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Abstract 

The World Health Organization (WHO) estimates that 285 million people are visually impaired 

worldwide, with 39 million blinds. Glaucoma, Cataract, Age-related macular degeneration, 

Diabetic retinopathy are among the leading retinal diseases. Thus, there is an active effort to create 

and develop methods to automate screening of retinal diseases. Many Computer Aided Diagnosis 

(CAD) systems for ocular diseases have been developed and are widely used. Deep learning (DL) 

has shown its capabilities in field of public health including ophthalmology. In retinal disease 

diagnosis, the approach based upon DL and convolutional neural networks (CNNs) is used to 

locate, identify, quantify pathological features. The performance of this approach keeps growing. 

This chapter, addresses an overview of the used methods based upon DL and CNNs in detection 

of retinal abnormalities related to the most severe ocular diseases in retinal images, where network 

architectures, post/preprocessing and evaluation experiments are detailed. We also present some 

related work concerning the Deep Learning-based Smartphone applications for earlier screening 

and diagnosisof retinal diseases.  

Keywords: Deep Learning, Convolutional Neural Networks, Ocular diseases screening, 

detection, diagnosis, classification, Smartphone applications 
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1. Introduction 

The WHO estimates that 285 million people are visually impaired worldwide, with 39 million 

blinds [1]. The main retinal diseases are Glaucoma, Cataract, Age-related macular degeneration 

(AMD), Diabetic retinopathy (DR), Retinitis pigmentosa, Pterygium and Ocular surface neoplasia. 

There are several causes that contribute to increase the risk of progression and development of 

these diseases such as family story and genetics, diabetes, obesity, smoking, cardiovascular 

disease, aging, etc. Therefore, the Dry macular degeneration (Dry AMD) may first develop in one 

eye and then affect both. The increase of dry AMD stage damages the form of the eye. This 

progression is known as neovascular AMD or wet macular degeneration. For Glaucoma, the Open-

angle glaucoma (OAG) is the most common form of glaucoma. The nuclear cataracts are the most 

common type of the cataract disease. The DR is a major complication of diabetes and 

Nonproliferative DR is the most common type of DR. Glaucoma, AMD, Cataract and DR are the 

major causes of blindness worldwide [2–5]. However, most ocular diseases affect both eyes and 

80% of all causes of visual impairment are preventable or curable [1] in early stages. Late stages 

on ocular pathologies lead always to severe damage on visual acuity and may be irreversible such 

as the wet AMD. Therefore, early screening, detection and diagnosis of these ocular diseases are 

important for slowing down and preventing total vision loss. 

 

Nevertheless, early screening is not ensured due to the lack of ophthalmologist where important 

waiting times are registered specially in industrialized countries. Moreover, patient mobility is a 

limiting factor in particularly of aging patients. Thus, there is an active effort to create and develop 

methods to automate screening of retinal diseases. Many CAD systems have been expanded and 

are widely used for diagnosing ocular diseases [6]. 

 

In addition, a variety of imaging modalities been developed to capture the anatomic structure of 

the eye. The principal imaging technologies for the retina, are scanning laser ophthalmoscopy 

(Scanning laser ophthalmoscope - SLO) [7] and Optical Coherence Tomography (OCT) [8] and 

fundus imaging technique [9] which is the commonly used to capture retinal images by fundus 

camera. Retinal fundus imaging provides a noninvasive tool currently used in ophthalmology.  
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Thus, some CAD systems based on retinal analysis were developed, extracting the anatomic 

structures in retinal images, such as vessel segmentation [10], detecting lesions related to DR [11], 

diagnosing glaucoma [12, 13], AMD [14] and cataract [15]. 

 

The fundus image is direct optical capture of the eye. This image includes the anatomic structures 

like Optic Disc (OD), macula regions, vasculature, blood vessels, lesions such as Red lesions, 

comprising microaneurysms, hemorrhages, bright lesions, such as exudates, cotton wool spots, or 

drusen and vascular abnormalities (see figure 1 and figure 2) by detecting microvasculature 

changes. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. shows retinal morphologies (or structures), i.e. Optic Disc, Macula, Fovea, Blood vessels and abnormalities 

(Exudates, Microaneurysms, Arteiodes, Venules) in a fundus image. 

 

 

 

 

 

 

 

 

 
Figure 2. Two abnormalities: Hard drusen (left) and Cotton wool spots (right). 

 

In assessing ophthalmologic disease pathologies, segmentation of retinal morphology plays a key 

role and has numerous applications such as OD, Cup, Optic Nerve Head (ONH) segmentation, 

retinal blood vessel segmentation, lesions segmentation and detection based on fundus image. The 

OCT modality (see an illustration in figure 3) is used for segmenting retinal layer of macula and 

various layers as Inner Nuclear Layer (INL), Outer Nuclear Layer (ONL), Router Plexiform Layer 

(OPL) and Retinal Nerve Fiber Layer (RNFL), etc.  
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Figure 4 shows image fundus of blood vessels and ONH capturing by Camera AFC-330. 

  

 

 

 

 

 

 

 

 

 

 

Figure 3. Topcon 3D OCT-2000 w/Digital Non-Mydriatic Retinal Camera and OCT structural image showing layers 

and ONH anatomy, rat central retinal artery (CRA), choroidal microvasculature. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Non-Mydriatic Auto Fundus Camera AFC-330 and image fundus of ONH with Optic Nerve Head and Blood 

vessels. 

 

The automated methods based on image analysis for ocular diseases diagnosis from both fundus 

and OCT images have been explored extensively. The overall block diagram of this category of 

methods involves two main stages. The first one is features extraction that includes several steps 

which are fundus image acquisition, image enhancement, Region of Interest (RoI) extraction of 

OD, macula, or fovea, feature extraction of disease like geographic atrophy, drusen, and feature 

selection. This first stage is generally based on image processing techniques for image 

enhancement, segmentation of the retinal structures such as retinal vessels, fovea, OD, 

segmentation of abnormalities like hemorrhages, microaneurysms, neovascularizations, cotton 

wool spots, drusen, yellow pigmentation, and detection of retinal vessels and lesions like the bright 

lesions. and the red lesions.   
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The second main stage is the ocular diseases classification into disease stage, disease type, and 

screening. In classification, different and most known supervised and unsupervised learning 

algorithms called “traditional machine learning” algorithms involving Naïve Bayes, FLD (Fisher 

Linear Discriminant), SVM (Support Vector Machines), KNN (k-Nearest-Neighbors), Random 

forests, GBDT (Gradient Boosting Decision Tree), etc. Some methods require post-processing 

stage. 

 

The performance evaluation of this category of methods called in the literature “traditional 

methods” is done on different public and/or private datasets, using the labels provided by experts 

for each fundus image of the database. Different performance measures such as ACC (ACCuracy), 

Sen (Sensitivity) Spe (Specificity) are used to evaluate the performance of the proposed methods. 

 

Many CAD systems and methods of ocular diseases diagnosis are reviewed in [6]. The period of 

the works surveyed in this paper is from 1995 to 2014. The publication trends which indicate a 

growing of studies using retina fundus modality and the most studied   diseases are DR, Glaucoma, 

AMD and cataract. DR and Glaucoma are among the most important.  

 

In the following, we report some works showing all the diversity of the methods used and 

especially in the classification stage. 

 

Xiao hui Zhang et al. [11] proposed a DR diagnosis method concentrating on bright and dark 

lesions detection. Fuzzy C-Means algorithm is used to improve the segmentation step. The 

classification of the three levels (i.e. no DR, mild DR and severe DR) and dark abnormalities is 

done using a linear classifier model like SVM. The first step of the proposed method is an image 

preprocessing including Green Channel Extraction, Fuzzy Filtering, and Fuzzy Histogram 

Equalization to improve the image quality. The preprocessing step is followed by the retinal 

structure extraction step including OD localization, blood vessels detection, macula and fovea 

detection; The features Extraction step is dedicated to Exudate and Maculopathy detection. The 

last step is features classification.  
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To train and classify the extracted features into their respective classes, the classification stage 

involves several machine learning algorithms such as k-NN, polynomial Kernel SVM, RBF Kernel 

SVM, Naïve-Bayes. The average results of the accuracy when using the four classifiers k-NN, 

Polynomial Kernel, SVM RBF Kernel, SVM Naive Bayes are 0.93, 0.7, 0.93, and 0.75 

respectively.  

 

Jôrg Meier et al. [12] described an automated processing and classification for Glaucoma detection 

from fundus images. In particular, the effects of the preprocessing on classification results have 

been studied. In particular, non-uniform illumination is corrected, blood vessels inpainting is used 

and the RoI is normalized before features extraction and classification. The features are computed 

by the Principal component analysis (PCA). Then, SVM is used for features classification. The 

PCA provides a classification success rate of 81%. 

 

A. Mvoulana et al. [13] proposed a fully automated methodology for glaucoma. Their method 

provides an OD detection method, combining a brightness criterion and a template matching 

technique, to detect the OD as a RoI and segment the OD and OD. The CDR clinical feature is 

computed and then used for binary classification thus obtained two classes (i.e. healthy and 

glaucomatous patients). The publicly available DRISHTI-GS1 dataset is used to evaluate the 

performance of the proposed method achieving 98% of accuracy on final glaucoma screening and 

diagnosis.  

 

Mookiah et al. [14] addressed an automated AMD detection system. The proposed system incudes 

fundus image acquisition, preprocessing, Discrete Wavelet Transform (DWT), feature extraction, 

feature ranking and selection, and classification. Various feature ranking strategies have been used 

like t-test, KLD (Kullback-Lieber Divergence), CBBD (Chernoff Bound and Bhattacharyya 

Distance) to identify an optimal feature set. A set of supervised classifiers namely SVM, DT 

(Decision Tree), k-NN, Naive Bayes (NB) and Probabilistic Neural Network (PNN) were used to 

measure the best performance which uses a minimum number of features. The classification 

provides normal and dry AMD.  
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KLD ranking and SVM Classifier provide the best performance with an average accuracy of 

93.70%, sensitivity of 91.11% and specificity of 96.30%.  

 

In [15], Liye Guo et al. proposed a framework of cataract classification and grading from image 

fundus as an input. Their framework includes fundus image pre-processing, feature extraction, and 

automatic cataract classification and grading. The feature extraction method is based on the sketch 

method with discrete cosine transform. For classification and grading of cataract disease, a multi-

class discriminant analysis is applied. For training and testing, the proposed framework uses 445 

fundus image samples as dataset including fundus image samples with mild, moderate, and severe 

cataract grades. This dataset is real-world one. The classification rate in cataract or non-cataract 

classes is 90.9%. For cataract grading in nuclear cataract, or cortical cataract or posterior sub-

capsular cataract grade, the classification rate is equal to 77.1%. 

 

These methods under-perform due to variations in image properties and quality such as non-

uniform illumination, small size of the objects in retinal imaging. Also, the technical specifications 

and conditions use of the fundus camera, resulting from the use of varying capture devices are the 

important causes of deterioration of the performance of these methods. We can note that robustness 

and accuracy of the used approaches for RoI detection and segmentation of the retinal structures 

(i.e. Optic Disc, Cup, Nerve Head, Blood vessel, drusen, red lesions, microaneurysms, 

hemorrhages, exudates, retinal neovascularization) play a major role in terms of performance. DL 

and CNN has shown its abilities in different health domains including ophthalmology [16]. DL 

and CNN can identify, localize, quantify and analyze the pathological features and diagnose the 

retinal diseases. The performance of the approach based upon DL and CNN keeps growing. 
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In this chapter we will give an overview of the use of CNN Deep Learning Networks in detection 

of retinal abnormalities using retinal images as shown in figure 5. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Illustration of deep learning model (fully “end-to-end” learning) for both feature extraction and 

classification from retinal fundus image as an input. 

 

We will focus on earlier screening and diagnosis of glaucoma, AMD, DR and cataract diseases. In 

particular, we will report the related works based on Hybrid and fully methods. The hybrid method 

employs both image processing for preprocessing and post processing steps and deep learning for 

feature segmentation and classification with CNN Deep Learning Networks. In fully method, CNN 

Deep Learning Networks is used for feature extraction step and classification from the input 

directly. Two types of retinal imaging modalities will be considered, OCT and fundus camera for 

capturing fundus images as inputs for the CAD System based upon CNN Deep Learning network.  

 

The section 2 presents an overview of existing methods of earlier screening and diagnosis of ocular 

diseases using CNN Deep Learning Networks. In this section we describe the CNN Deep Learning 

Networks based approaches related to Glaucoma, AMD, DR and Cataract diseases. In section 3, 

we present some related work concerning the Smartphone applications based on DL for detection 

of retinal abnormalities. Section 4 is the discussion and Section 5 gives the conclusion. 
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2. Earlier screening and diagnosis of ocular diseases with CNN Deep Learning 

Networks 

Several ocular pathologies may affect retinal components and features (see section 1), which 

causes abnormalities and lesions like exudates or hemorrhages in the retina. In this section, we 

consider the most severe ocular diseases and we focus on existing methods of earlier screening 

and diagnosis of these diseases. A summary report of the recent work carried out on CNN Deep 

Learning Networks methods is provided. 

2.1. Glaucoma  

2.1.1. Methods and Materials 

Glaucoma is a neurodegenerative chronic ocular pathology that alters nerve fibers and hence leads 

to damage progressively the neuro-retinal rim and the optic nerve head (ONH) [17]. It consists at 

significant rise of intraocular pressure [18]. Moreover, it occurs to clustering vessels in the border 

of Optic Disc (OD). Figure 6 shows two examples of this retinal disease. 

 

 
 a                  b 

Figure 6. Presence of glaucoma [19]: (a) early signs of glaucoma and (b) advanced stage of this eye disease. 

 

The two main types of this disease are open-angle glaucoma and angle closure glaucoma. About 

90% of the affected people suffer from primary open-angle glaucoma [20].  
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Current open-angle glaucoma detection has been established in a community-based healthcare 

system, and it is heavily dependent on accessibility to qualified ophthalmologists, optometrists, or 

general practitioners for clinical examination as well as dedicated ophthalmic testing equipment, 

including tonometer’s, automated perimetry, and disc photography or OCT. The early stage of 

glaucoma does not generate symptoms or changes to the visual field [18]. However, this 

neuropathy is highlighted by a progressive lack of vision sensitivity, potentially, if not treated, 

leading to blindness at term [21].  

 

Indeed, the glaucoma disease leads to shift blood vessels in the optic disc region. Moreover, 

bifurcations and their angles are adjusted with respect to the excavation. In addition, grouping 

vessels leads to superimpose them where may be modeled as unique vessel in the fundus image. 

Glaucoma is known as affecting a significant part of the population worldwide, with more than 64 

million cases globally reported in 2013, and estimations reaching 80 million and 111.8 million 

cases respectively by 2020 and 2040 [17, 22, 23]. Given the irreversible nature of glaucomatous 

optic nerve degeneration combined with increased longevity of the population, early diagnosis is 

important to prevent severe visual morbidity and the associated healthcare and society burdens 

[24]. 

 

Traditionally glaucoma is diagnosed by measuring the IOP with a tonometer, and rating an 

abnormal high-pressure rate, which is not always a reliable and sufficient criterion for glaucoma 

assessment [25, 26]. Otherwise, glaucoma can be diagnosed within the assessment of the ONH. 

The ONH is the region in the retina where blood vessels converge, it is composed of a bright 

circular region called the optic disc (OD), and inside the OD, a brighter region called the optic cup 

(OC) is apparent.  
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Figure 7. Example of healthy (1) and glaucomatous (2) retinal images [13]: (a) Retinal image with framed optic disc 

(OD) region around the ONH, (b) OD sub-image with OC and OD areas. 

 

In Figure 7, two retinal images are presented, showing a sub-window around the ONH, with each 

of the OD and OC borders. Glaucoma goes with ONH appearance changes, as the OC region 

becomes more prominent as shown with both healthy (1) and glaucomatous (2) cases. 

 

In this direction, retinal image study can be applied for glaucoma screening [10]. Many works have 

been conducted offering more accuracy on the final diagnosis, less workload for the specialist, and 

useful mass screening programs. Detecting the presence of the disease from retinal images consists 

in assessing the ONH and the retinal nerve fiber layer (RNFL), by extracting indicators such as 

the Cup-to-Disc Ratio (CDR) [28], the Inferior Superior Nasal Temporal (ISNT) rule [29], the 

RNFL thickness [30], parapapillary atrophy [31] or ONH hemorrhages [30]. 

 

In the last decade, deeplearning has been extensivelyapplied for ophthalmic diagnosticsachieving 

good results on various fundus and OCT datasets. Optic Disc, Cup and Nerve Head Segmentation 

is an important step for automatic cropping of the region of interest for furtherprocessing [32]. 
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2.1.2. Deep-Learning neural-network architectures for glaucoma screening and 

diagnosis 
 

The first implementation of deep learning architecture in OD segmentation was proposed by Lim 

et al. [33] in 2015. The proposed CNN is developed for calculatingcup-to-disc ratio as a measure 

of the presence of glaucomausing MESSIDORand SEED databases. The most probable localized 

region around OD was chosen using Daubechies wavelet transform. Due to the presence of noise, 

the probability of a pixel to be inside or outside of the OD region was calculated. This 

methodachieved an AUC = 0.847. 

 

In [34] the authors segmented both OD and OC separately.  

 

Edupuganti et al. [35] used Drishti-GS to implement one shot segmentation pipeline for 

segmenting OD and OC for glaucoma analysis. FCN with VGG16 encoder-decoder was used and 

convolution was performed with a stride of 8 pixels. Due to a limited number of training images, 

ImageNet (http://www.image-net.org/) was used for initialization of the FCN encoder. This is a 

case of transfer learning which broadly falls under the section of domain adaptation where 

parameters from a trained model are used to test on a different dataset to reduce the need of huge 

amount of training data. After augmentation 160 images were used for training, 10 for validation 

and 50 for testing. As a result highest mean accuracy achieved was 88.23%, and Fscores of 

segmenting cup and disk were 0.897 and 0.967 respectively. 

 

Zilly et al. [36] propose a method using an ensemble learning based convolutional neural network  

architecture. This method  is used to segment the optic cup and optic disc from retinal fundus 

images. As a clinical outcome indicator of the glaucoma, the CDR is calculated and used to obseve 

the behavior changes of the galucoma progression. The proposed method is   computationnaly 

efficient, provinding an accurate and robut segmentation.  

 

More recently Liu et al. [37] used fundus images to implement deep learning based segmentation 

architectures to segment glaucomatous OD. The authors collected 3768 fundus images from 3 

ophthalmology clinics in Australia, and also used images from RIM-ONE and HRF.  
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For locating and estimating the size of OD difference-of-Gaussian blob detector was employed 

with enlarging kernel size Gaussian filter to input images. Pixel wise consecutive image 

differences were calculated to get n-1 Gaussian maps for n input images. ResNet50 model was 

implemented with 48 full convolutional neural network layers. A previously trained model with 

ImageNet database was used and the output layer was replaced by a new output layer with 2 nodes 

for 2 different classes normal and glaucoma. For disc segmentation, 3200 images were used for 

training. The model achieved an accuracyof 91.6% for disc identification, with an AUC of  0.97 

when applied to 800 test images. On HRF dataset it achieved 86.7% sensitivity and specificity. In 

contrast with the previous works, this work gathered a larger amount of data from different sources 

with different image qualities and resolutions. Hence this model can be considered as more robust 

than most of the other works. 

2.1.3. Application and evaluation on earlier glaucoma screening and diagnosis 

– classification 

2.1.3.1. Fundus image Glaucoma Classification 

 

One of the early publications in glaucoma classification usingdeeplearningwas by Chen et al. [38].  

They implemented a CNN with dropout anddata augmentation on ORIGA and SCES datasets. A 

six layers deep CNN with 4 convolutional layers of progressively decreasing filter size (11, 5, 3, 

3) followed by 2 dense layers was used to get 83.1% and 88.7% AUC on ORIGA and SCES 

respectively. Improving their previouswork, [38] Chen et al. [39] presented a model using 

Contextualized CNN (C-CNN) architecture. It combined the output of convolutional layers of 

multiple CNN to a final dense layer to obtain the softmax probabilities. The 5 C-CNN model which 

was a concatenation of outputs of last convolutional layers of 5 CNNs each of depth 6 (5 

convolutiona llayers + 1 MLP) provided an AUC of 83.8% and 89.8% on ORIGAand SCES 

datasets, respectively. 

 

Fu et al. [40] used a 3 layer deep Feed-forward Neural Network (FNN) on a private dataset of 171 

Glaucoma images. It achieved an AUC of 92.6%. 
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Chakravarty [41] was first to propose a method for joint segmentationof OD, OC and glaucoma 

prediction from the REFUGE dataset. In this method CNN feature sharing for different tasks 

ensured better learning and over-fitting prevention. The parts of the model that were shared with 

U-net contained 8 times fewer number of CNN filters than the conventional U-net. It was probably 

done to prevent over-fitting since the study used a smaller dataset than U-net. It used an encoder 

network to down sample the feature and then a decoder network to restore the imagesize. Two 

different convolutional layers were applied on the decoder network's output for OC and OD 

segmentation. The OC and OD segmentation masks were merged into separate channels and CNN 

was applied to it. The outputs of the CNN and encoder output were combined and fed to a 

singleneuron to predictglaucomaachieving an AUC of 94.56%. With a lower number of parameters 

this method achieved comparable performance with existing architecture e.g. [42]. 

 

Zhixi et al. [43] used the Inception-v3 architecture on crowd-funded LabMe database 

(http://www.labelme.org/) with 48000 images to detect glaucomatous optic neuropathy. Here 

researchers graded the images by trained ophthalmologists befor eapplying the algorithm. Local 

space average color subtraction was applied in pre-processing to accommodate for varying 

illumination. The Inception-v3 network was used for classiffication. The large dataset in 

conjunction with a deep model resulted in an AUC of 98.6%. 

 

Chan et al. [44] presented a framework on a dataset of fundus images obtained from various 

hospitals by incorporating both domain knowledge and features learned from a deep learning 

model. This method was also used in other applications [45]. The OD image provided local CNN 

features, the whole image provided global CNN features whereas domain knowledge features were 

obtained from diagnostic reports. It used a total of 25 features including 3 numerical 

features:intraocular pressure, age, and eye sight as well as 22 binary features such as swollen eye, 

headache, blurred vision and failing visual acuity.The disk and whole images were fed to two 

separate CNN while domain knowledge features were fed to a third branch consisting of a 

fullyconnected neural network. These three branches were concatenated by a merge layer followed 

by two dense layers and a logisticregression classifier. The model benefited from diagnostic 

features along with fundus images and attained an accuracy of 91.51% . 
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2.1.3.2. OCT image Glaucoma Classification 

 

Muhammad et al. [42] used a hybrid of AlexNet and random forest on widefield OCT of 102 

patients for glaucoma classification. The pretrained AlexNet model wasused for feature extraction 

from OCT images. The weights of nodes of fully connected layers of the neural net wereusedas 

input for the random forest classifier. Six image types for each patient were used with leave-one-

out cross-validation to train the model.  

 

A vertically flipped copy of each image was also added and nodes from fully connected layer, 6 

were found to have the best accuracy of 93.1% using RNFL probability map. The method 

outperforms OCT and VF clinical metrics which gave up to 87.3%  accuracy but fell short of 98% 

obtained by an experienced human expert. 

 

Fu et. al. [27] presented multi-context deep network (MCDN) for angle closure glaucoma 

screening using a private dataset called Visante Anterior Segment OCT dataset. Two parallel 

streams were used to fine-tune a pretrained VGG-16 on the local and global image. The feature 

maps from these streams were concatenated at the dense layer and supplemented with clinical 

parameters with analysis by a linear SVM for final classification. Intensity-based data 

augmentation was performed instead of traditional scale based augmentation because the anterior 

chamber was found at a consistent position in Anterior Segment Optical Coherence Tomography 

(AS-OCT) images and obtained an AUC of 0.9456. 

2.1.4. Datasets used in glaucoma diagnosis [32]  

ACHIKO-K [46]: This database is dedicated mainly for glaucoma studies and was collected from 

a Korean population. In this database, there are 258 manually annotated fundus images among 

which 114 are glaucoma images and 144 are normal images. The online link to this dataset is 

https://oar.a-star.edu.sg/jspui/handle/123456789/1080?mode=full 

 

 

 

https://oar.a-star.edu.sg/jspui/handle/123456789/1080?mode=full
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DRIONS-DB [47]: This database consists of 110 color fundus images. Miguel Servet Hospital, 

Zaragossa Spain developed this dataset for optic nerve head segmentation. Among all the patients 

23.1% had chronic glaucoma and 76.9% of them had eye hypertension. This dataset can be found 

at http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html 

 

HRF [48]: This public database contains 15 images of healthy patients, 15 images of patients with 

DR and 15 images of glaucomatous patients captured with Canon CR-1 fundus camera with a 45 

FOV. Expert segmentations are provided for each image. This can be found publicly at 

https://www5.cs.fau.de/research/data/fundus-images/ 

 

SEED [49]: This database originated from a study performed by the Singapore Epidemiology of 

Eye Diseases. This dataset has 235 fundus images among which 43 are glaucoma images, 192 are 

normal images. This is not available online for public use. Singapore Chinese Eye Study (SCES) 

and Singapore Indian Eye Study (SINDI) databasesalso came out fromthissamestudy. 

 

ORIGA [50]: ORIGA stands for Online Retinal Image dataset for Glaucoma Analysis, and 

itconsists of 650 retinal fundus images. The Singapore Eye Research Institute conducted the 

project and data werecollectedfrom the Singapore Malay Eye Study or SiMES over a three year 

period of 2004-2007. This dataset is not currently available online 

 

RIGA [51]: RIGA is a public dataset and stands for Retinal Images for Glaucoma Analysis. This 

dataset mainly consists of retinal fundus images of glaucoma patients. The RIGA dataset was 

developed by concatenating images from MESSIDOR, and images obtained from Magrabi Eye 

Centre, Riyadh and Bin Rashid Ophthalmic Centre, Riyadh. There are a total of 760 retinal fundus 

images in the database. 

This can be found at https://deepblua.lib.umich.edu/data/concern/generic_works/3b591905z 

 

REFUGE [52]: This datasetis part of the retinal fundus glaucoma challenge organized by Medical 

Image Computing and Computer Assisted Intervention 2018 meeting held in Spain. This dataset 

has 1200 annotated fundus Images. Recently this competition also included images for AMD. This 

can befound at https://refuge.grand-challenge.org/ 

http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html
https://www5.cs.fau.de/research/data/fundus-images/
https://refuge.grand-challenge.org/
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2.2. Age-Related Macular Degeneration 

2.2.1. Methods and Materials 

AMD is an eye disease that primarily affects the elderly. It is considered as an irreversible chronic 

pathology [53] and the leading cause of vision loss in people over 50 in developed countries [54]. 

The AMD is frequently diagnosed using a fundus image which aims to detect degenerative lesions 

caused by each stage. This pathology impacts the vision in two stages [55]. In the early stage, the 

majority of patients do not feel any symptoms. The questioning of patients may deduce that a 

reduction in contrast perception or discomfort in night vision appeared. In late stage, the vision is 

deteriorated where the shapes become progressively distorted. Thereupon, a black spot, called 

scotomas, appears in the field of vision where its size increases with respect to the AMD severity 

(see figure 8). 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. visual acuity : (a) non pathologic vision; (b) early stade vision ; (c) straight line deformation ; (d) scotoma 

apparision [56] 

 

The early stage is detected by identifying drusens that represent yellowish components with a 

higher contrast than the texture of the retina. This stage is always partitioned into to levels: the 

early AMD level where the drusen diameter is between 15 and 63 μm and the intermediate AMD 

level where the drusen diameter is between 63 and 125 μm. The late stage is characterized by a 

gradual decline in visual acuity. It is corresponding to the presence of drusens where their 

diameters are above 125 μm. Moreover, it has two different forms. For the atrophic or dry AMD 

or geographic atrophy (GA), the patients are generally embarrassed by a scotoma (dark task). For 

the exudative or wet or neovascular form, the patients notice a distorted perception of straight lines 

and the possible presence of a scotoma. Figure 9 give some AMDs symptoms such as (b) image 

fundus with drusens (figure 9.b), dry (atrophic) AMD (figure 9.c) and wet (neovascular or 

exudative) AMD (figure 9.d). 
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The number of AMD patients could reach 196 million in 2020 and 288 million in 2040 [57]. The 

number of patients in Europe will exceed 50 million in 2020 [58]. In France, the AMD affects 8% 

of the entire population. Moreover, its frequency increases with old age [58]: 1% of the population 

aged between 50 and 55; about 10% of the population aged between 65 and 75; and between 25% 

and 30% for those over 75 years of age [59].  

 

The transition from early to late AMD always requires several years. The work described in [55] 

indicates that the risk of developing early stage in 5 years ranges from 0.5%to 42%.  

 

However, AMD therapies cannot cure or reverse vision loss. They only reduce the risk of 

progression to late stages. Consequently, early AMD diagnosis is essential. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Example of DMAL’s symptoms:  (a) image fundus image of healty eye; (b) image fundus with drusens ; (c) 

dry (atrophic) AMD; (d) wet (neovascular or exudative) AMD. 
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The World Health Organization reports that 8 million people have a severe blindness due to the 

AMD. The number of patients is expected to increase to 1.5 times over the next ten years [54, 57, 

58]. In France, nearly 1 million people over 50-year-old suffer from vision problems caused by 

AMD, with an increase of 3000 new cases of blindness each year [56]. In the international context, 

following the study carried out in [58], prevalence statistics of AMD in France are similar to those 

of industrialized countries such as the other European countries or the United States. 

 

The treatment of early stage involves using Omega 3-based dietary supplements. For the late form, 

only wet AMD can be treated. The therapy is based on intravitreal injections which represents a 

considerable charge for medical management systems. Automatic approaches for diagnosing 

AMD using fundus image have been proposed in several research work. These approaches consist 

of locating the macula and then analyzing its texture [60, 61, 62]. There are two categories of work 

according to the result of the diagnosis. The first is to determine the stage of AMD [63, 64]. The 

second category consists of segmenting the drusens caused by AMD [65, 66].  

 

Several studies have been provided similar performances compared to those of ophthalmologists. 

We deduce that some works are based on deep learning which are distinguished by their higher 

performances compared to previous methods. 

 

2.2.2. Deep-Learning-based methods for AMD detection and grading  

 

The work described in [67] proposes a 2-class classification method to diagnose AMD at an early 

stagebased on fourteen-layer deep Convolutional Neural Network (CNN). The network is 

composed by seven convolution layers, four max-pooling layers, and three fully-connected layers. 

The training was performed using the softmax activation function, the backpropagation « Adam » 

algorithm, and run during 60 epochs. The input image was resized to 180 × 180 and then 

augmented four times by respectivelly flipped to the left, flipped downwards, flipped to the left 

then downwards. 

 

The evaluation is performed using a private dataset composed by 1110 fundus images which are 

split into 402 healthy, 583 with ealry, intermediate and dry AMD and 125 with wet AMD.The 

method validation is performed using two strategies.  
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A first validation strategy, called « blinfold », consists in using the same data set for either treaning 

and testing. The « blinfold » strategy achieves an accuracy of 0.9117, a sensitivity of 0.9266 and 

a specificity of 0.8856. A second validation strategy, called « ten-fold », is perfomed. It consists 

in dividing the data set into 10 sub-sets. Therefore, ten models were provided, where each one is 

trained using 9 sub-sets and tested using the tenth one. The second strategy offers average accuracy 

equal to 0.9545, the average sensitivity is equal to  0.9643 and the average specificity reaches 

0.9375. 

 

In [68], an automated screening system based on DL is proposed to classify fundus auto-

fluorescene (FAF) images into normal or atrophic AMD which is an extension of a previous 

version described in [75]. The proposed screening system is based onthe residual network (ResNet) 

composed by 50 layers. The training was performed using the cross-entropy loss function ant the 

« root mean square back propagation » optimizer. The training is runed using a private dataset 

composed by 400 images, validated using 40 images and tested using 200fundus images which are 

equitably partitioned into normal and atropic AMD.A transfert learning is employed where the 

used model is already pre-trained on the ImageNet database.The data set is augmented through 

radon tanformations such as flipping, zooming, rotation and translation. The screening system 

provides an accuracy of 0.98, a sensitivity of 0.95 and 1 for specificity.  

 

The work described in [69] allows classifing the fundus image into no/early stage AMD or 

intermediate/advanced AMD stage through a DL model. The method aims to compare the 

performance of the proposed DL compared to a diagnosis of clinicians. Then, it compares the 

performance between 2 DL approaches. In this context, a first model based on AlexNet model is 

proposed. The initial learning rate is equal to 0.001. The training is run until achieving 50 epochs 

where no accuracy improvement is deduced. Then, a second model was proposed which reuse the 

pretrained OverFeat model as a feature extractor. This work used the Age-Related Eye Disease 

Study (AREDS) dataset which is composed by 130000 color fundus images from 4613 patients.All 

fundus images are preprocessed by detecting the retina and resizing with respect to the required 

input size of both DL models.  
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The evaluation is performed using 5-fold crossvalidation for both models, where accuracies 

between 88.4% and 91.6% and between 82.4and 83.9% are registred for both first and second 

models respectively. The obtained performance results allow deducing that second model offers a 

detection performance similar to the human ones. 
 

In [70], a screening method is proposed to detect AMD from fundus images at the very early stage. 

The method is based on multiple instance learning framework. First, the fovea is detected in order 

to cropping the macula region. Then, the layers are trained iteratively untill deducing that accuracy 

stops increasing, the positive detection stops changing, or exceeding a training time threshold. The 

authors evaluate the same approach using three different models that are VGG16, ResNet50 and 

InceptionV3, where the VGG16 is chosen since it offers the better performing detection. 

 

The work of [111] proposed a DL-based to classify the fundus image into  early, intermediate or 

advanced stages. The images are cropped into square and then resized to 231x231. The method 

employs pre-trained ImageNet DCNN model which is composed by 19 layers followed by a linear 

SVM to provide classification. The evaluation is ensured using 5600 fundus images from the 

AREDS dataset where accuracies of 92-95%, specificities of 89.8-95.6% and sensitivity of 90.9-

96.4% are registered. This study was extended in [112] where detection are evaluated for 2-class, 

3-class and 4-class classifications and compared to physician grading.Knowing that VGG16 model 

requires a 224*224 images, the authors choose to cropping a square region where the border size 

is equal to 801 that corresponds to 2 times the optic discdiameter. Then, the ROI is reduced to 

224*224. The dataset is composed by 3596 AMD images and 1129 healthy images. All images 

are acquired using Canon CR-Dgi fundus camera that provides retinal images with a resolution of 

3072 × 2048.The experimental results indicate that the cropping allows achieving better result 

than directly extracting region of 224*224 from the fundus image, where a final average AUC 

about 0.79 is achieved. 

 

In [71], the authors propose a DL model called Retinet, that classifies the fundus image into 

normal, dry AMD, wet AMD and others DR classes. The arcitecture is based on AlexNet which is 

composed by 5 convolutional layers that applies 3*3 filter followed by Rectified Linear Unit 

(ReLU).  
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RetiNet was trained using stochastic gradient descent, a momentum equal to 0.9 and a weight 

decay of 0.00005.All input images were preprocessed in order to reduce noising, increasing 

contrast and illumination. Therefore, each image is resized to 512x512. Then, several data 

augmentation techniques are employed which are rotation, cropping, zooming and color 

perturbation. The dataset integrates 62578 fundus images where 197 ones are on the Wet and Dry 

AMD stage which are selected from the UCH-AMD private database; the remaining fundus image 

are selected from Messidor and Kaggle databases. Theachieved prediction rate is about 88% and 

all AMD images was correctly detected. 

 

In [72], two AMD detection DL models are proposed which offer a 4-class and a 9-class 

classifications, respectively. The first model affects the fundus images as no AMD, early AMD, 

intermediate AMD, and advanced AMD.For the second model, sixsteps correspond to different 

drusen area scales. Five steps correspond to pigmentary abnormality, where steps are overlapped. 

The authors assume that such classification allowsproviding predictive variables for 5-year risk of 

late AMD. The method based on the ResNet-50 network is trained and evaluaded using a private 

dataset fundus images. The fundus images were selected from the AREDS dataset and were 

divided into train, validate, and test subset which correspond respectivelly to 88%, 2%, and 10% 

from the whole dataset.  The 4-step classification model was trained using 67401 fundus images 

which achieves an accuracy of 75.7% comparable to that of the ophthalmologist where accuracy 

is equal to 73.8%. In addition, the authors analyse the false positive results where the largest 

percentage error corresponds to classify the second AMD grade as first AMD grade for both human 

and machine (46.8%) and (34.2%) of images, respectively. The 9-step model was trained using 

58370 fundus images which does not offer acceptable results, where several adjacent 

misclassifications were registred. 

 

The work described in [73] uses a DL model called « DeepSeeNet », to classify fundus images 

into 5 severity AMD scales. The particularity of this method consists in taking into account both 

eyes in screening AMD. The proposed DeepSeeNet-based method ensures detecting the AMD risk 

factors is detected and then computing the AMD severity. In order to do this, The DeepSeeNet 

model is composed by 3 DL models that are performed sequentially.  
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A first DL model called Drusen-Net (D-Net), which detects drusen in 3 size categories 

(small/none, medium, and large). Then, Pigment-Net (P-Net) is the second DL model that detects 

the absence or presence of pigmentary abnormalities. The LA-Net (Late AMD-Net) is the last used 

model that detects the presence or absence of late AMD (i.e. dry or wet AMD). The three DL 

models correspond to an Inception-v3 architecture. The macula is defined and extracted on 

squaring imagesfrom all funfus images of the AREDS dataset and then scaled to 224 * 224 pixels. 

The training is performed using the Adam optimizer with a learning rate of 0.0001, until accuracy 

values was not increased in the last 5 epochs. Experiment results show that the proposed model 

achieves an accuracy of0.671and a kappa of 0.558where retinal specialists classify images with 

accuracy of0.599 and a kappa of 0.467. 

 

In [74], the authors propose a system of 13 AMD classes based on the AREDS 9-step severity 

scale. The first grade indicates fundus images with little or no AMD-related changes. From second 

to ninth grades, fundus image present changes associated with early to intermediate AMD. Grades 

10 and 11 correspond repsectivelly to Geographic atrophy and neovascularAMD,where grade 12 

indicates suffering from both Geographic atrophy and noevascularisation forms. The last stage 

indicates that fundus image is not suitable for this proposed grading. Firstly, fundus image colors 

are balanced using a Gaussian filtering. Then, multiple (CNNs) are independently trained such as 

respectivelly AlexNet, GoogLeNet, VGG Inception-V3, ResNet and Inception-ResNet-V2. Each 

model is trained for 10 epochs using theloss function intitled “Cohen’s quadratic weighted k”, and 

then at least another 30 epochs with the “custom weighted k” loss function. The experimentation 

is processed using the AREDS datast where each image was scaled to 512 * 512 pixels. Then, 

several data augmentations are employed such as flipping, rotating and adjusting. Accuracies of 

all trained models are between 58.3 and 63.3. Thereafter, the results of all models are provided to 

a random forest algorithm that is trained using 1000 trees. The average balanced accuracy over all 

classes are between 70.3 and 74.7. 

 

The work described in [68] proposes a DL-based automated system to segment the atrophic AMD 

using the U-Net model. Each pixel of input fundus image ismarked as non-atrophy, atrophic AMD, 

or other pathologies. For the training process, the Adam optimizer is used and the sigmoid cross-

entropy loss is employed as loss function.  
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The evaluation consists at computing the DICE similarity coefficient (DSC) and the OR between 

AUTomatic (AUT) and MaNuaL (MNL) segmentation where equation are indicated as follows in 

equations 1 and 2.  

 

DSC( AUT, MNL ) = 2(AUT Ո MNL ) / (AUT + MNL)    (1) 

 

OR (AUT , MNL) = (AUT Ո MNL) / (AUT U MNL)    (2)  

 

Where the provided DSC is equal to 0.94 ± 0.04, the OR is equal to 0.89 ± 0.06and the area 

difference ratio is 0.07 ± 0.31. 

2.3. Diabetic Retinopathy  

2.3.1. Methods and Materials 

DR is one of the leading diseases of visual impairments which is one of the complications of 

diabetes [1]. DR is a microvascular complication of diabetes, providing morphological changes 

and abnormalities in the fundus. These changes concern mainly the microaneurysms (MAs), 

exudates (EXs, Hard and Soft Exudates), blood vessels such as the abnormal growth of the blood 

vessels, hemorrhages (HMs), macula interretinal micro vascular abnormalities (IRMA). The 

appearance of MAs and hard exudates are the earlier signs of DR.  DR is a 5-point scale. The scale 

one is no apparent retinopathy, mild nonproliferative DR (NPDR) is the second one, and moderate 

NPDR, severe NPDR, and proliferative DR (PDR) are third, fourth and fifth scale respectively. 

PDR occurs when the new abnormal vascular blood vessels appear in different regions of fundus. 

Thus, in terms of classification we have five-stage disease severity for DR. Three stages involve 

the low risk. The fourth stage corresponds to a severe nonproliferative retinopathy. The fifth one 

defines a proliferative retinopathy stage. Figure 10 shows retinal image with some DR features 

like NPDR stage (figure 10 left) and moderate NPDR stage (figure 10 right).  

 

Modified Davis grading [76] including Simple, Pre-Proliferate DR and PDR is also used in some 

works for DR classification.  
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In the modified Davis grading, SDR is characterized by a variety of clinical structures of retina 

such as microaneurysm, retinal hemorrhage, hard exudates, retinal edema and more than three 

small soft exudates. This set of clinical structures may include PPDR soft exudates, varicose veins, 

intraretinal microvascular abnormality, non-perfusion area over one-disc area, PDR 

neovascularization, pre-retinal hemorrhage, vitreous hemorrhage, fibro vascular proliferative 

membrane and tractional retinal detachment (TRD). The TRD is the second most common type of 

retinal detachment after a Rhegmatogenous retinal detachment (RRD). 

 

 
 

Figure 10. Retinal image with some DR features: Mild-non-proliferative diabetic retinopathy (left) and moderate non-

proliferative diabetic retinopathy (right). 

  

DR is a progressive disease and needs its detection at an early stage because it is fundamental to 

prevent the development of DR disease. Similarly, saving a patient’s vision requires regular 

screening which generates developing efficient and reliable frameworks of computer assisted 

diagnosis of DR as CAD system. The DR diagnosis identified by the detection of abnormal 

structures in fundus in particular EXs, MAs, HMs, Cotton Wool Spots, bright and dark lesions. 

Thus, it is important to segment accurately these components for better localization, detection and 

identification.     

 

Supervised and Unsupervised learning techniques are the major methods used the detection of the 

main clinical components of DR Disease providing automated screening based on retinal images.  
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These techniques of feature extraction for clustering and classification require a following 

preprocessing stage involving different steps such as contrast adjustment, average filtering, 

adaptive histogram equalization, median filtering, etc. 

 

Recently, there are some works for DR diagnosis at image level based on DL. The comparative 

study of performances between DL methods and previous traditional methods shows that DL 

approaches achieve significantly better performance. 

 

2.3.2. Deep-Learning based methods for DR detection and grading 

 

Harry Pratt et al. [77] described a method based upon a network with CNN architecture and data 

augmentation. The proposed method can identify the main features of DR disease like micro-

aneurysms, exudates and hemorrhages. The classification provides 5 grades such as No DR, Mild 

DR, Moderate DR, Severe DR and Proliferative DR. Data augmentation was used throughout 

training to improve its localisation ability. The CNN was initialized with Gaussian initialization 

reducing the initial training time. The proposed uses a cross-entropy function as loss function. The 

final trained CNN network trained on Kaggle dataset achieved 75%, 95% and 30% for accuracy, 

specificity and sensitivity respectively.  

 

In [78] the proposed deep learning method aims localization of the discriminative and visual 

interpretable feature of DR. This method is achieved by adding the regression activation map 

(RAM) of an input image. The RAM concept is inspired by [79]. Two CNN networks were 

proposed, Net-5 and Net-4 that have different units of convolutional (Conv) and pooling 

(MaxPool) layers and each layer has different filters, strides and size. A global averaging pooling 

(GAP) layer is used to connect the last convolutional layer and the output layer. As data 

augmentation, image transformations are used like flipping, rotation, translation, stretching, and 

color augmentation. For initialization and pre-training, the orthogonal initialisation is used to 

initialize weights and biases. For both Net-4 and Net-5 stetting and without feature blending, the 

achieved Kappa scores is around 0.70 for 256 pixel images, 0.80 for 512 pixel images and 0.81 for 

768 pixel images from the Kaggle dataset. 
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In [80] a modified fully randomly initialized GoogLeNet deep learning neural network is proposed. 

The modified GoogLeNet deep convolutional neural network was trained with 9443, 45° posterior 

pole color fundus photographs using manual modified Davis grading. The PABAK to modified 

Davis grading was 0.64 and accuracy is equal to 81%. The PABAK to real prognosis grading was 

0.37 and accuracy is equal to 96%). One of the benefits of the proposed method is that currently 

useless single-field fundus photographs.  This method can be used for disease staging of DR 

retinopathy and screening of fundus photographs. 

 

In [81] a DCNN approach is proposes explored for the automatic classification of DR disease from 

color fundus image. Data augmentation is applied to artificially enlarge the used datasets including 

some transformation like rotation from 0° to 360°, randomly shearing with angle between -15° and 

15), flipping, rescaling with scale factor between 1/1.6 and 1.6) and translation with shift between 

-10 and 10 pixels. The used CNN architecture consists of multiple layers like convolution layers 

(two 3x3 convolution, 32 filter, two 3x3 convolution 64 filter, two 3x3 convolution 128 filter and 

two 3x3 convolution 256 filter). Each two convolution layers are followed by a 2x2 max-pooling 

layer. To train the CNN, a dataset including 800 labeled images is used and 200 images are used 

to evaluate the performance of the trained CNN. The classification step uses the CNN and GBM 

(i.e. Gradient Boosting trees-based Machine). The experimental results indicate the following 

classification accuracies like 89.4% for Hard exudates, 88.7% for Red lesions, 86.2% for 

microaneurysmes and 79.1% for Blood vessel detection.  

 

In [82] a new method for the explanation of DL classification models is proposed. This method is 

based on the distribution of scores. These scores are extracted from the last layer among the input 

pixels of the analyzed image. The EyePACS dataset is used (https://www.kaggle.com/c/diabetic-

retinopathy-detection). The DR interpretable classifier is designed by applying the proposed 

model. The obtained results reach more than 90% of sensitivity and specificity thus providing the 

detection of more severe cases of Diabetic Retinopathy. The proposed model aims to classify DR 

disease into the five severity levels. This method gives for every class, other characteristics such 

as the score importance pixel maps, allowing ophthalmologists the possibility of both diagnosis 

deduction and interpreting the results of the classification.  

https://www.kaggle.com/c/diabetic-retinopathy-detection
https://www.kaggle.com/c/diabetic-retinopathy-detection
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The proposed model requires a reduced number of model parameters enables involving the also 

use of this model in low resources devices, like Smartphones.  

 

In [83] an automated DR identification and grading system (DeepDR) detects the presence and 

severity of DR from fundus images via transfer learning and ensemble learning. A preprocessing 

step is applied to remove the invalid areas of black space, to downsize all images to a uniform size 

in accordance with the input requirements of specific models and to improve local contrast and 

enhance edge definition in each image region. For this purpose, histogram equalization (HE) and 

adaptive HE are used. The proposed CNN architecture includes a feature extractor and classifier. 

Feature extractor is based on a pre-training model that was initialized via transfer learning. The 

classifier made predictions on the extracted features.  For a feature extractor part ResNet50 and 

InceptionV3, and DenseNets are used aiming to reduce gradient disappearance. The classifier is 

designed as customized standard deep neural network (SDNN). The first layer of the SDNN is a 

Goal Average Poling (GAP) laye. The second one is a fully connected layer and contains 2048 

hidden neurons. To achieve the nonlinearity in the SDNN, ReLU layers are applied to the output 

of all inner fully connected layers, except the output layer. Kappa, Precision, Sensivity, receiver 

operating characteristic curve with AUC, F1-score and Youden’s index (Youden’s index = 

Sensitivity + Specificity - 1) are used as metrics to evaluate the performance of the evaluation of 

the proposed DL based CNN Network. Kappa > 0.8 indicates excellent consistency. The proposed 

identification model performed with a sensitivity of 97.5%, a specificity of 97.7% and an accuracy 

of 97.7%. The grading model achieved sensitivity of 98.1%, a specificity of 98.9% and an accuracy 

of 96.5%.  

 

In [84] a hybrid method for diagnosing DR is proposed including both image processing and DL 

approach. Image processing algorithms such as histogram equalization and the contrast limited 

adaptive histogram equalization were applied to enhance the image quality. The DR diagnosis is 

performed by the classification based on DL and CNN. The MESSIDOR dataset is used and the 

obtained performance measures are 97% for accuracy, 94% for sensitivity, 98% for specificity 

98%, 94% for precision, 94% for FScore and 95% for Geometric Mean.  
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In [85] DL method is presented and the image set collected and graded. The DL method was trained 

using the Inception version 4 model architecture and a large dataset of more than 1.6 million retinal 

fundus images, then tuned on a set of 2000 images that had adjudicated labels agreed on by 3 retina 

specialists as a reference standard. A comparison of the DR disease distribution determined by the 

retina specialist panel (reference standard) and the algorithm’s grading shows approximately 23% 

of the images showed mild or worse NPDR according to the reference standard. Overall, the model 

showed a 5-class accuracy of 88.4%, with an accuracy of 96.9% for images with no DR and 57.9% 

for images with mild or worse NPDR. 

 

In [86] the proposed framework based upon CNN network using VGGnet model have been trained 

with back propagation NN, Deep Neural Network (DNN) and Convolutional Neural Network 

(CNN). This framework seeks to identify the key antecedents of DR and is able to quantify the 

main features including, in addition fluid drip into different classes. This framework includes the 

following steps: Extracted the statistical features such average, median, standard deviation, 

skewness, root mean square error, mean absolute deviation quartiles, minimum, maximum and 

threshold level (step 1). Step 2 as preprocessing one includes resizing, median filter, morphological 

processing, edge detection for feature extraction and binary image conversion. To tackle some 

feature loss during the resizing or filtering, a Fuzzy C-Means function is applied. A statistical data 

processing with Feed Forward Neural Network as step 3 and image classification with FNN 

(Forward Neural Network and DNN (Deep Neural Network models, performing CNN based on 

VGG16 model as step 4 and step 5 respectively. The last step (step 6) provides a comparison result 

taking from step 3, step 4 and step 6 as performance and accuracy with testing image set.  The 

accuracy percentages of proposed DNN model for both training and testing are 89.6, 86.3.  

 

In [87] a Multi-Cell Multi-Task Convolutional Neural Networks (MCNN) is proposed. This 

architecture is based on a Multi-Task learning strategy which predicts the label with both 

classification and regression. The MCNN architecture consists of Inception-Resnet-v2 module, 

Multi-Cell architecture module and Multi-Task Learning module. The Kaggle dataset is used to 

evaluate the proposed architecture. The Experimental results achieve a quadratic weighted Kappa 

of 0.841.  
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In [88] the proposed network model is based on Transfer learning on pretrained GoogLeNet and 

AlexNet models from ImageNet. It achieved a sensitivity of 95%. The AlexNet and GoogLeNet 

architectures are trained and tested as 2-ary, 3-ary and 4-ary classification models. The Transfer 

learning on pretrained GoogLeNet and AlexNet models from ImageNet improved peak test set 

accuracies to 74.5%, 68.8%, and 57.2% on 2-ary, 3-ary, and 4-ary classification models 

respectively. The proposed network uses convolutional layer L2 regularization to reduce model 

overfitting. The cross-entropy function is used to compute error loss. The Xavier method (see for 

example: https://www.deeplearning.ai/ai-notes/initialization/) provides the weights initialization. 

AlexNet, VGG16 and GoogLeNet models were trained on the binary-labeled as normal or mild vs 

moderate to end stage. Kaggle dataset is used to evaluate the performance of the proposed CNNs. 

The GoogLeNet model is more efficient and achieved a sensitivity of 95% and specificity of 96%. 

The sensitivity of the no DR and severe DR classes were 98% and 93% respectively. However, 

the sensitivity for the mild class was only 7%. The 3-ary classifier gives sensitivities for no DR 

and severe DR of 85% and 75% respectively and 29% for mild class sensitivity. 

 

In [89] a DR interpretable image classification model was described. This model is used for grading 

the level of the DR. The EyePACS dataset is used to get a training set which is composed of 35,126 

images and the test set 53,576. The QWK metric [25] was close to the reported by human experts. 

The test set uses a unique DL model without ensembling. A Receptive field (RF is widespread 

model of sensory neurons describing the best-fitting linear transformation from the stimulus to the 

neural response) score distribution model is proposed. RF distributes the output score into the 

previous layers. The proposed CNN has 391,325 parameters, dispatched in 17 layers. The feature 

extractor is the first of layers and the classifier is the second group. The feature extraction has 7 

blocks of 2 layers.  Every layer is a stack of a 3 × 3 convolution with stride 1 ×1 and padding 1 × 

1. Every layer is followed by batch normalization and a ReLU activation function. A 2 × 2 max-

pooling operation of stride 2 ×2 is applied between every block. After the 7 blocks of feature 

extraction, the RF of the network has grown till reaching 637 ×637, corresponding approximately 

to the input size. The classification phase uses a 2 ×2 convolution. To get a final 64 feature, a 4 ×4 

average-pooling is used to reduce the dimensionality vector. These features are linearly combined 

and the output scores of every class are obtained.  

https://www.deeplearning.ai/ai-notes/initialization/
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A SoftMax function allows the conversion of scores to probabilities. The feature extractor has 16 

filters in the first block. The second block has 32 filters. The other blocks include 64 filters. The 

model is trained for 300 epochs. The QWK value are reached 0.814 on the validation set and 0.801 

on the testing set. The testing set contains 10.000 images. A linear classifier is used to combine 

the features of both eyes. Using the Messidor-2 dataset, the obtained prediction performance is 

91.1% and 90.8% for sensitivity and specificity respectively. The used model has 391. 325 model 

parameters and 17 for model depth. A proposed DR interpretable classifier, achieved more than 

90% of sensitivity and specificity and allow it to detect more severe cases of DR disease.   

2.3. 3. Dataset used DR diagnosis 

The publicly available datasets used are Kaggle dataset, DRIVE dataset, STARE dataset, 

EyePACS dataset and MESSIDOR dataset.  

 

In [83] macula-centred retinal fundus images were taken from the Sichuan Academy of Medical 

Sciences and Sichuan Provincial Peoples Hospital. The original data comprising 13.767 images of 

1872 patients were collected from three sources: ophthalmology, endocrinology and physical 

examination centres view were captured per eye.  

 

In [86] the data sets we have used are FUNDUS images of human retina having pixels over 

2000×3000. The dataset downloaded from website kaggle.com, dataset having over 35000 images 

for training and 15000 images for testing.  

 

In [87] the dataset used is Kaggle. The retinal images were provided by EyePACS, which is a free 

platform for retinopathy screening. The dataset consists of 35126 training images, 10906 validate 

images and 42670 test images.  

 

In [88] Experimental studies were conducted using two primary datasets. The Kaggle dataset 

contains 35,000 retinal images with 5-class labels such as normal, mild, moderate, severe, end 

stage.  
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The second used dataset is Messidor-1 dataset that has 1,200 color fundus images with 4-class 

labels. In addition, two fundoscope image datasets are used to train an automated classifier for this 

study.  

2.4 Cataract 

2.4.1 Methods and Materials 

 

The lens allows light access to the retina to intercept signals. It is contoured by ciliary muscles that 

adjust eye focus in order to ensure clear vision. The protein decrease in the lens leads to clouding 

its texture. Therefore, the light is disrupted and hence not be projected adequately on the retina, 

which leads to a blurred vision, as indicated in Figure.11. b. Cataract appears often for elderly 

people. Aside aging, the principal factors include smoking, poor health habits, prolonged exposure 

to sunlight, diabetes and alcohol. 

 
(a)                                                                                 (b) 

Figure 11. (a) Healthy eye; (b) eye suffering of cataract [113] 

 

Cataract might lead to blindness which is the main cause among ocular pathologies [92], with a 

ratio about 51% [90]. Blind people due to cataracts are about 20 million, and will exceed 40 million 

by 2025, based on World Health Organization report.  

A cataract progress slowly which can achieve higher severity that requires surgical treatments [91], 

[92].  
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The cataract is graded to four classes: healthy, Mild, Moderate and Severe. Mild class can be 

treated through enhancing health habits, stop smoking and using wearing sunglasses. Therefore, 

early detection is higher recommended to assist patients. However, lack of ophthalmologists 

avoids ensure periodic diagnosis [91]. The cataract can be detected through four main methods 

that are light-focus method, iris image projection, slit lamp examination and transillumination 

ophthalmoscopy [92]. Those methods are costly and time-consuming. Therefore, this develops the 

necessity to propose a computer-aided diagnosis for cataract detection [90]. In this context, several 

automated methods are proposed which aim to detect cataract from fundus image. In the case of 

healthy retina, all retinal structures can be well distinguished such as optic disc and thick and thin 

vessels. In the case of mild cataract, thin vessels are slightly visible. However, only thick vessels 

and optic disc are visible in the moderate stage. In the last stage, no retinal structures can be seen 

[91, 92]. Figure 12 shows (b) fundus image in mild cataract stage (figure 12.b), fundus image in 

moderate cataract stage (figure 12.c) and fundus image in severe cataract stage (figure 12.d). 

 

 
(a)                                                 (b) 

 
(c)                                                  (d) 

 

Figure 12. (a) healthy fundus image; (b) fundus image in mild cataract stage; (c) fundus image in moderate cataract 

stage; (d) fundus image in severe cataract stage [92] 

 

 

https://en.wikipedia.org/wiki/Sunglasses
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2.4.2 Deep-Learning based methods for Cataract detection and grading 

 

The method proposed in [92] offers an automated method for cataract detection and grading using 

DCNN. The fundus images are resized uniformly, and the uneven illumination is eliminating, and 

the green channels are extracted. Thereafter, the method employed a DCNN with five 

convolutional layers; three are fully connected layers and a four-way SoftMax which provide the 

fundus image cataract grading. A private dataset is used which is composed by 3269 images 

without cataract disease and 2351 healthy ones, which regarded into 4 classes. The proposed 

method achieves an accuracy of 93.52% to detect the cataract and an accuracy of 86.69% for 

providing the cataract stage grading. 

 

In [90], the authors propose a computer-aided automatic method for cataract detection where 

fundus images are classified into four stages which normal, mild, moderate, and severe. After 

extracting the green channel, only fundus images with a good quality are conserved. This step is 

performed using the Naturalness Image Quality Evaluator (NIQE) and the Perception based Image 

Quality Evaluator (PIQE) that generates a score related to the image quality. The fundus images 

where scores surpass a specific threshold are taking into account. Thereafter, the features are 

extracted using Alex Net model which is pre-trained using ImageNet database. This model is 

composed by five convolutional layers followed by three fully connected layers. The features are 

provided to a classifier that is determinate experimentally. The authors proceed to compare several 

classifiers which are linear SVM, kernel SVM, K-nearest neighbour, Naive Bayes, decision tree, 

LDA and SoftMax, where linear SVM allows achieving the higher classification accuracy. 

 

The dataset is collected from several public such as HRF, STARE, DIARETDB0, E-opt, 

MESSIDOR, DRIVE and DRIONS-DB, where 200 fundus images are chosen for each cataract 

grade. Based on experimental result, the method achieves an accuracy of 100% when used for two 

class (normal vs. cataract) classification. In the case of Four class classification, an average 

accuracy of 92.91 % is achieved and accuracy per stage are respectivelly100% for normal, 93.33% 

for middle, 88.33% for moderate, 90% for severe cataract. The experiment shows each 

misclassification consists in grading the image as neighborhood cataract classes. 
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The work described in [93] and [94] propose an automated system for grading the severity of 

nuclear cataracts based on convolutional-recursive neural networks (CRNN). First, the lens 

structure is partitioned into anterior cortex, nucleus, and posterior cortex. Thereafter, the three 

sections are resized where anterior cortex and posterior cortex are scaled in square shapes, where 

width is the half of the nucleus one. The resizing is done while preserving the same lens structure 

dimension. Then, anterior section is removed, and the nucleus is divided into three overlapped 

sections. Afterwards, the grading category is used to learn local features from each section. 

Thereafter, local patches from each section are randomly extracted and merged into the same 

group. Those features are provided to a convolutional layer of the CNN. Hence, image contrasts 

are normalized, and average pooling is applied. Then, N random RNNs are performed to extract 

N vectors of higher order features. Finally, those vectors are injected into support vector regression 

(SVR) to provide the final grading result. This method is evaluated using the ACHIKO-NC dataset 

that contains 5378 images. Each image is graduated from 0.1 to 5.0, which is defined using the 

Wisconsin protocol. Four metrics are computed to evaluate the method that are the integral 

agreement ratio (R0), the ratio of decimal grading errors≤ 0.5 (Re0.5), the ratio of integral grading 

errors≤ 1.0(Re1.0), and the mean absolute error (ε), which values are respectively 0.704 ±0.016, 

0.881 ±0.019, 0.990 ±0.004 and 0.307 ±0.019. 

 

In [91], a grading cataract severity method of fundus image is proposed. The method models the 

four-class classification problem into three adjacent two-class classification problems. After 

delimiting the retina, an improved version of the “Haar wavelet filter” is applied to the fundus 

image in order to decompose it into Approximate Components (ACs). Those ACs should be 

classified through three optimal thresholds that correspond to the three two-class classifiers. The 

authors proposed to define them through on « mean square error » loss function of the BP-net 

model, where those values are generated when DL model provides a higher accuracy classification. 

The evaluation is performed using a private dataset composed by 1355 retinal images. The 

experiment shows that two-class classification and four-class classification achieve respectively 

accuracies about 94.83% and 85.98%. 
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3. Deep Learning-bases Smartphone for detection of retinal abnormalities 

3.1 Smartphone Captured fundus image evaluation 

Nowadays, the design of the CAD-based Smartphone for detection of retina abnormalities is 

growing. Several works are interested to the quality of fundus image captured by Smartphone, 

with respect to the clinical employment. The work described in [95] describes an experimentation 

that evaluates the D-EYE lens captured fundus images with respect to the direct ophthalmoscope 

ones.  

 

In [96], ophthalmologists deduced that Smartphone captured fundus images are readable with an 

average between 86% and 100%, and have an accepted quality in 93%-100%.  

 

Jin et al. [97] were summarized a qualitative comparison study between portable and tabletop 

fundus camera by grading 400 fundus images in each category. The ophthalmologists assign 

excellent overall quality about 63% and 70.75% and inadequate quality about 4.75% and 3.25% 

respectively for portable and tabletop camera. 

 

They are some based-Smartphone camera devices with non-mydriatic camera, as for examples: 

PEEK Retina (Peek Vision, London), D-Eye (D-Eye; Pasadena, Calif. with undiluted pupils, a 

field of view of 5-8º, and the optic disc detection with pupils as small as 2mm), HFC MicroClear 

is handled-portable with 45° field view, the ZEISS VISUSCOUT 100 - Handheld Fundus Camera 

has a non-mydriatic operation, with color and red-free images and 40° field of view. Figure 13 

shows some Non-mydriatic and portable fundus camera devices. 
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Figure 13. Some Non-mydriatic and portable fundus camera devices: a) Horus DEC 200 Hand Held Fundus Camera 

(https://www.bibonline.co.uk/) with 40° manual focus portable fundus camera);  b) ZEISS VISUSCOUT 100 - 

Handheld Fundus Camera (https://www.zeiss.com/); c) Volk iNview -iPhone Fundus Camera 

(https://www.foresightintl.com/) and d) The D-EYE Retinal Camera (https://www.d-eyecare.com/). 

 

Other works have been proposed for screening and diagnosis of ocular diseases. In [98] a screening 

tool is given. This tool is able to identify patients with Diabetic Retinopathy. The D.EYE device 

is used.  

 

Russo et al. [99] aim to calculate the Vertical Cup-to-Disc Ratio value. For the experimental 

results, a Smartphone ophthalmoscopy equipped with D-EYE lens and slit-lamp biomicroscopy 

were used and the obtained Kappa is equal to 0.63.   

 

Thomas et al. [100] propose a Tele-glaucoma providing a specificity of 79% and a sensibility of 

83%.  

 

In [101] the DR detection uses Smartphone fundus photography. This work shows that both non-

mydriatic fundus photography and Smartphone are able to detect DR. The non-mydriatic one is 

more sensitive.  

 

A. Elloumi et al. [102] and [103] propose a Smartphone based method for Optic Nerve Head 

detection from fundus images captured by the D. EYE lens. The STARE and DRIVE databases 

are used and the obtained results are 96% and 100% detection rates on STARE and DRIVE 

Datasets respectively.  

https://www.bibonline.co.uk/
https://www.zeiss.com/
https://www.foresightintl.com/
https://www.d-eyecare.com/
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The average execution times are 2s on STARE dataset and 1.3s on DRIVE database. The proposed 

image processing pipeline in order to detect and enhance the retina area and detect the Optic Nerve 

Head in Smartphone less than 1 second. 

 

The table 1 shows the characteristics and performance of ocular diseases detection using from 

Smartphone and fundus image that we have identified in some related works. 

 

Table 1. Some related work based-Smartphone for ocular disease detection 

 
Works Pathologies Fundus 

image 

number 

Performance - Evaluation Capture 

device 

Toy et al [98]  moderate non-

proliferative  

&Worse diabetic 

retinopathy 

100 91% sensitivity 

99% specificity 

95% positive predictive 

value 

98% negative predictive 

value. 

 

Paxos 

Scope 

Russo et al. [99]  Vertical Cup-to-

Disc 

Ratio (glaucoma) 

 

107 s 95% sensitivity 

95% specificity 

63 % Kappa (k) 

D-EYE 

Rajalakshmi et 

al. [104] 

DR 

 

--- 92.7 % sensitivity 

98.4 % specificity 

Kappa ( ĸ) = 0.90 

(FOP) 

camera 

 

Muiesan et al. 

[105]  

 

 

hemorrages 

exudates 

papiledema 

104  Hemorrages: 0.795 

Exudates: 0.822 – 0.878 

Papiledema: 0.815 – 0.804 

D-Eye 

 

Thomas et al. 

[100]  

Glaucoma --- 83% sensitivity 

79% specificity 

 

 

 

 

3.2 Deep-Learning based method of ocular pathology detection from 

Smartphone-captured fundus image 

 

It is only recently that an interest is focused on the design of CAD systems based on DL and using 

Smartphone for detection of retinal abnormalities. However, there is very little published work. 

The following works [106, 107, 108] illustrate using DL on Smartphone for screening and 

diagnosis of ocular pathologies. 
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Uncorrected Refractive Error (URE) is one of the most important consequences of visual 

impairment. In [106] a method based on DL is proposed to extract information, such as URE from 

fundus.  

 

Figure14 presents an overview of the proposed Deep neural network. The used retinal fundus 

images were 45° and 30° field of view images from the UK Biobank 

(http://www.ukbiobankeyeconsortium.org.uk/) and AREDS. The proposed DL algorithm is 

trained to predict URE error from a total of 226.870 images. The validation was done on 24.007 

UK Biobank and 15.750 AREDS images. As cited in [106], the obtained results have a mean 

absolute error of 0.56 diopters (95% Confidence Interval (CI): 0.55–0.56) for estimating spherical 

equivalent on the UK Biobank dataset and 0.91 diopters (95% CI: 0.89–0.93) for the AREDS data 

set. The baseline expected mean absolute error obtained by simply predicting the mean of this 

population was 1.81 diopters (95% CI: 1.79–1.84) for UK Biobank and 1.63 (95% CI: 1.60–1.67) 

for AREDS. The proposed Deep Neural network is consistent with the implementation on portable 

devices, such as Smartphone equipped with portable fundus camera [109] and may also be used to 

measure the visual acuity [110]. The authors were also considering his use as a Smartphone 

application of screening and diagnosing ocular disease in the developing world.  

 

 
Figure 14. Overall framework of the proposed Deep neural network model in [106].  

 

In [107] the authors propose artificial intelligence (AI)-based automated software for detection of 

DR and Sight-Threatening DR (STDR) from fundus photography. The images are captured by a 

Smartphone-based device. STDR was defined by the presence of severe non-proliferative DR, 

proliferative DR or diabetic macular oedema (DME). DR screening software EyeArt TM (version 

v2.1.0) is used for grading the retinal photographs.  

http://www.ukbiobankeyeconsortium.org.uk/
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The EyeArt AI algorithm has been clinically trained and validated using retinal images of 78,685 

patients. The retinal images were taken by conventional desktop mydriatic fundus cameras 

(http://www.eyepacs.com/data-analysis). The obtained results were based on retinal images of 296 

patients that are graded. DR was detected by the ophthalmologists in 191 (64.5%) and by the AI 

software in 203 (68.6%) patients while STDR was detected in 112 (37.8%) and 146 (49.3%) 

patients, respectively. The AI software showed 95.8% (95% CI 92.9–98.7) sensitivity and 80.2% 

(95% CI 72.6–87.8) specificity for detecting any DR and 99.1% (95% CI 95.1–99.9) sensitivity 

and 80.4% (95% CI 73.9–85.9) specificity in detecting STDR with a kappa agreement of k = 0.78 

(p < 0.001) and k = 0.75 (p < 0.001), respectively. 

 

The CAD system proposed in [108] uses the D. Eye lens to capture and process fundus images in 

real-time on Smartphone platforms for retinal abnormality detection. It is based on CNN and the 

transfer learning method. The transfer learning method is based on the pre-trained Exception 

(Extreme version of Inception) model. The pre-trained Exception model was trained using the 

ImageNet database (http://www.image-net.org/). A block diagramed the architecture of the 

Xception transfer learning used here for diabetic retinopathy detection is shown in Figure 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 15. Transfer learning architecture used for diabetic retinopathy detection [108]. 

http://www.eyepacs.com/data-analysis
http://www.image-net.org/
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The real-time results reported in this work are based on the iPhone 7/ iPhone XR iOS Smartphone 

and Pixel 2/ Pixel 3Android Smartphone. In the iOS version of the developed app, 30 frames get 

captured per second and two detection decisions are made per second. The DR CNN model was 

trained and tested on the retina images from the EyePACS dataset corresponding to no diabetic 

retinopathy (label 0), and the severe diabetic retinopathy (labels 3 and 4). 23354 retina images 

were used for training and 4037 images selected at random were considered for testing. The overall 

accuracy of the diabetic retinopathy detection was found to be 94.6%.   

4. Discussion  

Glaucoma, AMD, DR and Cataract constitute the main retinal diseases. Unless early screening, 

these diseases lead always to severe damage on visual acuity and may be irreversible. The 

automated methods based on image analysis for ocular diseases diagnosis from both fundus and 

OCT images have been explored extensively. This category of methods is generally based on two 

main stages: image processing techniques (segmentation, feature extraction, and detection of 

retinal vessels and lesions) and ocular diseases classification and screening. Sometimes pre-

processing and post-processing stages can be required. The performance evaluation of this 

category of methods (called in the literature “traditional methods”) is done on different public 

and/or private datasets, using the labels provided by experts for each fundus image of the database. 

Different performance metrics like accuracy (ACC), sensitivity and specificity are used to measure 

and evaluate the performance of the proposed methods. 

 

Nowadays, DL and CNN have shown their abilities in different health domains including 

ophthalmology [16]. DL and CNN can identify, localize, quantify and analyze pathological 

features and ocular diseases and their performance keeps growing. In this chapter, we tried to 

address different kinds of applications of deep learning methodologies in ophthalmic diagnosis. 

So, the most severe ocular diseases are considered. Then, we focused on existing methods of earlier 

screening and diagnosis of these diseases.  
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An overview of CNN Deep Learning Networks based approaches was provided. Traditionally 

glaucoma is diagnosed by measuring the intraocular pressure (IOP) with a tonometer and rating 

an abnormal high-pressure rate. Otherwise, glaucoma can be diagnosed within the assessment of 

the ONH by extracting indicators such as the Cup-to-Disc Ratio (CDR) [28], the Inferior Superior 

Nasal Temporal (ISNT) rule [29], the RNFL thickness [30], parapapillary atrophy [31] or ONH 

hemorrhages [30].In the last decade, deep learning has been extensively applied for ophthalmic 

diagnostics achieving good results on various fundus and OCT datasets. Optic Disc, Cup and 

Nerve Head Segmentation is an important step for automatic cropping of the region of interest for 

further processing [32]. 

 

Fundus image present a mainly element to detect and grade AMD, where several DL-based 

methods are proposed. Based in this bibliographic study, the methods aiming for grading the 

fundus image into the standard 4-class classification (no AMD, early AMD, intermediate AMD, 

and advanced AMD) or into a reduced version of the 4-class classification (no/early vs 

intermediate/advanced) and achieve a higher acceptable performance detection, which can be 

employed in clinical context. However, works aiming for grading in large-class classification are 

failed to perform acceptable grading. Furthermore, we distinguish a lack of works aiming for 

segmenting drusens lesions where the achieved performances are not sufficient, which present a 

good challenge for future studies. 

The appearance of microaneurysms (MAs) and hard exudates are the earlier signs of DR.  In terms 

of classification we have five-stage disease severity for DR including three stages of low risk, a 

fourth stage of severe nonproliferative retinopathy, and a fifth stage of proliferative retinopathy. 

Recently, there are some works for DR diagnosis at image level based on DL comparing the 

performance between DL method and previous traditional methods and showing that DL learning 

achieves significantly better performance in DR diagnosis. 

The cataract can be detected through four main methods that are light-focus method, iris image 

projection, slit lamp examination and transillumination ophthalmoscopy [92]. Those methods are 

costly and time-consuming. Therefore, this develops the necessity to propose a computer-aided 

diagnosis for cataract detection [90].  
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It can be noticed that in most of the cases deep learning methods outperformed traditional 

methodologies. 

Recently, some works are interested to the quality of fundus image captured by Smartphone with 

respect to the clinical employment and then an interest is focused on the design of CAD systems-

based DL using Smartphone for detection of retinal abnormalities. However, until now they still 

very little published work. In the context of ophthalmic diagnosis this can be an important direction 

for future research. 

 

5. Conclusion 

 

Throughout the study that we have carried out on part automated methods based on image analysis 

for eye diseases and other part deep learning-based AI in ocular diseases diagnosis, we note that 

there is an active effort to create and develop methods to automate screening of retinal diseases. 

Many CAD systems for ocular diseases have been developed and are widely used. It was also 

noted that the automated methods based on image analysis for ocular diseases diagnosis from both 

fundus and OCT images have been explored extensively.  

 

However, the performance evaluation of this category of methods is done using a variety of public 

and/or private datasets. These datasets are ACHIKO-K, DRIONS-DB, HRF, SEED, ORIGA, 

RIGA, REFUGE (for Glaucoma), Kaggle dataset, DRIVE dataset, STARE dataset, EyePACS 

dataset, DIARETDB0, DIARETDB1, and MESSIDOR dataset (for DR disease), AREDS (for 

AMD) and other datasets such as E-ophta, MESSIDOR, DRIONS-DB. Several datasets contain 

fundus images where labels are provided by experts for each fundus image of the database, such 

as DR lesion existence in the DIARETDB0 dataset, or glaucoma disease detection in HRF dataset. 

However, in opposite cases, authors are required to provide labels for fundus images, where 

approaches are not described or not carried to ensure a performing labelling or grading. 

 

These previous methods under-perform due to variations in image properties and quality resulting 

from the use of varying capture devices and the robustness and accuracy of the used approaches 

for ROI detection and segmentation of the retinal structures. 
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For all these reasons, DL and CNNs have shown their abilities in different heath domains including 

ophthalmology. DL and CNNs are able to identify, localize, quantify and analyze pathological 

features in fundus images.  

 

We have discussed over 100 papers in CAD systems for ocular diseases that focus on the use of 

CNN Deep Learning Networks in detection of retinal abnormalities using retinal images.   

We focused on earlier screening and diagnosis of glaucoma, age-related macular degeneration, and 

diabetic retinopathy and cataract diseases.  

 

In particular, we will report the related works based on Hybrid and fully methods. The hybrid 

method employs both image processing for preprocessing and post processing steps and deep 

learning for feature segmentation and classification with CNN Deep Learning Networks. In fully 

method, CNN Deep Learning Networks is used for both feature extraction and classification from 

the input directly. Two types of retinal imaging modalities will be considered, Optical Coherence 

Tomography and fundus camera for capturing fundus images as inputs for the Computer-Aided 

Diagnosis System based upon CNN Deep Learning network.  

 

This variety of works and methods show that we have achieved excellent reults in terms of 

classification and grading accuracy of ocular diseases. From this review, we can note the following 

works. Zhixi et al. [43] used the Inception-v3 architecture obtaining an accuracy of 98.6% 

Glaucoma classification. In [68], an automated screening system based on Deep Learning is 

proposed to classify fundus autofluorescene images into normal or atrophic age-related macular 

degeneration. The proposed screening system is based onthe residual network. The screening 

system provides an accuracy of 0.98, a sensitivity of 0.95 and 1 for specificity. In [83], an 

automated diabetic retinopathy identification and grading system detects the presence and severity 

of diabetic retinopathy from fundus images via transfer learning and ensemble learning. The 

proposed identification model performed with a sensitivity of 97.5%, a specificity of 97.7% and 

an accuracy of 97.7%. The grading model achieved sensitivity of 98.1%, a specificity of 98.9% 

and an accuracy of 96.5%. In [91], a grading cataract severity method of fundus image is proposed, 

and the experiment shows that two-class classification and four-class classification achieve 

respectively accuracies about 94.83% and 85.98%. 
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It is only very recently that an interest is focused on the design of CAD systems based upon Deep 

learning and using Smartphone platform for detection of retinal abnormalities. The CAD system 

proposed in [108] uses the D. Eye lens to capture and process fundus images in real-time on 

Smartphone platforms for retinal abnormality detection. It is based on convolutional neural 

network and the transfer learning method. The transfer learning method based on the pre-trained 

Exception (Extreme version of Inception) model. The pre-trained Xception model was trained 

using the ImageNet database. The overall accuracy of the diabetic retinopathy detection was found 

to be 94.6%.   
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