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Acceleration of Newton’s method using nonlinear Jacobi preconditioning

Konstantin Brenner

Université Côte d’Azur, Inria Team Coffee, CNRS, Laboratoire J.A. Dieudonné

Abstract

For mildly nonlinear systems, involving concave diagonal nonlinearities, semi-global
monotone convergence of Newton’s method is guarantied provided that the Jacobian of
the system is an M-matrix. However, regardless this convergence result, the efficiency
of Newton’s method becomes poor for stiff nonlinearities. We propose a nonlinear pre-
conditioning procedure inspired by the Jacobi method and resulting in a new system of
equations, which can be solved by Newton’s method much more efficiently. The obtained
preconditioned method is shown to exhibit semi-global convergence.

1 Introduction

Let N be a positive integer, we consider the problem of finding u ∈ (R+)
N

satisfying

f(u) +Au = b, (1)

where A belongs to the set of real N × N matrices, denoted in the following by M(N),

b ∈ (R+)
N

and the mapping f is defined by

f : u 7→

 f1(u1)
...

fN (uN )


with fi been strictly increasing continuous functions from R+ to R+ satisfying fi(0) = 0. More
precisely we will assume the following:

(A1) For each 0 ≤ i ≤ N , fi is strictly increasing, concave and belongs to C1 on (0,+∞).

(A2) The matrix A has zero diagonal elements and non-positive off-diagonal elements.

(A3) For any u > 0 the matrix f ′(u) +A is an M-matrix in the sens of the definition below.

Definition 1 We say that A is an M-matrix if A is invertible, A−1 ≥ 0, and ai,j ≤ 0 for
i, j = 1, . . . , N with i 6= j.

Note that the assumption (A3) implies that f ′(u) +A has a strictly positive diagonal (see e.g.
2.4.8 of [5]). We also remark that the derivatives of fi are potentially unbounded at the origin;
we will denote f ′i(0) = limu→0+ f

′
i(u).

The system (1) can be found in numerical modeling of flow and transport processes. In
particular it arises from the discretization of the nonlinear evolutionary PDEs of the form

∂tβ(u) + div (vu− λ∇u) = γ(u). (2)
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Applying the backward Euler scheme and some space discretization method to (2) one typically
get the discrete problem of the form

β(unh)− β(un−1h )

∆t
+M−1Sunh = γ(unh) + σnh , (3)

where unh, u
n−1
h ∈ RN are the vectors of the discrete unknowns associated with two sequential

time steps, while M and S are respectively the mass and the stiffness matrices, and the vector
σnh contains boundary data.

To fix the ideas let’s assume that the Dirichlet boundary conditions are imposed. Several
space discretization methods provide (possibly under some geometrical condition on the mesh)
that the matrix M−1S is an M-matrix. In the presence of diffusion (that is λ > 0), the
examples of such monotone discretization schemes is the standard finite volume method with
two-point flux approximation and P1 finite element method with mass lumping under the
Delaunay condition on the underlying mesh (see [4]). Let us mention that the monotone
discretizations are not only beneficial to the nonlinear solver (as it is going to be discussed in
this paper), but also allow to preserve the local maximum principle on the discrete level, thus
avoiding any spurious osculations of the discrete solution.

Let D denote the diagonal of M−1S, let A = ∆t
(
M−1S −D

)
. Setting

f(u) = β(u) + ∆t (Du− γ(u))

the system (3) can be written in the form of (1) as

f(unh) +Aunh = β(un−1h ) + ∆tσnh .

Given the assumption (A1) on the mapping f , and thus on the nonlinearities β(u) and γ(u),
several physical models are relevant. Such models are for example the porous media equation
[6], models of transport in porous media with adsorption (using e.g. the Freundlich isotherm
[1]), the Richards’ equation [2], [3] or the Dupuit-Forchheimer equation [1] (provided that
convection is discretized using an explicit scheme). Let us further remark that the analysis
and the algorithms presented in this paper can be extended to the Hele-Shaw or Stefan like
problems where β(u) is no longer a function, but rather a monotone graph of the form

f(u) = ζH(u) + f̃ ,

where f̃ is a function satisfying the assumption (A1), ζ is a positive real number and H(u)
denotes the multivalued Heviside graph. In [3] this type of nonlinearity has been addressed
trough the parametrization of f , that is a couple of the functions τ → (u(τ), v(τ)) with
v(τ) ∈ f(u(τ)) for all τ . The problem has been then rewritten in terms of the new variable τ .

Due to its quadratic convergence, Newton’s method is a very popular tool that can be to
solve the systems (1) numerically; moreover under assumptions (A1)− (A3) one can show that
Newton’s method converges monotonically toward any strictly positive solution u? as soon as
the initial guess u0 satisfies 0 < u0 ≤ u?. This semi-global convergence result is based on
the concavitty of the underlying functional; it is at fact a straightforward adaptation of the
convergence results from [5] (see also Proposition 3 below) to the concave setting.

Despite an available convergence result, the numerical evidences presented in [3] suggest
that the efficiency of Newton’s method applied to (1) can be very poor especially for stiff

problems with f ′(0) = +∞. To give an example let γ(u) = 0 and β(u) = u
1
m ,m ≥ 1

(this choice corresponds to the porous media equation [6]), as demonstrated in the numerical
section 3 convergence of Newton’s method can be very slow; moreover the number of Newton’s
iterations required to solve the system grows as m grows. The numerical experiment also
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demonstrates that the efficiency of Newton’s method can be greatly improved by a simple
change of the variable u = β(v). Let us note that for Richards-like parabolic-elliptic problems
with β′(u) = 0 for u ≥ us > 0 the similar change-of-variable trick can be performed using the
variable switching technique as suggested in [3]. Compare to the initial formulation of (1) the
drawback of the change-of-variable approaches is that the concavity of the problem is lost,
and therefore the monotonic convergence is no longer guarantied.

In this article we reformulate the system (1) in a way that accelerates convergence of
Newton’s method while preserving concavity of the problem. More precisely we replace the
system (1) by a different one having the same solution set but easier to solve using Newton’s
method. Since the modified system is similar to the one obtained in Jacobi method, we refer
to our approach as to Jacobi preconditioned Newton’s method.

The mapping f is diagonal, strictly increasing and continuous and therefore admits an in-
verse denoted g = f−1. We consider the following left-preconditioned and right-preconditioned
problems

Fl(u) := u− g(b−Au) = 0 (4)

or
Fr(u) := u+Ag(u)− b = 0. (5)

We will show that F?(u), ? = l, r remains concave, that F ′?(u) exists and is an M-matrix for
all u ∈ (R+)N . This implies monotone convergence of Newton’s method applied to (4) and (5)
for any initial guess u0 satisfying F?(u0) ≤ 0. The numerical experiment shows (see Section
3) that performance of the preconditioned methods turns out to be superior compare to the
original formulation of (1), or alternatively to the change-of-variable approaches.

The reminder of the article is organized as follows. In Section 2, starting with some classical
results from [5], we prove existence and uniquness of the solution to (1) and we present the
monotone convergence result for Newton’s method applied to the problem (1) in its original
formulation and applied to the preconditioned problems (4) and (5). In addition in Section 2.3
we deal with the fact that in practice the function g can not be evaluated exactly show that,
and we show that a two-level nested Newton’s method applied to (4) still exhibits semi-global
convergence. Finally, Section 3 is deduced to the numerical experiment.

2 Convergence analysis

2.1 Convergence of Newton’s method under partial ordering

In this section we present the adaptation of the convergence result 13.3.4 from [5] to the
concave setting. We also prove existence and uniqueness of the solution to (1). Let us first
provide some simple observation regarding the M-matrices.

Lemma 1 Let A,A′ ∈ M(n) with A been an M-matrix, and A′ having non-positive off-
diagonal elements and satisfying A′ ≥ A. Then A′ is an M-matrix and (A′)−1 ≤ A−1.

Proof: Let D and D′ denote the diagonal of A and A′ respectively and B = D − A ≥ 0,
B′ = D − A′ ≥ 0. Since, A′ ≥ A we deduce that D′ ≥ D and B′ ≤ B. The matrix A′ can be
expressed as follows

A′ = D′ + (D′ −D)− (B − (B −B′)).

Obviously 0 ≤ B −B′ ≤ B and the result follows from 2.4.10 of [5].�
Two following lemmas are given without the proof.

Lemma 2 Let A be an M-matrix and A′ be some matrix satisfying A′ ≤ A, then A−1A′ ≤ I
and A′A−1 ≤ I.
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Lemma 3 Let A,D ∈ M(n) with A been an M-matrix and D been strictly positive diagonal
matrix. Then the matrices DA and AD are are again the M-matrices.

The following proposition is necessary to prove uniqueness of the solution to (1).

Proposition 1 (Inverse isotone and uniqueness) Let F be a continuous G-differentiable
concave mapping from (R+)N to RN and let F ′(u) be an M-matrix for all u ∈ (R+)N . Then
F is inverse isotone, that is F (u) ≥ F (v) ⇒ u ≥ v for all u, v ∈ (R+)N , which implies in
particular that the solution of F (u) = 0 is unique.

Proof: Since F is concave, we have

0 ≤ F (u)− F (v) ≤ F ′(u)(u− v)

which provides the result since F ′(u)−1 ≥ 0. Let F (u) = F (v) = 0, we have

F ′(v)(u− v) ≤ F (u)− F (v) ≤ F ′(u)(u− v)

which implies uniqueness. �

Proposition 2 (Existence and uniqueness of the solution) The solution to (1) exists
and is unique.

Proof: Obviously the problems (1), (4) and (5) have the same solution set. In view of Lemma
4 the mappings Fl and Fr satisfy the assumption of Proposition 1, and therefore (1) has at
most one solution.

To prove existence of the solution we consider the mappings Gl : u 7→ g(b − Au) and
Gr : u 7→ b−Ag(u). Vector u? is the solution to (1) if and only if it is a fixed point of Gl (or
equivalently Gr). In view of Lemma 4, the matrix F ′?, ? = l, r, has a non-negative inverse and
we deduce from 2.4.17 of [5] that ρ(G′?) < 1, implying that G? is a contraction. In particular,
for any initial guess u0 the fixed point iterations

un+1 = G?(un)

converges to u? solution of (1). �
The following Proposition is the straightforward adaptation of 13.3.4 from [5] to the case

of concave mappings.

Theorem 1 (Convergence of Newton’s method) Let F be a mapping satisfying the as-
sumptions of Proposition 1. Assume in addition that there exist u? ∈ (R+)N satisfying
F (u?) = 0 and u0 ∈ (R+)N such that F (u0) ≤ 0. Then the sequence

un+1 = un − F ′(un)−1F (un), n ≥ 0 (6)

is well defined, satisfies
un ≤ un+1 ≤ u?, F (un) ≤ 0

and is convergent. If in addition there exists an invertible P ∈ M(N) such that F ′(un)−1 ≥
P ≥ 0 for all n ≥ 0, then the sequence un converges to u?.

Proof: Assume that F (un) ≤ 0 for some n ≥ 0 (e.g. n = 0), this implies, in view of Proposition
1, that un ≤ u?. Using concavity of F and (6) we have that

F (un+1)− F (un) ≤ F ′(un)(un+1 − un) = −F (un),
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and thus F (un+1) ≤ 0 implying, in view of Proposition 1, that un+1 ≤ u?. It also follows
from (6) that un+1 ≥ un. The sequence (un)n, therefore, is non-decreasing and bounded from
above, hence it converges to some u. Let us prove that u = u?, since F ′(u)−1 ≥ P we deduce
that

un+1 − un ≥ −PF (un) ≥ 0.

Passing to the limit, we find in view of continuity of F that F (u) = 0, and, in view of
Proposition 1, u = u?. �

Let us denote
Fu(u) = f(u) +Au− b. (7)

From Theorem 1 we deduce that Newton’s method applied to 1 converges monotonically
provided that u? > 0 and Fu(u0) ≤ 0. More precisely the follow Proposition holds.

Proposition 3 (Convergence of the original formulation) Assume that b > 0, then there
exists the unique solution u? to (1) satisfying u? > 0; moreover there exists u0 such that
Fu(u0) ≤ 0 and Newton’s iterates (6) are well defined and monotonically converge to u?.

Proof: Let 1N denote an element of RN with all unit components, since f is continuous and
f(0) = 0 there exists ε > 0 such that Fu(ε1N ) ≤ 0. Let u0 = ε1N and let RNx≥δ denote the

set {x ∈ RN |x ≥ δ1N} for any δ > 0. The assumptions of Theorem 1 are satisfied with Fu
been G-differentiable on RNx>δ instead of (R+)

N
, which implies that the sequence of Newton’s

iterates (un)n starting at u0 converges. In addition from the concavity of f and from Lemma 1
we deduce that F ′u(un)−1 ≥ F ′u(u0)

−1 for all u ≥ u0 and therefore the sequence (un)n converges
toward u?. �

Let us remark that if f ′(0) = +∞ the assumption b > 0 can not be avoided, therefore the
direct application of Newton’s method to (1) is somewhat limited by the data. In contrast
the preconditioned methods can be applied without restrictions even if f ′ is unbounded at the
origin.

2.2 Convergence of the exact preconditioned methods

In this section we show that the mappings Fl and Fr satisfy the assumption of Theorem 1.

Lemma 4 The mappings Fl and Fr are concave; moreover for all u ∈ (R+)N the matrix
F ′?(u), ? = l, r is an M-matrix satisfying F ′?(u) ≤ I ≤ F ′?(u)−1.

Proof: The functions fi(ui) are is strictly increasing and concave. Therefore g is strictly
increasing and convex. Since A ≤ 0 the mapping

Fl(u) = u− g(b−Au)

is concave.
Let us first remark that since the function g : u 7→ (f ′(u))−1 is continuous, increasing and

bounded on (0,+∞) it can be extended by continuity to u = 0. This implies in particular
that g′ is well defined in zero. Next,

F ′l (u) = I + g′(b−Au)A,

thus, in view of the chain rule g′(v) = f ′(g(v))−1, we have

F ′l (u) = I + f ′(g(b−Au))−1A
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showing that F ′l (u) is an M-matrix in view of Assumption (A3) and Lemma 3. Obviously
F ′l (u) ≤ I, and it follows from Lemma 1 that F ′l (u)−1 ≥ I. Similarly for the right-preconditioned
problem we have

F ′r(u) = I +Ag′(u) = I +Af ′(g(u))−1

providing that F ′r(u) is an M-matrix satisfying F ′r(u) ≤ I ≤ F ′r(u)−1 for all u ≥ 0. �

Proposition 4 (Convergence of the preconditioned methods) The mappings Fl and
Fr satisfy the assumptions of Theorem 1 with u0 = 0.

Proof: The result follows form Lemma 4 and Proposition 2. �

2.3 Convergence of the inexact method

The application of Newton’s method to the preconditioned problems (4) and (5) requires
evaluation of the function g, which in general can not be done exactly. At fact, in order
to compute g(v) for some v ∈ (R+)N one has to solve the set of scalar nonlinear equations
f(w) = v. This can be achieved by any appropriate method, such as bisection, regula falsi or
Newton’s method again. The fact that the function g is not evaluated exactly gives rise to
the following sequence of inexact iterations

un+1 = un − J−1n,εFn,ε. (8)

Here Fn,ε and Jn,ε denote some approximations of F (un) and F ′(un) respectively. Let us give
the conditions under which the inexact method (8) converges to u?.

Proposition 5 Let F be a mapping satisfying the assumptions of Theorem 1 and u0 be such
that F (u0) ≤ 0. Consider the the sequence (un)n constructed by the following algorithm: For
all n ≥ 0

1. Choose Fn,ε such that
F (un) ≤ Fn,ε ≤ 0. (9)

2. Choose an M-matrix Jn,ε such that

Jn,ε ≥ F ′(un). (10)

3. Use (8) to compute un+1.

Then, the sequence (un)n is well defined, in particular F (un) ≤ 0 for all n ≥ 1; moreover
un ≤ un+1 ≤ u? for all n ≥ 0, and therefore the sequence (un)n is convergent. If in addition

there exists an invertible P ∈M(N) such that J−1n,ε ≥ P ≥ 0 for all n (11)

and
there exists a sequence (σn)n ≥ 0 such that limn→∞ σn = 0 and

−σn ≤ F (un)− Fn,ε,
(12)

then un converges to u?.
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Proof: Let F (un) ≤ 0 for some n ≥ 0 (e,g, for n = 0), since Fn,ε ≤ 0 we deduce from (8) that
un+1 ≥ un; in addition

F (un+1)− F (un) ≤ F ′(un)(un+1 − un)

and using (8)
F (un+1)− F (un) ≤ −F ′(un)J−1n,εFn,ε

or
F (un+1) ≤

(
I − F ′(un)J−1n,ε

)
Fn,ε + F (un)− Fn,ε.

In view of Lemma 2
I − F ′(un)J−1n,ε ≥ 0

and using F (un) ≤ Fn,ε ≤ 0 we deduce that F (un+1) ≤ 0, and hence un+1 ≤ u?. The sequence
(un)n is non-decreasing and bounded from above; therefore (un)n is convergent.

If, in addition, Jn,ε ≥ P ≥ 0, then in view of (8)

0 ≥ −P lim
n→∞

Fn,ε ≥ 0

implying that limn→∞ Fn,ε = 0. Next

−σn ≤ F (un)− Fn,ε ≤ 0

implies that F ( lim
n→∞

un) = 0 in view of continuity of F , and therefore limn→∞ un = u?. �

To complete this section we show that the nested Newton’s method applied to the left-
preconditioned problem (4) satisfies the assumptions of Proposition 5. We begin with the
following proposition showing the connection between Proposition 5 and the approximate
evaluation of g.

Proposition 6 Let u be such that Fl(u) ≤ 0. Let w denote the unique solution of f(w) =
b−Au and let wε satisfy

u ≤ wε ≤ w.

Let
Fε = u− wε and Jε = I +

(
f ′(wε)

)−1
A,

then
Fl(u) ≤ Fε ≤ 0, (13)

and Jε is an M-matrix satisfying
F ′l (u) ≤ Jε ≤ I. (14)

Proof: Note that
Fl(u) = u− w (15)

and
Fε = u− wε ≤ 0. (16)

Subtracting (16) from (15) we find

Fl(u)− Fε = wε − w ≤ 0,

which, combined with (16), implies (13). Since wε ≤ w and since f is concave we have that
f ′(w) ≤ f ′(wε), implying that (

f ′(w)
)−1

A ≤
(
f ′(wε)

)−1
A ≤ 0,
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and therefore
F ′l (u) ≤ Jε ≤ I.

In view of Lemma 1 the latter inequality implies that Jε is an M-matrix. �
Let us show that, for a given un satisfying Fl(un) ≤ 0, the computation of an approximation

wn.ε of wn satisfying Proposition 6 can be achieved by Newton’s method. Let rn = b− Aun,
since Fl(un) ≤ 0 and in view of (15) we have that un ≤ wn implying f(un) ≤ f(wn) = rn. Let
wn,0 = un, we define the sequence (wn,k)k by

wn,k+1 = wn,k −
(
f ′(wn,k)

)−1
(f(wn,k)− rn) , k ≥ 0.

Using similar arguments as in the proof of Theorem 1 one shows that un ≤ wn,k ≤ wn,k+1 ≤ wn
for all k ≥ 0 and that the sequence (wn,k)k converges toward wn.

In view of Proposition 6 we have that for any k ≥ 0 the quantities

Fn,ε = un − wn,k and Jn,ε = I + (f ′(wn,k))
−1A

satisfy (9), (10) and (11). The extraction of the sequence wn,ε providing (12) can be done by
setting wn,ε = wn,κ(n) where κ(n) is a smallest integer satisfying wn − wn,κ(n) ≤ 10−n.

Remark 1 The result similar to Proposition 6 can be established for the right-preconditioned
method. In that case one has to requiter that wε satisfies

wε ≤ w and u ≤ b−Awε

However, in contrast with Proposition 6, it is unclear how such quantities wε can be constructed
in practice.

3 Numerical experiment

Let us consider the porous medium equation (see [6])

∂tβ(u)− ∂2xxu = 0 (17)

on (0, 1) × (0, T ). The nonlinearity in the accumulation term is given by β(u) = u1/m with
m > 1. We consider the Neumann boundary conditions

∂xu(0, t) = 0, ∂xu(0, t) = −q for all t ∈ (0, T )

with q > 0, and the constant initial condition u(x, 0) = u0 > 0. The value of u0 is going to
be chosen close to zero leading to “an almost traveling wave solution”. Figure 1 exhibit the
approximate profile of β(u) at different time steps computed for m = 10, q = 104, T = 1.2 10−2

and NT = 100.
Equation (17) is discretized using the standard finite volume method with the time in-

tegration performed by the backward Euler scheme. Let N ∈ N∗, let h =
1

N
and let

xi = i/N for i ∈ {0, . . . , N}; the set of the finite volumes (Ki)i∈{1,...,N} is defined by
Ki = (xi−1, xi). Let NT ∈ N∗ and let ∆t = T/NT define the time step length. Integrat-
ing (17) over Ki × ((n − 1)∆t, n∆t) and using the standard implicit in time finite difference
approximation of ∂xu we obtain, the following equation

β(uni ) +
∆t

h2

∑
j∈Ni

(uni − unj ) = β(un−1i ) +
∆t

h
q δi,1, (18)
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Figure 1: Approximate solution at different time steps

where δi,1 stands for the Kronecker symbol and where Ni denotes the set of cells neighboring
with Ki

Ni =


{2} i = 1,
{i− 1, i+ 1} 1 < i < N − 1,
{N − 1} i = N.

Let L denote the tridiagonal matrix associated to the discretization of the diffusion operator in
the left-hand-side of (18) and let, for a given n ≥ 0, bn denote the right-hand-side of (18), the
system (18) results in the following problem, which has to be solved for each n ∈ {1, . . . , NT }(

β(u) +
∆t

h2
u

)
+

(
L− ∆t

h2
I

)
u = bn. (19)

It is easy to show that f(u) = β(u) +
∆t

h2
Iu and A = L − ∆t

h2
I satisfy the assumptions

(A1)-(A3).
The objective of the numerical experiment is to evaluate the efficiency of Newton’s method

(NM) applied to left and right-preconditioned problems

Fnl (u) := u− g (bn −Au) = 0 (20)

and
Fnr (u) := u+Ag(u)− bn = 0. (21)

Those preconditioned methods are compared, in terms of the performance, with three more
standard approaches specified below.

u−formulation: NM applied to (19) in the original form

Fnu (u) := β(u) + Lu− bn = 0 (22)

In view of Proposition 3 this method is monotonically convergent provided that the initial
guess satisfy F (u0) ≤ 0.

v−formulation: The problem (19) is reformulated with respect to the variable v with u =
β−1(v) and NM is applied to

Fnv (v) := v + Lβ−1(v)− bn = 0 (23)
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τ−formulation: Following [3] we introduce the function pair τ → (u(τ), v(τ)) such that

v(τ) = β(u(τ))

for all τ and
max

(
u′(τ), v′(τ)

)
= 1.

Then NM is applied to
Fnτ (τ) := v(τ) + Lu(τ)− bn = 0. (24)

At each time step n and for each of the formulations (20)-(24) the sequence of the approximate
solutions is computed using Newton’s method

ξnk+1 = ξnk − (Fn? )′ (ξnk )−1Fn? (ξk), ? = u, v, τ, l, r

until the stopping criterion
‖Fn? (ξnk )‖∞ < ε

is satisfied for some small predefined tolerance parameter ε. As the initial guess we use the
value of the variable obtained at the previous time step (this value will obviously differ between
the formulations). This choice of the initial guess is motivated by the following observation.

Remark 2 The solution of (17) (under the given initial and boundary conditions) satisfies
∂tu ≥ 0. This property is reproduced by the discrete solution un resulting from u−formulation
and the preconditioned methods. For ? = u, r, l, let us denote again by un the approximate
solution of Fn? (u) = 0, then one can show that Fn? (un−1) ≤ 0, and therefore un0 = un−1 provides
an appropriate choice of the initial guess. Let us give the proof by induction for the case of
u−formulation. The proof for preconditioned methods is similar, given that for all u ≥ 0, all
n and ? = r, l one has

Fnu (u) ≤ 0⇔ Fn? (u) ≤ 0.

For n = 1 we have F 1
u (u0) = −b providing, in view of Proposition 3, that the sequence of

Newton’s iterates is monotonically increasing, and that u1 satisfies u1 ≥ u0 and F 1
u (u1) ≤ 0.

Next, we show that the statement

un ≥ un−1 Fnu (un) ≤ 0 and Fnu (un−1) ≤ 0 (25)

is true for some n = m ≥ 1, then it is true for n = m+ 1. To do that we notice that for n ≥ 1

Fn+1
u (un) = Fnu (un)− (β(un)− β(un−1)).

Therefore, if (25) is satisfied for some n = m ≥ 1, then

Fm+1
u (um) ≤ 0,

which implies um+1 ≥ um and Fm+1
u (um+1) in view of Proposition 3.

Now, we present the results of the numerical experiment. The test case is configurated
as follows: in order to allow for the use of u−formulation we chose strictly positive initial
condition β(u0) = 10−10, we set q = 104, T = 1.2 10−2, NT = 100 and we let the parameter
m take values in the set {4, 8, 16, 32}. For a given value of m, the tolerance ε and a specific
solution method ?, we denote by

(
un,?m,ε

)
n∈{1,...,NT }

∈ RN and
(
vn,?m,ε

)
n∈{1,...,NT }

∈ RN the

approximate solution of (19).
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(a) errv,?m,ε for v-formulation (solid blue) and u-
formulation (dashed blue)

(b) errv,?m,ε for v-formulation (blue) and τ -
formulation (magenta)

(c) errv,?m,ε for τ -formulation (magenta), right pre-
conditioned (black) and left preconditioned (red)
Newton’s method

Figure 2: Relative error errv,?m,ε as the function of the average number of Newton’s iterations
per time step

The methodology of the study is similar to [3], that is for each value of m we com-
pute, using τ−formulation and the tolerance εref = 10−10, the reference solution denoted by(
unm,ref

)
n∈{1,...,NT }

and
(
vnm,ref

)
n∈{1,...,NT }

. Then, for each solution method (20)-(24) and

for the tolerance values of ε ∈ {10−1, 10−2, 10−4, 10−6, 10−8}, we perform the computations
measuring the total number of Newton’s iteration, required CPU time and the deviation from
the reference solution. The relative deviation from the reference solution is measured in the
discrete L∞(0, T ;L1(0, 1)) norm, and defined by the quantities

erru,?m,ε =
‖un,?m,ε − unm,ref‖L∞(0,T ;L1(0,1))

‖unm,ref‖L∞(0,T ;L1(0,1))

and

errv,?m,ε =
‖vn,?m,ε − vnm,ref‖L∞(0,T ;L1(0,1))

‖vnm,ref‖L∞(0,T ;L1(0,1))
.

Performance comparison. The first set of tests is performed using the fixed mesh size
parameter N = 100. In accordance with the results reported in [3], Figures 2a and 2b witness
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(a) errv,?m,ε for left preconditioned NM (solid lines)
and τ -formulation (dashed lines)

(b) errv,?m,ε for right preconditioned NM (solid lines)
and τ -formulation (dashed lines)

Figure 3: Relative error errv,?m,ε as the function of CPU time for different grid sizes

the qualitative differences in the performance of u and v-formulations on one hand, with v-
formulation been few time faster, and the performance of v and τ -formulations on the other
hand, with τ -formulation providing the most significant speedup. It can be also noticed that,
in contrast with u and v-formulations, the sensibility of the τ -formulation to the parameter m
is very limited. In turn, Figure 2c shows a relatively similar behavior of τ -formulation and the
preconditioned methods, with the latter ones requiring an even smaller number of iterations.

Computational overhead due to local problem solution. As it can be observed on
Figure 2c preconditioned Newton’s methods require less iterations then the method based on
τ -formulation .However, each iteration of the preconditioned method requires to solve the set
of the scalar nonlinear equations. Those inner calculations produce a certain computational
overhead. To access the overall computational effort required by the preconditioned methods
we present the analysis in terms of the CPU time. Figures 3a and 3b show, for different
values of the mesh size parameter N ∈ {200, 400, 800, 1200}, the comparison of left (respec-
tively right) preconditioned NM with the method based on τ -formulation. In can be observed
that for small problems (N . 400) τ -formulation outperforms the preconditioned NM due
to the computational overhead related to the latter ones. In turn, for larger problems the
preconditioned methods became advantages due to a smaller number of the linear problem
solves.

References

[1] J. Bear and A. Verruijt. Modeling groundwater flow and pollution. Reidel, 1987.

[2] Duijn, van, C. J., and Peletier, L. A. Nonstationary filtration in partially saturated porous
media. Archive for Rational Mechanics and Analysis, 78(2), 173-198, 1982.

[3] K. Brenner, C. Cancès. Improving Newton’s method performance by parametrization: the
case of Richards equation. SIAM Journal on Numerical Analysis, 2017.
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