Topology and field strength in spherical, anelastic dynamo simulations

Raphaël Raynaud, Martin Schrinner, Ludovic Petitdemange, Emmanuel Dormy raphael.raynaud@ens.fr LRA,Département de Physique, École normale supérieure, Paris ABSTRACT Dynamo action, i.e. the self-amplification of a magnetic field by the flow of an electrically conducting fluid, is considered to be the main mechanism for the generation of magnetic fields of stars and planets. Intensive and systematic parameter studies by direct numerical simulations using the Boussinesq approximation revealed fundamental properties of these models. However, this approximation considers an incompressible conducting fluid, and is therefore not adequate to describe convection in highly stratified systems like stars or gas giants. A common approach to overcome this difficulty is then to use the anelastic approximation, that allows for a reference density profile while filtering out sound waves for a faster numerical integration. We present the results of a systematic parameter study of spherical anelastic dynamo models, and compare them with previous results obtained in the Boussinesq approximation.

We discuss the influence of the stratification on the field geometry and the field strength, and also compare the different scaling laws for the velocity amplitude, the magnetic dissipation time, and the convective heat flux.

ANELASTIC MHD EQUATIONS

• The reference state:

decomposition of the thermodynamics variables into the sum of a steady variable corresponding to the reference atmosphere and a convective disturbance f = f a + f c .

The reference state must be in mechanical and thermal quasiequilibrium, defined by :

hydrostatic balance -∇P a + ρ a g = 0 -"well-mixed" isentropic reference state ∇S a = 0

Then, P = P c ζ n+1 , = c ζ n , T = T c ζ, with ζ = f (r, N , n, χ)
• Navier-Stokes equation

D t v = P m - 1 E ∇ P ζ n + P m P r Ra S r 2 r - 2 E ẑ × v + F ν + 1 E ζ n (∇ × B) × B F ν i = ζ -n ∂ j ζ n (∂ i v j + ∂ j v i ) -2 3 δ ij ∂ k v k • Induction equation ∂B ∂t = ∇ × (v × B) + ∇ 2 B • Heat transfert equation D t S = ζ -n-1 P m P r ∇ • ζ n+1 ∇S + Di ζ E -1 ζ -n (∇ × B) 2 + Q ν with Q ν = 2 e ij e ij -1 3 (∇ • v) 2
together with the constraints

∇ • (ζ n v) = 0 ∇ • B = 0
Our numerical solver PARODY reproduces the anelastic dynamo benchmark (Jones et al. 2011).

CONTROL PARAMETERS

The system involves 7 dimensionless numbers: 

Ra = GM d∆S νκc p ∈ 10 4 , 10 7 , P r = ν κ ∈ [1, 2] , P m = ν η ∈ [1, 5] , E = ν Ωd 2 ∈ 10 -3 , 10 -5 , N = ln i o ∈ [0.1, 3.5] , n = 2, χ = r i r o ∈ [0.35, 0.60] .

SCALING LAWS Field strength Velocity

ρT D t S = ∇ • ρT κ t ∇S + ∇ • (K∇T ) + Q ν 4. OUTPUT PARAMETERS • Scaling laws -N u = (N u bot -1) E P r -Ra Q = (N u bot -1) Ra E 3
c = < (v c ) • (v c ) > < v c • v c > .
modified tilt angle of the dipole 

Θ = 2 π Θ(t) - π 2 2 t CONCLUSIONS

•

  use of a non steady reference state • consistency of the different variants of the anelastic approximation • averaging the heat transfert equation

-

  dynamo efficiency f ohm = D/P , where P is the power released by buoyancy and D is the ohmic dissipation • Field topology kinetic energy density E k -→ Ro = √ 2E k E/P m magnetic energy density E m -→ Lo = √ 2E m E/P m local Rossby number Ro = Ro c c /π c stands for the mean harmonic degree of the velocity component v c from which the mean zonal flow has been subtracted

(

  E = 10 -4 , P r = 1, variable Ra) vs. time and colatitude E = 10 -4 , P r = 2, P m = 4 Ra = 5 × 10 6 , N = 3 • Equatorial dipole E = 10 -4 , P r = 1, N = 0: circle, mult.:square) (white:0, black:1) Equatorial cut of V r Equatorial cut of B r B r E = 10 -4 , P r = 1, Ra/Ra c = 9