making the elicitation, the expert needs to make a summary of the 17 

elicitation and verify its adequacy. 18 

Then, a “certainty equivalent gamble” is designed to elicit the probability of trust: 19 

i. The elicitor informs the decision maker about the definition of the different levels of trustworthiness 20 

and their physical meaning, based on the definitions in Section 3.1. 21 

ii. The decision maker is asked to compare two scenarios: (1) he/she participates in a gamble (given the 22 

information from the PRA model) where he/she wins $1,000 if an accident occurs and $0 if the accident 23 

does not occur; (2) he/she wins $𝑥 for sure. 24 

iii. The experts exchange information between them and discuss. 25 

iv. Suppose that a PRA was conducted and predicted that the consequences occur for sure, and the 26 

trustworthiness of the PRA is one of the five levels defined in Section 3.1. Then, for each level of 27 

trustworthiness, the elicitor varies the value of 𝑥 until the decision maker feels indifferent between the 28 

two scenarios. 29 
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v. The probability of trust at the current level of trustworthiness is, then, calculated by: 1 

 𝑝 =
𝑥

1000
  (7) 2 

where 1000 here represents the $1000 that the expert gains if the accident occurs (the model prediction is 3 

correct). 4 

vi. The elicitor fits a suitable function to the five data points, in order to determine the probability of trust 5 

for trustworthiness levels between the defined levels. The shape of the fitted function should be 6 

determined based on the assessors’ behavior towards taking risk in trusting a low fidelity PRA: 7 

• A convex function should be chosen if the assessor is risk-averse, meaning that the decision maker 8 

trusts only the PRA with high levels of trustworthiness. 9 

• A linear function is chosen if the assessor is risk neutral. 10 

• A concave function is chosen if the assessor is risk-prone, meaning that although a PRA might not 11 

have a very high level of trustworthiness, the decision maker is willing to assign a high probability 12 

of trust to it. 13 

The risk assessor can eventually use this function to estimate the probabilities of trust for each hazard group.   14 

4.3. MHRA considering trustworthiness levels 15 

The main steps for MHRA considering trustworthiness are presented in Figure 2. Trustworthiness in the PRA of 16 

each single group is evaluated and integrated into the risk estimate for the corresponding hazard group first. After the 17 

integration, the risk is expressed as a subjective distribution on the probability that a given consequence will occur. 18 

Then, the estimated risk from different hazard groups is aggregated. This step can be done by simply adding the risk 19 

distributions from different hazard groups, as shown in Eq. (8), where 𝑅𝑖𝑠𝑘𝑡𝑜𝑡𝑎𝑙 is the total risk considering the 20 

level of trustworthiness; (𝑅𝑖𝑠𝑘𝑖|T) is the risk from the hazard group 𝑖 given the level of trustworthiness; 𝑛 is the 21 

number of hazard groups. Monte-Carlo simulations can be used to approximate the distribution of 𝑅𝑖𝑠𝑘𝑡𝑜𝑡𝑎𝑙. 22 
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 𝑅𝑖𝑠𝑘𝑡𝑜𝑡𝑎𝑙 = ∑ (𝑅𝑖𝑠𝑘𝑖|T)𝑛
𝑖=1   (8) 1 

5. Case study 2 

In this section, we apply the developed framework to a case study for two hazard groups in the nuclear industry: 3 

the external flooding and internal events hazard groups. The PRA models of the two hazard groups were developed 4 

and provided by Electricité De France (EDF) (Bani-Mustafa et al., 2018). The level of trustworthiness is, then, 5 

assessed for each hazard group (Section 5.2). The risk distributions from each hazard group are, then, recalculated 6 

considering the level of trustworthiness. Finally, the risk is aggregated from the two hazard groups (Section 5.3).  7 

5.1. Description of the PRA model 8 

The two hazard groups considered in this framework are external flooding and internal events. The external 9 

flooding refers to the overflow of water that is caused by naturally induced hazards such as river overflows, tsunamis, 10 

dam failures and snow melts (IAEA, 2003), (IAEA, 2011). The internal events refer to any undesired event that 11 

originates within the NPP and can cause initiating events that might lead to abnormal states and eventually, a core 12 

meltdown (EPRI, 2015). Examples of internal events include structural failures, safety systems operation and 13 

maintenance errors, etc. (IAEA, 2009). 14 

In risk analysis of NPP in general, risk analysis of different hazard groups are performed on the basis of PRA 15 

models for the internal events, which considered as relatively mature and realistic compared to other hazards groups. 16 

In external flooding hazard group, it is usually difficult to assess the probability of the flood hazard, especially that 17 

no reliable method is available for such a kind of analysis. For example, statistical models might be used to extrapolate 18 

external flooding frequencies from historical data. However, Only limited data are usually available on flooding and 19 

corresponds to few hundreds of years (usually 100-150 years). These data are used to extrapolate the flooding 20 

frequencies on different time interval, which, especially in extreme cases (where no data are available), would result 21 

Figure 2 Main steps for MHRA considering the trustworthiness of the PRA 
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in large uncertainty (EPRI, 2015). 1 

One of the most challenging point in external flooding risk analysis that the frequency and severity of each flood 2 

is site-specific, which would reduce the applicability of data from other sites. Also, the response and of NPP staff, in 3 

cases of floods, cannot be assessed easily as there are many factors that could affect their actions. However, it should 4 

be noted that it is highly recommended by regulatory bodies to perform some deterministic approaches for analyzing 5 

the floods hazards (EPRI, 2015). 6 

In this case study, the risk analysis is provided by EDF (Bani-Mustafa et al., 2018), in which bow-tie models 7 

are used to assess the probability of core damage frequency (CDF) (in 1/reactor∙year). These large and complex 8 

models are of the order of hundreds to thousand basic events and several hundreds of minimal cutsets considering 9 

the different hazards that could lead to loss of system and consequently core damage.  10 

Let’s take the external flooding hazard group as an example. In this hazard group, the external flooding is 11 

considered as the hazard leading to the initiation of events within the plant that would possibly result in a core damage. 12 

The model is constructed considering the different equipment and systems that could be affected by water flooding 13 

in the NPP at different water heights. The different scenarios of the water arrival at the platform (with different heights) 14 

are built and propagated to understand their effect on the core. In this study, the probability of losing an equipment 15 

is calculated assuming that the equipment is directly lost once the water reaches the bottom of the equipment. In other 16 

words, the probability of losing an equipment equals to the probability that the level of water at the platform reaches 17 

the bottom of equipment. 18 

The probability of having different water levels due to floods using a combined hydraulic/hydrologic method. 19 

First, data regarding the topography, hydrological and physical characteristic of the river basin were collected from 20 

the site of the NPP of interest. These data, allows calculating the water flowrate needed to obtain a specific water 21 

height at the platform of the NPP. Then, the data of the millennial flowrates of the river, were used to extrapolate to 22 

calculate the “return period” (average time needed for a river flood to occur) and then, extrapolate it to assess the 23 

frequencies of river flowrates on which no data are available. In other words, the data regarding the flowrate 24 

frequencies and the physical and hydrological nature of the basin, allow evaluating the frequencies of having given 25 

heights of water at the platform of the reactor. Therefore, it allows calculating the probability of equipment failures 26 

due to water flooding. Other intermediate events are also presented in the PRA models to represent the propagation 27 

of the initiating events and the different possible responses from the safeguard systems or the operators till the reactor 28 

core meltdown (Bani-Mustafa et al., 2018). 29 
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In the original work of EDF, the uncertainty propagation was implemented, but only the mean values of the 1 

probability distributions of the risk were considered in MHRA and used for comparison to the safety criteria. However, 2 

due to confidentiality reasons, real values cannot be presented. Instead, we disguise the risk distribution, considering 3 

also the parametric uncertainty for illustration purposes, as shown in Figure 3.  4 

 5 

 6 

 Figure 3 Probability distribution of the risk considering parametric uncertainty: (a) external flooding risk, (b) internal events 7 

5.2. Evaluation of level of trustworthiness 8 

5.2.1. Evaluation of the attributes weights 9 

As illustrated in Section 3, the first step for evaluating the level of trustworthiness is to determine the relative 10 

importances (weights) of the trustworthiness attributes. The weights of the attributes are evaluated using the DST-11 

AHP technique. Here, for explanation purposes, the sub-attribute “modeling fidelity” (𝑇1) is taken as an example to 12 

illustrate how to obtain local weights through pairwise comparisons and DTS-AHP. 13 

I. Constructing pairwise comparison matrices 14 

As shown in Section 3, the first step in the DST-AHP technique is to construct the pairwise comparison matrix.  15 

Take the daughter attributes of modeling fidelity as an example. In this example, a 4 × 4 pairwise comparison matrix 16 

is constructed in Table 5. 17 

Table 5 Pairwise comparison matrix (knowledge matrix) for comparing modeling fidelity “daughter” attributes 18 

Modeling fidelity {𝑇1,1} {𝑇1,2} {𝑇1,3} Θ = {𝑇1,1, 𝑇1,2, 𝑇1,3} 

{𝑇1,1} 1 0 0 1/2 
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{𝑇1,2} 0 1 0 5/2 

{𝑇1,3} 0 0 1 4 

{𝑇1,1, 𝑇1,2, 𝑇1,3} 2 2/5 1/4 1 

Please note that the zeros that appear in the matrix indicate that there is no need to compare the 

individual criteria directly: they are compared indirectly through comparing the individual criteria 

to the universal set Θ (Dezert et al., 2010). 

𝑇1,1  represents the Quality of application, 𝑇1,2  represents the Suitability of the model, 𝑇1,3 

represents the robustness of the results  

In this matrix, the expert has considered four groups of focal sets: three for individual criteria and one containing 1 

all the criteria in order to consider the uncertainty in the evaluation. Choosing focal sets like this means that to the 2 

best of their knowledge, the experts believe that the aforementioned focal sets can be favorably compared to the 3 

universal set Θ. 4 

II. Computing the weights 5 

In the previous example, the expert was asked to fill the pairwise comparison matrix to express his/her preference 6 

of a criterion over another. In this step, the weights of the focal sets are derived using the conventional AHP technique, 7 

where the normalized principal eigenvector of the matrix represents the weights. This can be directly done by 8 

normalizing each column in the matrix individually and, then, averaging the elements in each row to obtain that 9 

weight. 10 

 11 

Table 6 Normalized pairwise comparison matrix (knowledge matrix) of modeling fidelity “daughter” attributes 12 

Modeling fidelity {𝑇1,1} {𝑇1,2} {𝑇1,3} Θ = {𝑇1,1, 𝑇1,2, 𝑇1,3} Weight (BBA) 

{𝑇1,1} 0.33 0 0 0.06 0.10 

{𝑇1,2} 0 0.71 0 0.31 0.26 

{𝑇1.3} 0 0 0.8 0.5 0.32 

{𝑇1,1, 𝑇1,2, 𝑇1,3} 0.67 0.29 0.2  0.13  0.32 

III. Reliability discounting 13 

After computing the BBA for each expert matrix, the weights need to be discounted based on the reliability of 14 

each expert. For illustration purposes, the reliability 𝛿 of the expert who made the assessment is assumed to be 0.60. 15 

From Eq. (2), the discounted weights are found as the following: 16 

𝑚0.60(𝑇1,1) = 0.6 × 0.10 = 0.06 17 
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Similarly, for 𝑚0.60(𝑇1,2) = 0.16, & 𝑚0.60(𝑇1,3) = 0.19. 1 

Finally, 𝑚0.60(Θ) is found as the following: 2 

𝑚0.60(Θ) = (1 − 0.60) + 0.6 × 0.32 = 0.59 3 

Please note that the BBAs (weights) sum to one before and after the discounting. 4 

IV. Combination of experts opinions 5 

In this case study, three experts have been invited to evaluate the weights; their assigned BBAs are summarized 6 

in Table 7 (the BBAs are calculated following the steps in Section 3.2). 7 

Table 7 Discounted basic belief assignment from the three experts 8 

Focal sets of the 

criteria 

Expert 1 Expert 2 Expert 3 

𝑚𝛿(𝐴) 𝑚𝛿(𝐴) 𝑚𝛿(𝐴) 

{𝑇1,1} 0.06 0.16 0.02 

{𝑇1,2} 0.16 0.24 0.38 

{𝑇1,3} 0.19 0.24 0.46 

{𝑇1,1, 𝑇1,2, 𝑇1,3} 0.59 0.36 0.14 

The combination of the experts judgments is conducted sequentially. Table 8 shows the procedures for 9 

combining the judgments of the first two experts. 10 

Table 8 Dempster's rule of combination matrix 11 

         Expert 2 

Expert 1 

𝑚𝛿(𝑇1,1) 𝑚𝛿(𝑇1,2) 𝑚𝛿(𝑇1,3) 𝑚𝛿(𝑇1,1, 𝑇1,2, 𝑇1,3) 

𝑚𝛿(𝑇1,1) 𝑚𝛿(𝑇1,1)1 𝜙1 𝜙2 𝑚𝛿(𝑇1,1)2 

𝑚𝛿(𝑇1,2) 𝜙3 𝑚𝛿(𝑇1,2)1 𝜙4 𝑚𝛿(𝑇1,2)2 

𝑚𝛿(𝑇1,3) 𝜙5 𝜙6 𝑚𝛿(𝑇1,3)1 𝑚𝛿(𝑇1,3)2 

𝑚𝛿(𝑇1,1, 𝑇1,2, 𝑇1,3) 𝑚𝛿(𝑇1,1)2 𝑚𝛿(𝑇1,3)2 𝑚𝛿(𝑇1,3)2 𝑚𝛿(𝑇1,1, 𝑇1,2, 𝑇1,3)1 

*Please note that the element 𝑖𝑗  in the Table represent the multiplication of the 

elements 1𝑗 × 𝑖1 , e.g., 𝑚𝛿(𝑇1,1) × 𝑚𝛿(𝑇1,1) = 𝑚𝛿(𝑇1.1)1   𝑚𝛿(𝑇1,1) ×

𝑚𝛿(𝑇1,1, 𝑇1,2, 𝑇1,3) = 𝑚𝛿(𝑇1.1)2 

 12 

From Eq. (4), 𝐾 = 0,17.  13 

From Eq. (3): 14 
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𝑚1,2
𝛿 (𝑇1,3) =

0,26

1 − 0.17
= 0.31 1 

The same steps are repeated for the other mass functions and presented in Table 9. Finally, the new results 2 

obtained from the combination of the two experts are further recombined with the BBAs from the third matrix. The 3 

results are presented in Table 9. 4 

 5 

Table 9 Mass function combinations from the experts 6 

 

Focal sets of the criteria 

Combined mass from 

experts 1 and 2 

Combined mass from 

experts 1, 2 and 3 

𝑚𝛿(𝐴) 

𝑚1,2
𝛿 (𝑇1,1) 0.15 0.05 

𝑚1,2
𝛿 (𝑇1,2) 0.29 0.40 

𝑚1,2
𝛿 (𝑇1,3) 0.31 0.49 

𝑚1,2
𝛿 (𝑇1,1, 𝑇1,2, 𝑇1,3) 0.25 0.06 

 7 

V. Pignistic probability transformation 8 

Then, the pignistic mass function is found by Eq. (5): 9 

𝑤1,2,3
𝛿 (𝑇1,1) = 𝑚1,2,3

𝛿 (𝑇1,1) +
𝑚1,2,3

𝛿 (𝑇1,1, 𝑇1,2, 𝑇1,3)

3
= 0.05 +

0.06

3
= 0.07 10 

The steps are repeated for the other mass functions and found to be: 11 

𝑤1,2,3
𝛿 (𝑇1,2) = 0.42 12 

𝑤1,2,3
𝛿 (𝑇1,3) = 0.51 13 

Note that the three mass functions on the pignistic level sum to one. These pignistic mass functions represent 14 

the relative “believed weights” of the three criteria under modeling fidelity after the reliability discounting and 15 

transformation. The same steps are repeated for all the criteria. Then, the weights need to be evaluated with respect 16 

to the top-level goal: the trustworthiness. As illustrated previously, this can be done easily by multiplying the weight 17 

of the daughter attribute by the weight of the upper parent attributes in each level. For simplicity reasons, only the 18 

weights of the “leaf” attribute with respect to the top level attribute i.e., trustworthiness, are presented in Tables 10 19 

and 11 (see Section 5.2.2). Note that the weights of the 27 leaf-attributes with respect to the top goal sum to one 20 

∑ 𝑊𝑖 = 127
𝑖=1 . 21 
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5.2.2. Evaluation of the attributes scores 1 

The next step is to evaluate the attributes score for the hazard group, given the scoring guidelines in Appendixes 2 

A-B. Some information regarding the risk assessment process is extracted from the PRA report to support the 3 

trustworthiness assessment: 4 

• The heights (water levels) at the plant’s platform at which the water can lead to a failure of a specific 5 

element were defined. 6 

• The water flowrate that would result in a given water height at the NPP platform in a defined interval 7 

of time was predicted. 8 

• The flow-rate was multiplied by a safety factor of 130%. 9 

• The “return period” for each flowrate was obtained from the data of the millennial flooding flowrate of 10 

the river of interest and the data were extrapolated to assess the frequencies of extreme flowrates. 11 

• The river flooding is considered as a predictable phenomenon and the probability of failure of transition 12 

into the emergency state (i.e., normal shutdown and cooling with steam generator, residual heat removal 13 

system, etc.) is assumed to be the intrinsic probability of failure. 14 

• It is assumed that river overflow is the only source of external flooding. 15 

• A combined hydraulic/hydrologic method is adopted, given the special hydrological and physical 16 

characteristics of the basin.  17 

• It is assumed that once the water reaches the bottom of the equipment, the equipment fails. 18 

• It is assumed that failing to close the valves (ensuring the volumetric protection sealing-water proofing) 19 

causes the total loss of Emergency Feedwater System (EFWS).   20 

• It is assumed that clogging inevitably occurs if the flooding occurs. 21 

• The analysis and model calculation for this hazard group is taken with a specific cutoff error of 10 −14. 22 

Based on the excerptions from the report, it can be seen that: 23 

• In this example, the risk analysis and assessment steps follow the IAEA recommendations. 24 

• The calculation of flowrates and flow frequencies are calculated using solid deterministic models. 25 

However, extrapolation of the data to obtain the frequencies of floods with extreme flowrates is still 26 

doubtful. 27 

• The river overflow is a predictable phenomenon and does not happen suddenly. However, the river 28 

overflow is not the only source of flooding. For example, a rupture in the river dikes might also lead to 29 
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sudden, unpredictable flooding. 1 

• The application of a combined hydraulic/hydrologic method on the flooding studies of nuclear sites 2 

allows a more realistic evaluation of the flooding level and to estimate more precisely the return periods. 3 

• The assumption that the water will fail the equipment directly if it touches its bottom level is 4 

conservative. 5 

• Feedback data show that clogging due to river flooding has occurred before in the nuclear industry (see, 6 

for example, USNRC General Electric Advanced Technology Manual for more information (NRC, 7 

2011)). However, claiming that each flooding would surely lead to clogging is still questionable and 8 

needs to be studied in details, taking into account the different influencing parameters (hydraulic, 9 

geometrical and topographical properties) of the area (see (Gschnitzer et al., 2017)). 10 

• In case of failing to close the valves ensuring the volumetric protection, the probability that water will 11 

go back through the drainage system is not identified and assumed to be one (𝑃 = 1), though there are 12 

no relevant calculations. Moreover, once the water enters the physical protection locations, the safety-13 

related equipment is assumed to be lost. Both assumptions are conservative to increase the safety margin. 14 

Based on the above observations, the leaf attributes in Figure 1 can be evaluated. For example, quality assurance 15 

attribute is evaluated to be five (𝑇1,3,4,2 = 5), since the PRA is conducted following the IAEA recommendations. 16 

The accuracy of the calculation is evaluated to be five (𝑇1,3,2 = 5), since the cutoff error is apparently very low. The 17 

combined hydraulic/hydrologic models used for the flooding studies are able to capture the special hydrological and 18 

physical characteristics of the basin, which makes them suitable for the study. Hence, a score of four (𝑇1,2,2 = 4) is 19 

given for the suitability of the model. The assumptions presented above are mostly conservative and unrealistic. 20 

Therefore, a score of one (𝑇1,3,3,1 = 1) is given for the plausibility of the assumptions. The other attributes are scored 21 

in the same way. The results are represented in Tables 10 and 11. The level of trustworthiness for the external flooding 22 

is, then, calculated by Eq. (1): 𝑇𝑒𝑥𝑡 = ∑ 𝑊𝑖 ∙ 𝐴𝑖
27
𝑖=1  = 3.260. 23 

Table 10 level-3 leaf attributes weights 𝑊 and scores 𝑆 for external flooding hazard group 24 

𝑨𝒕𝒕 MS IoA RM S HU Cv AoC NH AR EK YE NE Ac In AD 

𝑾 0.012 0.026 0.025 0.158 0.070 0.025 0.012 0.022 0.032 0.054 0.034 0.017 0.105 0.105 0.065 

𝑺𝒄𝒐𝒓𝒆 2 2 3 4 3 4 5 2 2 3 3 4 3 3 3 

 25 
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Table 11 level-4 leaf attributes weights 𝑊 and scores 𝑆 for external flooding hazard group 1 

𝑨𝒕𝒕 Pl VL Ag QA LoG NoA LoD C Co V T Ac 

𝑾 0.037 0.029 0.025 0.066 0.006 0.005 0.004 0.017 0.011 0.009 0.011 0.017 

𝑺𝒄𝒐𝒓𝒆 1 4 4 5 4 4 4 3 3 3 3 3 

 2 

The trustworthiness for internal events hazard group (𝑇𝑖𝑛𝑡) was calculated in the same way and, the result is 3 

𝑇𝑖𝑛𝑡 = 4.414. These results confirm the expectations that the PRA for internal events is considered relatively mature 4 

and well established (EPRI, 2015) in contrast to the PRA of external hazards, which is considered less mature with 5 

several limitations (EPRI, 2012). 6 

5.3. Risk assessment considering the level of trustworthiness 7 

5.3.1. Determining the probability of trust in the PRA results 8 

In this step, the decision maker is asked to assign a probability that represents the belief that the risk assessment 9 

model output is correct (hereafter called probability of trust), based on the certainty equivalent approach presented 10 

in Section 4.2. In this example, we assume that the decision maker exerts a risk-prone behavior and generates the 11 

results in Table 12. The data in Table 12 are extrapolated and fitted to a function, as shown in Figure 4.   12 

Table 12 Probability of trust given the level of trustworthiness 13 

Trustworthiness Probability of trust 

1 0.05 

2 0.50 

3 0.75 

4 0.90 

5 1.00 

 14 
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 1 

Figure 4 Fitted probability of trust in the PRA given the trustworthiness 2 

Then, the probability that the decision maker trusts each hazard group PRA given their trustworthiness is 3 

calculated from the fitted model in Figure 4. The probability of trust for the external flooding 𝑝𝑒𝑥𝑡 is found to be 4 

𝑝𝑒𝑥𝑡 = 0.783. The probability of trust for the internal events 𝑝𝑖𝑛𝑡 is found to be 𝑝𝑖𝑛𝑡 = 0.957.  5 

5.3.2. Risk assessment of a single hazard group considering the level of trustworthiness 6 

The level of trustworthiness is integrated with the PRA results for both hazard groups following Eq. (6). The 7 

results are presented in Figures 5 and 6, respectively. As illustrated in Figure 5, the mean risk value considering the 8 

trustworthiness is 1.088 × 10−1 (𝑟𝑒𝑎𝑐𝑡𝑜𝑟 ∙ 𝑦𝑒𝑎𝑟) −1 for external flooding compared to 1.589 × 10−6 (𝑟𝑒𝑎𝑐𝑡𝑜𝑟 ∙9 

𝑦𝑒𝑎𝑟) −1   without considering the level of trustworthiness. For internal events, the mean risk value is 10 

2.149 × 10−2 (𝑟𝑒𝑎𝑐𝑡𝑜𝑟 ∙ 𝑦𝑒𝑎𝑟) −1  considering the trustworthiness compared to 3.322 × 10−8 (𝑟𝑒𝑎𝑐𝑡𝑜𝑟 ∙11 

𝑦𝑒𝑎𝑟) −1  without considering it for internal events, as illustrated in Figure 6. It can be seen from the Figures that 12 

considering the level of trustworthiness will lead to a larger spread out of the probability distribution of the risk. For 13 

further explanation, let’s take Figure 5 as an example. In panel (a), which represents the risk analysis considering the 14 

parametric uncertainty propagation, the spread-out of the risk distribution is limited to the risk interval 15 

[4.626 × 10−11, 7.738 × 10−6] . On the other hand, the interval of the risk distribution increases to 16 

[3.019 × 10−6, 2.169 × 10−1] when the level of trustworthiness is considered in the risk analysis (see panel (b)). 17 

This comes out as a result of accounting for the disbelief in the risk analysis that reflects the ignorance about the real 18 

value of risk. Hence, the spread of the risk distribution becomes wider, leading to a higher mean value of the risk In 19 

other words, real values of risk can fall in reality in ranges of risk wider than that obtained by the initial analysis and 20 
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does not consider the level of trustworthiness. 1 

  2 

Figure 5 Updated risk estimates after considering the level of trustworthiness for external flooding (a) original risk 3 

estimate from the PRA, (b) Risk estimates after integrating the level of trustworthiness 4 

 5 

 6 

 7 

5.3.3. Multi-Hazards risk aggregation 8 

Finally, the overall risk given the level of trustworthiness can be calculated using Eq. (8). The results are 9 

presented in Figure 7. The empirical probability density function of the risk is evaluated through a Monte-Carlo 10 

simulation of 105  samples. As a comparison, the MHRA is also conducted using the conventional methods by 11 

adding the risk indexes from the two hazard groups directly, without considering the trustworthiness, as shown in 12 

Figure 6 Updated risk estimates after considering the level of trustworthiness for internal events (a) original risk estimate 

from the PRA, (b) Risk estimates after integrating the level of trustworthiness 
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Figure 7 (a). The mean value of the total risk from the two hazard groups considering the level of trustworthiness is 1 

found to be 1.303 × 10−1 (𝑟𝑒𝑎𝑐𝑡𝑜𝑟 ∙ 𝑦𝑒𝑎𝑟) −1  compared to 1.622 × 10−6 (𝑟𝑒𝑎𝑐𝑡𝑜𝑟 ∙ 𝑦𝑒𝑎𝑟) −1  without 2 

considering the level of trustworthiness. As discussed earlier, the aggregation of the risks from the two hazard groups 3 

needs to consider the different levels of trustworthiness to yield a mathematically appropriate process and a physically 4 

meaningful results. In fact, considering the level of trustworthiness in the analysis means that we are accounting for 5 

the disbelief, shortcoming, and lack of knowledge in the analysis, which leads to a broader spread-out of the 6 

distributions and a larger risk interval. The increase of the interval, in which the risk can fall, represents in fact a more 7 

realistic risk analysis as it accounts for the ignorance in the model. The increase in the spread out of probability 8 

distribution of risk leads to a higher mean value of risk, as it takes into account the fact that the PRA models of the 9 

two hazard groups are based on different levels of trustworthiness. 10 

 11 

Figure 7 Results of the MHRA, (a) conventional aggregation, (b) considering the level of trustworthiness 12 

6. Discussion and conclusion  13 

In this paper, we have presented a framework for Multi-hazards Risk Aggregation (MHRA) considering 14 

trustworthiness. A framework for evaluating the level of trustworthiness is first developed. The framework consists 15 

of two main attributes, i.e., strength of knowledge and modeling fidelity. The strength of knowledge attribute covers 16 

the explicit knowledge that can be documented, transferred or explained. The modeling fidelity attribute covers the 17 

suitability of the tool and the model construction process. The two attributes are broken down into sub-attributes and, 18 
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finally, leaf attributes. The total trustworthiness is calculated using a weighted average of the attributes, where the 1 

weights are calculated using DST-AHP method. Where AHP method is used to calculate the relative weights of the 2 

attributes using experts elicitations, whereas DST method is used to account for the uncertainty in their elicitations. 3 

A MHRA method is, then, developed to aggregate the risk from different hazard groups with different levels of 4 

trustworthiness, based on a “weighted posterior” method. An application to a case study of a NPP shows that the 5 

developed method allows aggregating risk estimates with different degrees of maturity and realism from different 6 

risk contributors. 7 

The current framework represents a systematic way for enhancing the risk assessment and representing a 8 

mathematically more appropriate risk aggregation process. This is done by considering the different levels of realism 9 

on which the risk analyses of the aggregated hazard groups are based and integrating it in the risk analysis. From a 10 

practical point of view, the framework is developed in systematic and practical, procedural steps that facilitate the 11 

application of the framework to real life cases. In addition, it represents an illuminating point to better inform risk-12 

based decision making, as it represents the degree of realism of the analysis. 13 

However, a possible of the framework that DST is used only to account for the uncertainty in the experts’ 14 

elicitations of the relative weights of the attributes and not the scores. Therefore, further studies need to be conducted 15 

to integrate DST method to also account for the uncertainty in the evaluation of the attributes scores of each given 16 

model.  17 

Also, another possible possible limitation of the framework that the conventional safety criteria cannot be 18 

directly applied to the new risk estimates considering the trustworthiness. Therefore, future work is further needed 19 

for developing new safety criteria that corresponds with the new risk estimates that consider the trustworthiness to 20 

better inform the decision maker.   21 
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Appendix A: Evaluation guidelines for leaf attributes under modeling fidelity (𝑻𝟏) 1 

Appendix A.1: Attributes under “robustness of the results attributes” 2 

Table A.1.1 Scoring guidelines for robustness of the results 3 

Score 

Attribute 
1 3 5 

Model sensitivity 𝑇111 

𝑇111 = 1 if the 

ensemble of model 

parameters greatly 

influence the final result 

𝑇111 = 3 if the 

ensemble of model 

parameters moderately 

influence the results 

𝑇111 = 5 if the 

ensemble of model 

parameters have little or 

no impact on the results 

of risk analysis 

Impact of the assumptions 

𝑇112 

𝑇112 = 1 if the 

assumption greatly 

influences the results of 

risk analysis 

𝑇112 = 3 if the 

assumption moderately 

influences the results of 

risk analysis 

𝑇112 = 5 if the 

assumption has little or 

no impact on the results 

of risk analysis 

 4 

Appendix A.2: Attributes under “suitability of the selected model” 5 

Table A.2.1 Scoring guidelines for suitability of the selected model 6 

Score 

Attribute 
1 3 5 

Robustness of the model 

𝑇121 

𝑇111 = 1 if the model 

doesn’t show the 

capability of performing 

under different settings 

or when exerting, 

deliberately, some 

variations in the 

assumptions and 

parameters 

𝑇111 = 3 if the model  

show the capability of 

performing moderately  

under different settings 

or small deliberate 

variations in the 

assumptions and 

parameters 

𝑇111 = 5 if the model  

show the capability of 

performing under 

different settings or 

when exerting, 

deliberately, large 

variations in the 

assumptions and 

parameters 
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Suitability of the tool 𝑇122 

𝑇122 = 1 if the selected 

model is not usually 

used for achieving 

objectives similar to the 

required ones or it is not 

suitable for the problem 

settings and cannot 

capture all the important 

aspects of the problem 

𝑇122 = 3 if the selected 

model is usually used 

for achieving objectives 

similar to the required 

ones or it is suitable for 

the problem settings but 

doesn’t capture entirely 

the important aspects of 

the problem 

𝑇122 = 5 if the selected 

model is usually used 

for achieving objectives 

similar to the required 

ones and it is suitable 

for the problem settings 

in a way that captures 

entirely the important 

aspects of the problem 

in a way that makes it 

suitable to represent 

reality 

Historical use 𝑇123 

𝑇123 = 1 if the selected 

tool is new or has never 

proved its successful use 

before, or if it is a new 

version of the tool that is 

quite different from the 

old one 

𝑇123 = 3 if the selected 

tool is a new updated 

version of a tool that has 

proved its successful use 

before 

𝑇123 = 5 if the selected 

tool is quite common 

tool that has proved its 

successful use in 

different problem 

settings, or if it is a 

slightly updated version 

of an old common one 

that proved it successful 

use 

 1 

Appendix A.3: Attributes under “quality of application” 2 

Conservatism: 3 

In this setting, the conservatism is evaluated in the light of three criteria:  (i) types of risk index estimates (best 4 

judgment, true value with a high confidence and true value with a low confidence); (ii) context of decision making; 5 

(iii) the effect of conservatism on the perception of the problem compared to best or true estimates or true and 6 
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consequently decision making assumptions and parameters. Figure A.1-3 illustrate the different score for each 1 

corresponding scenario. 2 

 3 

Figure A.3.1 Evaluation of the conservatism in the light of the level of maturity (conservatism VS Best estimate) 4 

 5 

Figure A.3.2 Evaluation of the conservatism in the light of the level of maturity (conservatism VS True value/weak 6 

knowledge) 7 

True value (low 

confidence, 𝑃 ≤ 90%) 

based on weak 

knowledge 
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 1 

Figure A.3.3 Evaluation of the conservatism in the light of the level of maturity (conservatism VS True value/strong 2 

knowledge) 3 

 4 

Table A.3.1 Scoring guidelines for the quality of the application  5 

    Score 

Attribute 
1 3 5 

The accuracy of 

the calculation 

𝑇132 

 

𝐾131 = 1 if the setting of 

accuracy is chosen to be low 

and high degree of error is 

accepted in the calculations. 

For example, the cutoff error 

(the chosen value of 

parameters at which lower 

values are ignored) is set to 

be large, and a low number of 

trials are performed 

𝐾131 = 3 if the setting 

of accuracy is chosen to 

be acceptable with a 

tolerable degree of 

errors. For example, the 

cutoff error is set to be 

quite low and a 

sufficient number of 

trials are performed 

𝐾131 = 5 if the setting 

of accuracy is chosen to 

be high and errors are 

conservatively accepted 

in the calculations. For 

example, the cutoff  

error is set at to be small, 

and a high number of 

trials are performed 

True value (high 

confidence, 𝑃 ≥ 90%) 

based on strong 

knowledge 
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Table A.3.2 Scoring guidelines for quality of assumptions (Boone et al.,2010)  1 

    Score 

Attribute 
1 3 5 

Plausibility of 

assumptions 𝑇1331 

 

𝐾1331 = 1 if the assumption 

is not realistic (over 

conservative or over 

optimistic), or the available 

information is not sufficient 

for assessing the quality of 

the assumptions 

𝐾1331 = 3 if the 

assumption is based on 

existing simple models 

and extrapolated data 

𝐾1331 = 5 if the 

assumption is 

plausible: it is 

grounded on well-

established theory or 

abundant experience 

on similar systems, and 

verified by peer review 

Note: If multiple assumptions are involved in the assessment, the final score for 𝑇1331 is obtained by averaging the 2 

scores of all the assumptions. 3 

 4 

Table A.3.3 Scoring guidelines for the value-ladenness of the assessors 5 

Score 

Attribute 
1 3 5 

Personal knowledge 

(educational 

background) 

𝑇13321 

𝑇13321 = 1 if all of the 

experts hold academic 

degrees from other 

domains 

𝑇13321 = 3 if less than two 

thirds of the experts hold 

academic degrees in the same 

field 

𝑇13321 = 5 if over two 

thirds of the experts 

hold academic degrees 

in the same field 

Sources of 

information  

𝑇13322 

𝑇13322 = 1 if experts 

can only access 

academic information 

source or only industrial 

information source 

𝑇13322 = 3 if experts can 

access fully industrial 

information source and 

partially academic 

information source 

𝑇13322 = 3 if experts 

can fully access both 

academic and 

industrial information 

sources 

Unbiasedness and 

plausibility 

𝑇13323 = 1 if the expert 

team is very 

𝑇13323 = 3 if the expert 

team is slightly 

𝑇13323 = 5 if as a 

team, the experts are 
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𝑇13323 conservative or 

optimistic 

conservative/optimistic unbiased: the biases of 

the experts can 

compensate one 

another 

Relative 

independence  

𝑇13324 

𝑇13324 = 1 if over 

three quarters of the 

experts are highly 

influenced by mangers 

and stakeholders 

𝑇13324 = 3 if less than one 

quarter of experts might be 

influenced by the mangers 

and stakeholders 

𝑇13324 = 5 if all 

experts’ decisions are 

highly independent 

Past experience 

𝑇13325 

𝑇13325 = 1 if the 

experts’ experience is 

less than 5 years 

𝑇13325 = 3 if the experts’ 

experience is between 10-15 

years 

𝑇13325 = 5 if the 

experts’ experience is 

more than 20 years 

Performance measure 

𝑇13326 

𝑇13326 = 1 if the 

performance of the 

experts are not 

evaluated by external 

peers 

𝑇13326 = 3 if the external 

peers generally acknowledge 

the experts’ performance but 

raise some slight concerns 

𝑇13326 = 5 if the 

external peers endorse 

the experts’ 

performance and  

approve them  

*Please note the value-ladenness score is calculated by averaging the scores over all the attributes in this 

table. 

Table A.3.4 Scoring guidelines for leaf attributes under verification 1 

    Score 

Attribute 

1 3 5 

Agreement among 

peers 

𝑇1341 

𝑇1341 = 1 if some 

experts hold strongly 

conflicting views on the 

assumptions 

𝑇1341 = 3 if some experts 

questions on the assumptions, 

but do not have strongly 

conflicting views 

𝑇1341 = 1 if most of 

the experts agree on 

the assumptions 

Quality assurance 

𝑇1342 

𝑇1341 = 1 if the 

analysis does not follow 

𝑇1341 = 3 if the analysis 

follows moderately the 

𝑇1341 = 5 if the 

analysis follows 
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the quality standards 

and recommendations 

set by the PSA 

community e.g., ASME 

standards, NRC 

regulatory guides, 

IAEA recommendations 

quality standards and 

recommendations set by the 

PSA community e.g., ASME 

standards, NRC regulatory 

guides, IAEA 

recommendations 

entirely and 

conservatively the 

quality standards and 

recommendations set 

by the PSA 

community e.g., 

ASME standards, 

NRC regulatory 

guides, IAEA 

recommendations 

 1 

Table A.3.5 Scoring guidelines for leaf attributes under the level of sophistication 2 

    Score 

Attribute 

1 3 5 

Level of granularity 

𝑇1351 

𝑇1341 = 1 if the level 

of analysis is performed 

abstractly and coarsely 

on the level of systems 

or level  the level of 

large components 

𝑇1341 = 3 if the analysis is 

performed in to a sufficiently 

fine level that regards the 

small components of a 

system or a small factors of a 

problem 

𝑇1341 = 1 if the level 

of analysis is zoomed 

in to the level of 

component’s small 

constituting parts e.g., 

considering the small 

constituting parts of a 

manual (i.e., valve, 

the body, bonnet, 

ports etc.) when 

building the physical 

model for calculating 

the failure rate of a 

manual valve 
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Number of 

approximations 

𝑇1352 

𝑇1342 = 1 if there is a 

large number of 

approximations and the 

aggregate of the 

approximations affects 

significantly  the 

output 

𝑇1342 = 3 if there is a 

moderate number of 

approximations or the 

aggregate of the 

approximations affects 

moderately the output 

𝑇1342 = 5 if there is a 

low number of 

approximations and 

the aggregate of the 

approximations does 

not affect, or affects 

insignificantly  the 

output 

Level of details 

𝑇1353 

𝑇1353 = 1 if most of the 

relevant contributing 

factors (including those 

that are not evident in 

the model construction 

requirements) that 

affect the estimates are 

not captured in 

modeling process 

compared to a complete 

realistic modeling e.g., 

the dependency among 

components in 

calculating the failure of 

a given component, 

environmental and 

thermal effect on 

components, level of 

the PH 

𝑇1353 = 3 if most of the 

relevant contributing factors 

(including those that are not 

evident in the model 

construction requirements) 

that estimates are captured in 

the modeling process 

compared to a complete 

realistic modeling e.g., 

considering the dependency 

among components in 

calculating the failure of a 

given component, 

environmental and thermal 

effect on components, level 

of the PH 

𝑇1353 = 3 if all 

relevant contributing 

factors (including 

those that are not 

evident in the model 

construction 

requirements) that 

affect the estimates 

are captured in 

modeling process 

compared to a 

complete realistic 

modeling e.g., 

considering the 

dependency among 

components in 

calculating the failure 

of a given component, 

environmental and 

thermal effect on 
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components, level of 

the PH 

 1 

Appendix B: Evaluation guidelines for the strength of knowledge (𝑻𝟐) leaf attributes 2 

Appendix B.1: Attributes under “Known potential hazards” 3 

Table B.1.1 Scoring guidelines for leaf attributes under known potential hazards 4 

Score 

Attribute 
1 3 5 

Number of known 

hazards 

𝑇211 

𝑇211 = 1 if there is only a 

few number of known 

relevant hazards that are 

considered in the analysis 

𝑇211 = 3 if there is a 

moderate number of 

known relevant hazards 

that are considered in the 

analysis 

𝑇211 = 5 if there is a 

high number of 

known relevant 

hazards that are 

considered in the 

analysis 

Availability of accident 

reports 

𝑇212 

𝑇212 = 1 if there is no 

past experience and 

technical reports that 

explain and cover in 

details the timing, causes 

and different sequences of 

abnormal activities, 

incident or accident 

𝑇212 = 3 if there is only 

a few past experience 

and technical reports that 

explain and cover in 

details the timing, causes 

and different sequences 

of abnormal activities, 

incident or accident, or if 

there is abundancy of 

reports that covers 

accidents without details 

𝑇212 = 5 if there is 

abundancy of past 

experience and 

technical reports that 

explain and cover in 

details the timing, 

causes and different 

sequences of 

abnormal activities, 

incident or accident 

Experts knowledge 

about hazards 

𝑇213 

𝑇213 = 1 if the expert has 

a low experience in such a 

type of analysis and  

𝑇213 = 3 if the expert 

has a moderate degree of 

experience in such a type 

𝑇213 = 5 if the expert 

has a high degree of 

experience in such a 
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hazards, as well as other 

types of problem, in a way 

that prevents him from 

imagining new unknown 

types of hazards 

of analysis and hazards, 

as well as other types of 

problem, in a way that 

allows him to imagine 

new unknown types of 

hazards 

type of analysis and 

hazards, as well as 

other types of 

problem, in a way that 

allows him to imagine 

most of the unknown 

types of hazards 

 1 

Appendix B.2: Attributes under “phenomenological understanding” 2 

Table B.2.1 Scoring guidelines for phenomenological understandings’ leaf attributes 3 

Score 

Attribute 
1 3 5 

Years of experience 

(human experience on 

the phenomenon) 

𝑇221 

𝑇221 = 1 if the 

phenomenon is new to a 

human being, and no 

theories about the 

phenomenon have been 

developed yet or the 

theories are incapable to 

explain well the 

phenomenon (e.g., black 

holes) 

𝑇221 = 3 if the 

phenomenon has been 

investigated for 

moderate years of 

experience with few 

theories that are 

consistent with 

preexisting ones but still, 

do not explain 

holistically the 

phenomena (e.g., nuclear 

physics) 

𝑇221 = 5 if the 

phenomenon has been 

investigated for a long 

time and well-

established theories 

have been developed 

to explain the 

phenomenon, which 

have been proved by 

many evidences (e.g., 

classical physics) 

Number of experts 

involved in the analysis 

𝑇222 

𝑇222 = 1 if there is no 

experts related to this 

domain (the assessors 

involved are not expert in 

𝑇222 = 3 if there is a 

moderate number of 

experts of acceptable 

reliability (two experts) 

𝑇222 = 5 if there is a 

sufficient number of 

highly reliable experts 

(more than two 
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this domain) or the experts 

are unreliable  

or a low number of 

experts of high reliability 

experts) 

Academic studies on the 

phenomena (measured 

by the number of articles 

and books published on 

the subject) 

𝑇223 

𝑇223 = 1 if no or limited 

published articles supports 

the understanding of the 

phenomenon (e.g., 

Einstein electromagnetic 

waves) 

𝑇223 = 3 if a moderate 

amount of the published 

articles supports the 

understanding of the 

phenomenon (e.g., 

nuclear energy) 

𝑇223 = 5 if a large 

amount of the 

published articles 

supports the 

understanding of the 

phenomenon (e.g., 

kinetic energy) 

Industrial pieces of 

evidence and 

applications on the 

phenomena (measured 

by the number of 

applications available on 

this subject) 

𝑇224 

𝑇224 = 1 if no or few 

industrial applications and 

reports support the 

understanding of the 

phenomenon (e.g., 

autonomous vehicles) 

𝑇224 = 3 moderate 

amount of industrial 

applications and reports 

support the 

understanding of the 

phenomenon (e.g., 

machine learning) 

𝑇224 = 5 if la arge 

amount of industrial 

applications and 

reports support the 

understanding of the 

phenomenon (e.g., 

airplanes) 

 1 

Appendix B.3: Evaluation guidelines for leaf attributes under “Data” 2 

Amount of data 𝑇231 is measured by a numerical metric, Years of Experience (YoE), defined by the number of 3 

related events recorded during a specific period. 4 

YoE =length of the data collection period (in years) × sample size of the data 5 

The amount of data is scored based on the criteria in Table B.3.1. 6 

Table B.3.1 Scoring guidelines for Amount of available data 7 

Value of YoE Score  

< 50 1 

50-199 2 

200-499 3 
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500-999 4 

>1000 5 

 1 

Completeness of data refers to the degree to which the collected data contains the needed information. For 2 

components and systems, data completeness is characterized by the following criteria (IAEA, 1991): 3 

1. The data should contain baseline information, which covers the design data and conditions of a 4 

component at its initial state. 5 

2. The data should contain the operating history, which covers the service conditions of systems and 6 

components including transient and failure data. 7 

3. The data should contain the maintenance history data, which covers the components monitoring and 8 

maintenance data. 9 

For more details on how each of the previous attributes is identified, see (IAEA, 1991). However, it should be 10 

noted that the completeness features are defined differently depending on the problem. For example, data required 11 

for quantifying to a component failure frequency is different from that for quantifying a natural event. General scoring 12 

guidelines for evaluating 𝑇2321 are given, based on the degree to which criteria are satisfied, as shown in Table 13 

B.3.2. 14 

 15 

Table B.3.2 scoring guidelines for data reliability  16 

Score 

Attribute 
1 3 5 

Completeness 

𝑇2321 

𝑇2321 = 1 if the data fail 

to contain the necessary 

information required in 

developing the risk 

assessment model (in the 

light of the completeness 

characteristics defined 

above) 

𝑇2321 = 3 if the data contain 

to an acceptable degree the 

necessary information 

required in developing the 

risk assessment model (in the 

light of the completeness 

characteristics defined above) 

 

𝑇2321 = 5 if the data contain 

all the necessary information 

required in developing the 

risk assessment model (in the 

light of the completeness 

characteristics defined above) 
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 1 

The validity of data is evaluated by the following criteria: 2 

1. The integrity of data is carefully managed.  3 

2. Databases are well organized and formatted in a common way, and easily retrieved and manipulated. 4 

3. Data should be collected and entered in the database by well-trained maintenance personnel, and modern 5 

computer techniques should be used for data storage, retrieval, and manipulation. 6 

4. The data collection and entering process should include an appropriate quality control mechanism. 7 

Based on the four criteria the evaluation guidelines of 𝑇2323 can be defined in Table B.3.3. 8 

Table B.3.3 scoring guidelines for data validity 9 

Score 

Attribute 
1 3 5 

Validity 

𝑇2323 

𝑇2323 = 1 if none of the 

validity criteria (illustrated 

above) is fulfilled 

𝑇2323 = 3 if the validity 

criteria (illustrated above) 

are partially fulfilled 

𝑇2323 = 5 if all of the 

validity criteria (illustrated 

above) are fulfilled 

 10 

Accuracy measures how close the estimated or measured value is compared to the true value. Accuracy is 11 

determined by random and systematic errors in the measurements (Popek, 2017). Since the data involved in nuclear 12 

PRA are mostly related to the number of failures or degradations and are usually collected digitally from different 13 

sources, systematic errors in the data are very small. This means that the accuracy of data is primarily determined by 14 

random errors. Since the error margin of the confidence interval is widely accepted as a good indicator of the random 15 

errors, it can be used as a measure of the data accuracy. Error factor may be defined based on the upper and lower 16 

bounds of confidence interval:  17 

𝑒𝑟𝑟𝑜𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 = √
𝑈𝑙

𝐿𝑙
 18 

where 𝑈𝑙 and 𝐿𝑙 are the upper and the lower bounds of confidence intervals. The accuracy of data is, then, scored 19 

based on the value of error factors, following the guidelines in Table B.3.4 scoring guidelines for data reliability  20 

Table B.3.4 scoring guidelines for data validity 21 
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Score 

Attribute 
1 3 5 

Accuracy 

𝑇2325 

𝑇2325 = 1 if the error 

factor is greater than 10 

𝑇2325 = 3 if the error factor 

is between 2-10 

𝑇2325 = 5 if the error 

factor is less or equal to 2 

 1 

The rest of the “leaf” attributes of the reliability of data are evaluated following the guidelines in Table B.3.5. 2 

Table B.3.5 scoring guidelines for data reliability 3 

Score 

Attribute 
1 3 5 

Consistency  

𝑇2322 

𝑇2322 = 1 if the data are 

not from the same type of 

power plant, or have 

different characteristics 

compared to the system 

under investigation, e.g., 

different component or 

model 

𝑇2322 = 3 if the data are 

from the same power plant 

with the same type of 

component and the same 

characteristics of the system 

under investigation but from 

different manufacturers 

𝑇2322 = 5 if the data are 

from the same power plant 

with the same type of 

components and the 

components have the same 

characteristics and the same 

manufacturer 

Timeliness 

𝑇2324 

𝑇2324 = 1 if the data has 

never been updated 

𝑇2324 = 3 if the data has 

been updated a few years 

ago (10 years and more) 

𝑇2324 = 5 if the data are 

up-to-date and are updated 

routinely 

 4 

 5 


