Multiple Partitioning of Multiplex Signed Networks: Application to European Parliament Votes

Nejat Arinik
Rosa Figueiredo
Vincent Labatut

Laboratoire Informatique d'Avignon, University of Avignon, France.

Montpellier, Feb 20, 2020

Outline

(1) Graph Theory \& Operations Research

- Structural Balance and Signed Graph Partitioning
- ILP Formulation
(2) Data Mining \& Political Science
- Proposed Approach
- Results

Structural Balance and Signed Graph Partitioning

- Signed graphs

Structural Balance and Signed Graph Partitioning

- Signed graphs
- Structural Balance: Partitioning into two [Heider, 1946] or more [Davis, 1964] mutually hostile subgroups each having internal solidarity

[Heider, 1946] F. Heider, "Attitudes and cognitive organization", Journal of Psychology, 21:107-112, 1946.
[Davis, 1964] J. Davis, "Clustering and structural balance in graphs", Human Relations, 20:181-187, 1967.

Structural Balance and Signed Graph Partitioning

- Signed graphs
- Structural Balance: Partitioning into two [Heider, 1946] or more [Davis, 1964] mutually hostile subgroups each having internal solidarity

[Heider, 1946] F. Heider, "Attitudes and cognitive organization", Journal of Psychology, 21:107-112, 1946.
[Davis, 1964] J. Davis, "Clustering and structural balance in graphs", Human Relations, 20:181-187, 1967.

Structural Balance and Signed Graph Partitioning

- Signed graphs
- Structural Balance: Partitioning into two [Heider, 1946] or more [Davis, 1964] mutually hostile subgroups each having internal solidarity
- Most real networks are not
 structurally balanced \rightarrow need to measure graph imbalance
[Heider, 1946] F. Heider, "Attitudes and cognitive organization", Journal of Psychology, 21:107-112, 1946.
[Davis, 1964] J. Davis, "Clustering and structural balance in graphs", Human Relations, 20:181-187, 1967.

Measuring imbalance - Correlation Clustering problem

- Imbalance of a partition

$$
\begin{aligned}
& P=\left\{S_{1}, S_{2}, \ldots, S_{l}\right\} \text { of } V \\
& I(P)=\sum_{1 \leq i \leq I} \Omega^{-}\left(S_{i}, S_{i}\right)+\sum_{1 \leq i<j \leq I} \Omega^{+}\left(S_{i}, S_{j}\right) . \\
& \text { where } \Omega^{+}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{+} \cap E\left[S_{i}: S_{j}\right]} w_{e} \\
& \text { and } \Omega^{-}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{-} \cap E\left[S_{i}: S_{j}\right]} w_{e}
\end{aligned}
$$

Measuring imbalance - Correlation Clustering problem

- Imbalance of a partition

$$
\begin{aligned}
& P=\left\{S_{1}, S_{2}, \ldots, S_{l}\right\} \text { of } V \\
& I(P)=\sum_{1 \leq i \leq 1} \Omega^{-}\left(S_{i}, S_{i}\right)+\sum_{1 \leq i<j \leq 1} \Omega^{+}\left(S_{i}, S_{j}\right) . \\
& \text { where } \Omega^{+}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{+} \cap E\left[S_{i}: S_{j}\right]} w_{e}
\end{aligned}
$$ and $\Omega^{-}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{-} \cap E\left[S_{i}: S_{j}\right]} w_{e}$

[Bansal, 2002] N. Bansal and A. Blum and S. Chawla, Correlation clustering, in: FOGS, 2002.pp. 23-247

Measuring imbalance - Correlation Clustering problem

- Imbalance of a partition

$$
\begin{aligned}
& P=\left\{S_{1}, S_{2}, \ldots, S_{l}\right\} \text { of } V \\
& I(P)=\sum_{1 \leq i \leq I} \Omega^{-}\left(S_{i}, S_{i}\right)+\sum_{1 \leq i<j \leq I} \Omega^{+}\left(S_{i}, S_{j}\right) . \\
& \text { where } \Omega^{+}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{+} \cap E\left[S_{i}: S_{j}\right]} w_{e}
\end{aligned}
$$ and $\Omega^{-}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{-} \cap E\left[S_{i}: S_{j}\right]} w_{e}$

[Bansal, 2002] N. Bansal and A. Blum and S. Chawla, Correlation clustering, in: FOGS, 2002.pp. 23-247

Measuring imbalance - Correlation Clustering problem

Definition (Bansal, 2002)

Consider a signed graph $G=(V, E, s)$ with a nonnegative weight w_{e} for each $e \in E$, and $s \in\{-,+\}$. The Correlation Clustering (CC) prob. consists in finding the partition P of V such that the imbalance $I(P)$ is minimized.

- Imbalance of a partition

$$
\begin{aligned}
& P=\left\{S_{1}, S_{2}, \ldots, S_{l}\right\} \text { of } V \\
& I(P)=\sum_{1 \leq i \leq I} \Omega^{-}\left(S_{i}, S_{i}\right)+\sum_{1 \leq i<j \leq I} \Omega^{+}\left(S_{i}, S_{j}\right) .
\end{aligned}
$$

$$
\text { where } \Omega^{+}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{+} \cap E\left[S_{i}: S_{j}\right]} w_{e}
$$

$$
\text { and } \Omega^{-}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{-} \cap E\left[S_{i}: S_{j}\right]} w_{e}
$$

[Bansal, 2002] N. Bansal and A. Blum and S. Chawla, Correlation clustering, in: FOGS, 2002.pp. 23-247

ILP formulation

$$
x_{p q}=\left\{\begin{array}{l}
1, \text { if } p \text { and } q \text { are in the same cluster, } \\
0, \text { otherwise }
\end{array}\right.
$$

$$
\begin{equation*}
I(P)\left\{\operatorname{Min} \quad \sum_{p, q \in V: p q \in A^{-}} w_{p q} x_{p q}+\sum_{p, q \in V: p q \in A^{+}} w_{p q}\left(1-x_{p q}\right)\right. \tag{1}
\end{equation*}
$$

s.t.

Triangle constr. $\left\{\begin{aligned} &+x_{p q}+x_{q r}-x_{p r} \leq 1, \forall 1 \leq r<q \leq p \leq n \\ &+x_{p q}-x_{q r}+x_{p r} \leq 1, \forall 1 \leq r<q \leq p \leq n \\ &-x_{p q}+x_{q r}+x_{p r} \leq 1, \forall 1 \leq r<q \leq p \leq n \\ & x_{p q} \in\{0,1\}, \forall 1 \leq q<p \leq n\end{aligned}\right.$

ILP formulation

$$
x_{p q}=\left\{\begin{array}{l}
1, \text { if } p \text { and } q \text { are in the same cluster } \\
0, \text { otherwise }
\end{array}\right.
$$

$$
\begin{equation*}
I(P)\left\{\operatorname{Min} \quad \sum_{p, q \in V: p q \in A^{-}} w_{p q} x_{p q}+\sum_{p, q \in V: p q \in A^{+}} w_{p q}\left(1-x_{p q}\right)\right. \tag{1}
\end{equation*}
$$

s.t.

Triangle constr. $\begin{cases}+x_{p q}+x_{q r}-x_{p r} \leq 1, & \forall 1 \leq r<q \leq p \leq n \\ +x_{p q}-x_{q r}+x_{p r} \leq 1, & \forall 1 \leq r<q \leq p \leq n \\ -x_{p q}+x_{q r}+x_{p r} \leq 1, & \forall 1 \leq r<q \leq p \leq n \\ x_{p q} \in\{0,1\}, \forall 1 \leq q<p \leq n\end{cases}$

Redundant Triangle Inequalities

- Redundant Triangle Inequalities [Miyauchi, 2015]

$$
\begin{aligned}
& x_{p q}+x_{q r}-x_{p r} \leq 1, \forall p, r, q \in V, w_{p q} \leq 0 \wedge w_{q r} \leq 0 \\
& x_{p q}-x_{q r}+x_{p r} \leq 1, \forall p, r, q \in V, w_{p q} \leq 0 \wedge w_{p r} \leq 0 \\
& -x_{p q}+x_{q r}+x_{p r} \leq 1, \forall p, r, q \in V, w_{q r} \leq 0 \wedge w_{p r} \leq 0
\end{aligned}
$$

[Miyauchi, 2015] A. Miyauchi and N. Sukegawa, "Redundant constraints in the standard formulation for the clique partitioning problem", Optimization Letters, 9(1):199-207, 2015.

Cutting Plane with Generalized Triangle Inequalities

- Cutting plane approach [Ales et al.,2016]

2-chorded cycle inequalities

[Grötschel, 1990]

for every cycle $C \subseteq E$ of length at least 5 , the set of 2 -chords

$$
\begin{gathered}
\bar{C}=\left\{v_{i} v_{i+2}|i=1, \ldots,|C|-2\} \cup\left\{v_{1} v_{|C|-1}, v_{2} v_{|C|}\right\}\right. \\
x(C)-c(\bar{C}) \leq\left\lfloor\frac{|C|}{2}\right\rfloor
\end{gathered}
$$

Cutting Plane with Generalized Triangle Inequalities

- Cutting plane approach [Ales et al.,2016]

2-chorded cycle inequalities

 [Grötschel, 1990]
for every cycle $C \subseteq E$ of length at least 5 , the set of 2-chords $\bar{C}=\left\{v_{i} v_{i+2}|i=1, . .,|C|-2\} \cup\left\{v_{1} v_{|C|-1}, v_{2} v_{|C|}\right\}\right.$

$$
x(C)-c(\bar{C}) \leq\left\lfloor\frac{|C|}{2}\right\rfloor
$$

2-partition inequalities
[Grötschel, 1990]

For every $n \geq 3$ and every two nonempty disjoint subsets S, T of V

$$
x([S: T])-x(E(S))-x(E(S)) \leq \min \{|S|,|T|\}
$$

[Grötschel, 1990] M. Grötschel and Y. Wakabayashi, "Facets of the clique partitioning polytope", Math. Prog. 47:367-387, 1990.
[Ales, 2016] Z. Ales and A. Knippel and A. Pauchet, "Polyhedral combinatorics of the K-partitioning problem with representative
variables", Discrete Applied Mathematics, 211:1-14, 2016.

Voting Analysis: Network Extraction

- Raw data (from itsyourparliament.eu):
- Nature: Voting activity at the European Parliament
- Period: $7^{\text {th }}$ term (June 2009-June 2014)
- Size: 840 Eurodeputies, 851 roll-calls, 21 topics
- Legislative proposition networks:
- Nodes: Eurodeputies
- Edges: $\rightarrow-1 /+1$ (unweighted), or $[-1,+1]$ (weighted)
- Agreement: +1 (For vs. For, Against vs. Against, Abstain vs. Abstain)
- Disagreement: -1 (For vs. Against)
- Undetermined: 0 (Abstain/Absent vs. *)
- Dimensions: country \times topic \times time period \times roll-call
- For instance, a roll-call voted by French Eurodeputies on Agriculture in 2012-2013

Traditional Approach: Temporal integration

Roll-call 1

[Arinik et al., 2017] N. Arinik. and R. Figueiredo, and V. Labatut. "Signed Graph Analysis for the Interpretation of Voting Behavior". International Conference on Knowledge Technologies and Data-driven Business - International Workshop on Social Network Analysis and Digital Humanities. 2017.

Proposed Approach

[Arinik et al., 2020] N. Arinik. and R. Figueiredo, and V. Labatut. "Multiple partitioning of multiplex signed networks". Social Networks 60:83-102. 2020.

Proposed Approach

Proposed Approach

Proposed Approach

Proposed Approach

[Arinik, 2019] N. Arinik and R. Figueiredo and V. Labatut, "A new methodology for comparing partitions and evaluating external measures", Working paper, 2019.

Results: France, AGRI, 2012-13

Temporal integration [Arinik et al., 2017]

Results: France, AGRI, 2012-13

Temporal integration [Arinik et al., 2017]

Voting pattern 2 (\%40)

Reduction of direct payments, etc.

Inclusion of crop diversification, etc.

Results: Italy, AGRI, 2012-13

Temporal integration [Arinik et al., 2017]

Voting pattern 1 (\%85) [Arinik et al., 2020]

Voting pattern 2 (\%15)
[Arinik et al., 2020]

Results: Italy, AGRI, 2012-13

Temporal integration [Arinik et al., 2017]

Inclusion of crop diversification,
Reduction of direct payments, etc. etc.

Conclusion \& Further research

Contributions:

- resources
- data: https://doi.org/10.6084/m9.figshare.5785833.v2
- source code: https://github.com/CompNet/MultiNetVotes
- Highlighted the limitations of the traditional approach
- Proposed a generic method to address those issues
- Analysis of External Evaluation Measures
- Multiplicity of optimal solutions for Correlation Clustering problem
- 2-Edge Connected Balanced Subgraphs for Correlation Clustering Problem

Thank you for your attention!

Contact Information:
Nejat ARINIK
nejat.arinik@univ-avignon.fr

Voting behavior patterns: France vs. Italy

Subject	French Eurodeputies' positioning	Italian Eurodeputies' positioning
Natura 2000 and Water Framework Directive payments: foreseeing incompatible requirements in some regions	Conservatives vs. All (voting pattern 1)	S\&D/ALDE vs. the Rest (voting pattern 2)
Reduction to direct payments to farmers	Conservatives vs. All (voting pattern 1)	S\&D/ALDE vs. the Rest (voting pattern 2)
Inclusion of permanent grassland into cross-compliance scheme	Environmentalists vs. All (voting pattern 2)	Unanimity (voting pattern 1)
Crop rotation/diversification	Environmentalists vs. All (voting pattern 2)	Unanimity (voting pattern 1)
Measures against market disturbance: milk and sugar quota	Environmentalists vs. All (voting pattern 2)	Unanimity (voting pattern 1)
Elimination of export refunds	Environmentalists vs. All (voting pattern 2)	Unanimity (voting pattern 1)

Structural Balance

- People strive for cognitive balance in their network of likes and dislikes.

(a) Balanced

(c) Balanced

(b) Not balanced

(d) Not balanced

Strucutural Balance (checking of local property)

Positioning of EP political groups (Manifestos)

Subject	GUE-NGL	G-EFA	S\&D	ALDE	EPP	EFD	ECR	NI
1) Reduction of direct payments	FOR reduction (ceiling at 100 k €) [78]	For reduction (starting from 50 $\mathrm{k} €)$ [70]	FOR reduction (starting from 150 k €) [66]	-	Against reduction [66]	Against reduction [66]	Against reduction [66]	-
2) Maintaining milk quotas	For quotas (with flexibility) [66]	FOR quotas (food security purposes) [66]	For quotas [66]	Against quotas (competitiveness purposes); FOR transition period [69]	Against quotas (competitiveness purposes) [66]	-	Against quotas (low food price purposes) [66]	For quotas (fair price purposes) [79, 80]
3) Export subsidies	-	Against subsidies [70,64]	Against subsidies [66]	AgAINST subsidies (with transition period) $[69]$	Against subsidies; FOR exceptional subsidies [66]	-	-	-
4) Competitiveness	Against current system (too competitive) [66]	Against current system (too competitive) [66]	-	For competitiveness [69]	For competitiveness (better functioning of supply chain purposes) [66, $81]$	-	For competitiveness (low food price purposes) [66]	Against current system (fair price purposes) [79, 80]
5) Aid for rural development	-	Against current scheme (not enough) For co-financing [66]	FOR transfer from Pillar I to Pillar II: Against co-financing [60]	For transfer from Pillar I to Pillar II, co-financing [66]	For transfer from Pillar I to Pillar II, producers as market actors [66]	-	Against risk management measures (not enough) [66]	Against the current scheme (not enough) [79]
6) Food quality vs. quantity	FOR quality [78]	$\begin{gathered} \text { For } \\ \text { quality }[64,66] \end{gathered}$	-	$\begin{gathered} \text { For } \\ \text { quantity }[69] \end{gathered}$	For quantity and quality [81]	For quality [82]	$\begin{gathered} \text { For quantity } \\ \text { and } \\ \text { quality [66] } \\ \hline \end{gathered}$	For quality [80]
7) Enhancing environmental measures	FOR organic farming; Against GMO $[78,66]$	For crop rotation and diversification, promoting biodiversity, organic farming, permanent grasslands, Against GMO, intensive agriculture[64, 70]	For reducing use of chemicals, promoting biodiversity, energy savings; Against intensive farming [60]	For greener CAP, energy savings, tackling climate change through innovative solutions [69]	-	Against GMO [82]	Not the priority [66]	-

