N

N

A versatile Key Management protocol for secure Group
and Device-to-Device Communication in the Internet of
Things
Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, Yacine
Challal

» To cite this version:

Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, Yacine Challal. A versa-
tile Key Management protocol for secure Group and Device-to-Device Communication in the
Internet of Things. Journal of Network and Computer Applications, 2020, 150, pp.102480.
10.1016/j.jnca.2019.102480 . hal-02428283

HAL Id: hal-02428283
https://hal.science/hal-02428283
Submitted on 7 Jul 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02428283
https://hal.archives-ouvertes.fr

A Versatile Key Management Protocol for Secure Group and
Device-to-Device Communication in the Internet of Things

Mohamed Ali Kandi!, Hicham Lakhlef', Abdelmadjid Bouabdallah! and Yacine Challal':?
!Sorbonne Universités, Université de Technologie de Compiegne, CNRS, UMR7253 Heudiasyc-CS 60319-60203 Compiggne Cedex, France
2Laboratoire de Méthodes de Conception de Systemes, Ecole nationale Supérieure d’Informatique, Algiers, Algeria
2Centre de Recherche sur I'Information Scientifique et Technique, Algiers, Algeria
Email: {mohamed — ali.kandi, hicham.lakhlef, madjid.bouabdallah, yacine.challal} Qhds.utc. fr

Abstract—The Internet of Things (IoT) is a network made
up of a large number of devices that collaborate to provide
various service for the benefit of society. Two communication
modes are required to enable a smooth collaboration. A device
can send the same message to several other ones participating
in the same service. It may also address a specific device in a
Peer-to-Peer manner. The first mode of communication is called
Group Communication, while we refer to the second as Device-
to-Device Communication. One of the main challenges facing the
IoT is how to secure these two modes of communication. Among
all the security issues, the Key Management is one of the most
challenging. This is mainly due to the fact that most of the IoT
devices have limited resources in terms of storage, calculation,
communication and energy. Although different approaches have
been proposed to deal with this problem, each of them presents its
own limitations and weaknesses. Moreover, they usually consider
either the Group or the Device-to-Device Communication. In this
paper, we propose a novel versatile Key Management protocol
for the Internet of Things. To the best of our knowledge, it is
the first protocol that secures both modes of communication at
the same time. We then analyze the security and performance of
our solution and compare it to the existing schemes. For Group
Communication, we show that our solution ensures the forward
and backward secrecy and, unlike most of the existing Group
Key Management protocols, guarantees the secure coexistence
of several services in the network. With regard to Device-to-
Device Communication, we prove that our solution is flexible
and provides a good level of resilience and network connectivity
compared to the existing Peer-to-Peer Key Management schemes.
We finally demonstrate that, by balancing the loads between the
heterogeneous devices according to their capabilities, our solution
is both efficient and scalable.

Index Terms—Internet of things, Group Communication,
Device-to-Device Communication, Security, Key Management.

I. INTRODUCTION

The number of devices connected to Internet is constantly
increasing since its appearance. Now that this number far
exceeds that of people in the world, we are no longer talk-
ing about Internet but about Internet of Things (IoT). This
emerging technology gives rise to revolutionary applications
such as health care, environment monitoring, smart homes,
smart cities, autonomous vehicles...etc. To achieve this, the IoT
devices are able to automatically communicate to each other
in two different ways: Group Communication and Device-to-
Device Communication.

In Group Communication, a device communicates with
several other ones at the same time. These devices usually
participate in the same service and thereby have a common
interest. This same device can address a specific other one in
a Peer-to-Peer manner. This is called Device-to-Device Com-
munication [36, 37]. An example of Group Communication is
the Vehicle-to-Everything Communication. It is a technology
that consists of allowing a vehicle to communicate with all
the nearby devices (cars, bicycles, public lighting...etc.). The
aim is to make the vehicle sense its environment and therefore
take the right decision. A Vehicle-to-Vehicle Communication,
on the other hand, allows two specific vehicles to exchange
information, in a Peer-to-Peer manner, about their speed and
position. Thus, they can avoid crashes, ease traffic congestion
and improve the environment [11].

One of the main challenges facing the IoT is how to secure
communication between its devices. This is considered as a
difficult issue mainly because the IoT devices have the partic-
ularity of being heterogeneous [28]. They have then different
capabilities in terms of storage, calculation, communication
and energy. More importantly, some of them are constrained
by their small physical size and so have limited capabilities
[1]. Among all the security issues encountered by the IoT, the
Key Management (K M) is one of the most difficult. The KM
is the core of secure communication. Its role is to establish
secure links between the network members. To achieve this, it
provides them with secret cryptographic keys that are used to
encrypt and decrypt the exchanged data [56]. According to the
mode of communication, the KM schemes can be classified
into two categories: Group and Peer-to-Peer Key Management.

Group Key Management (GKM) protocols entail using the
same key to encrypt and decrypt the Group Communication
(Figure 1a). This key, usually called group key, must be known
only by current members [15]. The GKM must then ensure
that, when a member leaves the group, it is no longer able to
decipher the future messages (forward secrecy). It must also
guarantee that a joining node cannot decipher the previous
ones (backward secrecy). Backward and forward secrecy are
usually guaranteed by rekeying. Thus, when a node joins or
leaves the group, the keys are revoked and new ones are
distributed to the remaining members.

Peer-to-Peer Key Management (PK M) schemes can be used
to secure the Device-to-Device Communication. It consists of
using several keys instead of one. The less communications a
compromised device can decipher, the more the PKM is con-
sidered as resilient against node capture [53]. A perfect level
of resilience can be reached (at the expense of scalability) if a
distinct key is used for each pair of devices. This key, usually
called Pairwise Key, should be known by the two devices only
(Figure 1b). Hence, when a network member is compromised,
the communications of others are not jeopardized.

As the IoT requires the two modes of communication, none
of these schemes is suitable for it. Indeed, if the same key is
used for all Device-to-Device Communication, every network
member will be able to decipher them. The GKM schemes
are therefore not resilient against node capture. On the other
hand, if several keys are used in Group Communication, the
same message will be encrypted and sent several times. This
will require additional calculation and communication and
thereby more energy consumption. Finally, most of the existing
schemes suffer from considerable KM overheads and are not
suitable for the IoT constrained devices. Implementing two
different protocols will then be too heavy for them to handle.

In this work, our aim is to secure the two communication
modes of the IoT without loss of efficiency and scalability.
To achieve this, we balance the protocol overheads between
the heterogeneous devices according to their capabilities. The
contributions of our work are as follows:

o We present a state of the art of the different existing
KM schemes. We classify them according to the mode
of communication into two categories: GKM and PKM.

« We propose a versatile KM protocol for the IoT. To the
best of our knowledge, it is the first protocol that secures
both modes of IoT communication at the same time.

o We analyze the security and performance of our solution
and compare it to the existing ones. For Group Communi-
cation, we show that it ensures the forward and backward
secrecy and, unlike most of the existing GKM schemes,
guarantees the secure coexistence of several services in
the network. For Device-to-Device Communication, we
prove that our solution is resilient, flexible and has a good
connectivity compared to the existing PKM schemes.
We finally show that, by balancing the loads between
the heterogeneous devices according to their capabilities,
our solution is efficient and scalable.

(a) Group Key Management.

The remainder of this paper is organized as follows: related
works are discussed in Section II. We detail then our solution
in Section III. Section IV presents the security analysis of our
protocol. In Section V, we evaluate the performance of our
solution. Finally, we conclude our work in Section VI.

II. RELATED WORKS

The Key Management is the core of secure communication.
Although different approaches have been proposed, each of
them presents its own limitations and weaknesses. More im-
portantly, they are usually intended for one of the modes of the
IoT communication. Different classifications and taxonomies
of these methods have been proposed in the literature. In [13]
and [39], the authors classify the KM schemes according
to the network topology: centralized, decentralized and dis-
tributed. In the first class, a single entity controls the whole
network, while in the second one, the network management is
distributed on several entities. In the third category, however,
the network members handle the Key Management themselves.

On the other hand, the authors of [56] classify the KM
schemes according to the encryption technique used: sym-
metric, asymmetric and hybrid. Symmetric approaches [5,
7-10, 17-23, 25-27, 30-32, 35, 45-48, 51-55] involve the
use of the same key for encryption and decryption. On the
contrary, asymmetric protocols [2, 3, 12, 33, 34, 38, 40, 42,
43, 49, 50] use two different keys: a public key which may
be disseminated widely and a private key which is known
only to the owner. Finally, a hybrid approach [4] consists
of combining a symmetric scheme with an asymmetric one.
Generally, symmetric schemes require less computation time
than the asymmetric ones and are then more suitable for the
IoT constrained devices. For this reason, we focus, in this
work, on the symmetric approaches.

According to the mode of communication, we classify
the existing symmetric Key Management schemes into two
categories: the GKM (Figure 1a), for Group Communication,
and the PKM (Figure 1b), for Device-to-Device Communica-
tion. In the context of the IoT, the GKM protocols must,
above all, ensure the backward and forward secrecy. They
should also consider the heterogeneous nature of the IoT and
the possibility that several services can coexist in the same
network. The PKM schemes, on the other hand, must be
resilient, flexible and provide a good network connectivity.
Finally, both categories must be efficient and scalable.

Ow: ,,/";((.)) ok

(¢)

pky

O-r
pks ((.)) pke

(b) Peer-to-Peer Key Management.

Fig. 1: Key Management.

A. Group Key Management schemes

The Group Key Management schemes’ requirements for
the IoT that we consider in this paper are: backward and
forward secrecy, collusion resistance, heterogeneity, efficiency
and scalability. The GKM must, above all, ensure that the
group key is known only to the current members. Thus, when
a node joins or leaves the network, the key is revoked and new
one is distributed to the remaining members. This rekeying
ensures that a joining node will not have access to the old
keys (backward secrecy) and a leaving member will no longer
know the future ones (forward secrecy). The GKM must also
prevent multiple evicted nodes to cooperate to regain access to
the group key. Such an attack is referred to as collusion attack
[45]. Heterogeneity includes the fact that the IoT devices
have different capabilities in terms of storage, calculation,
communication and energy but also the possibility that they
participate in different services. Efficiency implies minimal
use of node resources. Finally, if increasing the network size
does not significantly degrade its performance, the protocol
is scalable. The GKM schemes are usually based on: tree
structures, combinatorial optimisation, batch rekeying,...etc.

1) Tree based schemes:

The Logical Key Hierarchy (LKH) [48, 51] consists of using
a tree structure to reduce the communication cost during the
process of rekeying. The root of the tree corresponds to the
group key, its leaves to the members’ secret keys and the
other nodes to intermediate keys. Each member stores the
keys forming its branch. When a device joins or leaves the
group, the server replaces only the keys it knows. In the case
of a binary tree, nodes’ storage cost will be proportional to
O(logg(n)) and the size of the rekey message to O(2logz(n)).
The OFT protocol [35] uses a One-way Function to reduce
the size of the rekey message to O(logz(n)). Both CASMA
and GROUPIT protocols aim to deal with the dynamicity
of IoT environments. While the former divides the network
into multiple zones each implementing LKH [24], the latter
combines LKH with the Chinese Remainder Theorem [29].

The Tree based schemes are usually secure as they guarantee
the backward and forward secrecy and are resistant to collusion
attacks. They are also reasonably efficient and provides a
good scalability. Nonetheless, these schemes rarely consider
the heterogeneous nature of the IoT (Figure 2a).

Backward and
forward secrecy

Collusion

Scalability Resistance

Scalability

Efficiency

Heterogeneity Efficiency

(a) Tree based schemes.

Backward and
forward secrecy

(b) Combinatorial optimisation schemes.

2) Combinatorial optimisation based schemes:

The Exclusion Basic System (EBS) scheme is based on
combinatorial optimization. It aims to make it possible to
choose a compromise between the number of keys stored on
nodes and that of messages exchanged during the rekeying
process. The idea was first introduced in [20]. Other protocols
were then proposed to improve the efficiency and the collusion
resistance. The protocols GKIP [22] and SHELL [52], for
example, are based on the nodes deployment knowledge to
achieve this, while LOCK [21] uses two layers of EBS.

The EBS based schemes ensure the backward and forward
secrecy. They are efficient and scalable. Nevertheless, they are
generally vulnerable to collusion attacks and do not consider
the heterogeneous nature of the IoT (Figure 2b).

3) Batch rekeying based schemes:

Most of the exiting GKM schemes are based on individual
rekeying, i.e. they rekey the group after each join or leave
request. For more efficiency, the batch rekeying based schemes
[30, 31, 47] were proposed. The main idea is to periodically
rekey the group in order to reduce the rekeying overheads.

It is obvious that these schemes are more efficient than
those based on individual rekeying. However, a new node has
to wait until the next rekeying operation to actually joining
the network. Even worse, as long as the group key has not
been replaced yet, a leaving or an evicted member can still
decipher the communications. Forward secrecy is then not
totally guaranteed (Figure 2c).

4) Discussion:

Our literature review shows that the main problem of the ex-
isting solutions is that they do not consider the heterogeneous
nature of the IoT (Figure 2). They do not balance the loads
between devices and impose the same costs on a powerful
computer or a weak sensor. Thus, while a negligible part of the
former’s resources is used, those of the latter may not even be
enough. Also, they usually use the same parameters to secure
all communications. As the IoT provides various services,
communications within a service will be accessible to all nodes
even if they did not subscribe to it. Moreover, the capture of
a member will jeopardize all services. In previous works [26,
27], we proposed algorithms that provide various mechanisms
to resolve some of these problems. However, these works do
not consider Device-to-Device Communication.

Backward and
forward secrecy

Collusion scalabilit Collusion
Resistance ¥ Resistance
Heterogeneity Efficiency Heterogeneity

(c) Batch rekeying based schemes.

Fig. 2: Group Key Management approaches.

B. Peer-to-Peer Key Management schemes

The PKM schemes requirements for the IoT are: resilience,
flexibility, connectivity, efficiency and scalability. A protocol
is resilient if the capture of a node does not jeopardize the
communications of the other ones. On the other hand, a
flexible protocol operates well regardless of the position of
nodes and supports their dynamic deployment, i.e. nodes can
join and leave the network at any time [13]. When network
connectivity is low, some neighboring communicators may not
share a common key and then relay on intermediate nodes
to establish a secure path. Finally, efficiency and sclablilty
were presented in the previous section. On this basis, the
Peer-to-Peer Key Management schemes can be classified into
three subcategories: deterministic, pure probabilistic and de-
ployment knowledge based schemes.

1) Deterministic schemes:

The basic deterministic scheme, also called Pairwise Key
protocol, consists of using a distinct pairwise key for each pair
of nodes. This technique [17], nevertheless, requires a lot of
storage as nodes has to store a number of keys proportional
to the network size. Other approaches were then proposed.
Polynomial-based protocols [5, 9] use bivariate polynomials,
flx,y) = ZEM) agzty’, for which f(z,y) = f(y,z). In
each node 7 is then stored f (¢, y). Thus, a pair of nodes (4, j)
can calculate the shared key f (7, j). Matrix-based schemes [8,
19, 46], on the other hand, use symmetrical matrices. The main
idea is that each node i stores the i*” row vector and the i*"
column vector. Two nodes wishing to communicate exchange
their columns and multiply them by their own row to get the
shared key. Note that the rows must be kept secret.

Deterministic schemes have the advantage of being resilient
since the capture of a node will not jeopardize the other ones.
Moreover, they are usually efficient and have a good con-
nectivity. However, they suffer from poor scalability (Figure
3a). Indeed, Pairwise Key schemes require that a node stores
as many keys as there are members in the network. On the
other hand, the larger is the network, the more vulnerable the
Polynomial and Matrix-based approaches are to compromise
because captured nodes can collaborate to recover the polyno-
mial or the Matrix. Furthermore, most of these schemes lack
flexibility as they are based on key pre-distribution, i.e. the
keys are stored in the nodes’ memory before their deployment.

Resilience

Scalability Flexibility Scalability

Efficiency

Efficiency

Connectivity

(a) Deterministic schemes.

Resilience

(b) Pure probabilistic schemes.

2) Pure probabilistic schemes:

The first pure probabilistic scheme were introduced in [23].
It consists of using a large pool of keys and to distribute
some of them (a key ring) to each network member. Thus,
two nodes can only communicate if they have a common key.
Otherwise, they relay on intermediate nodes to establish a
secure path. Other approaches were then proposed to enhance
resilience. Using the Q-composite [10] scheme, nodes can only
communicate if they share @ keys. Polynomial pool based
schemes [41, 55] use a pool of polynomials instead of keys.

These schemes are as resilient as the deterministic ones
and even more scalable. Nevertheless, they suffer from poor
flexibility, efficiency and connectivity. Indeed, they are usually
based on key pre-distribution. Moreover, intermediate nodes
may be necessary to establish secure paths between two neigh-
bouring nodes (Figure 3b). This requires additional calculation
and communication and thereby more energy consumption.
Some works tried to enhance the connectivity using the unital
design theory [7], system of equations [54]...etc. However, as
long as they are probabilistic, the connectivity is never total.

3) Deployment knowledge based schemes:

These schemes are neither deterministic nor purely proba-
bilistic. They are based on deployment knowledge to maximize
the network connectivity. Thus, to increase the probability of
sharing common keys, nodes are distributed in regional zones.
Key pools are then assigned to them so that neighboring nodes
share a maximum of keys. Like the other two approaches, the
deployment knowledge based schemes can use pairwise keys
[16, 18], polynomials [32] or matrices [25, 53].

These approaches are as resilient as the deterministic
schemes. They also have a better network connectivity than the
pure probabilistic ones and are then more efficient. However,
these methods are not flexible and lose all their interest if the
deployment knowledge is not possible (Figure 3c).

4) Discussion:

Our literature review shows that none of the existing so-
lutions meets all the IoT requirements: resilience, efficiency,
scalability, connectivity and flexibility (Figure 3). Most of
deterministic protocols suffer from poor scalability and flexi-
bility. Although the solution we propose is deterministic, we
show that, being scalable and flexible, it provides the best
compromise between the IoT requirements.

Resilience

Flexibility scalability Flexibility

Connectivity Efficiency Connectivity

(c) Deployment knowledge schemes.

Fig. 3: Peer-to-Peer Key Management approaches.

III. OUR SOLUTION

Our solutions combines the benefits of both Group Key
and Peer-to-Peer Key Management schemes without loss of
efficiency or network scalability. Thus, it allows to multiply the
functionalities of the IoT devices and secures the two modes
of communication that they may use: Group and Device-to-
Device Communication.

For Group Communication, we prove that our solution
guarantees the backward and forward secrecy and resists to
collusion attacks. Furthermore, we show that, unlike most
of the existing GKM schemes, our solution considers the
heterogeneous nature of the IoT. It provides then the best
compromise between the GKM requirements for the IoT (Fig-
ure 4). To achieve this, the network members are distributed
into several groups according to the services to which they
subscribe. These groups have independent security parameters
so that the compromise of a service has no effect on the others.
Each group is in turn divided into logical subgroups having
different sizes. The aim is to balance the load between its
heterogeneous members according to their capabilities.

Backward and
forward secrecy

Collusion

Scalability Resistance

Efficiency

Heterogeneity
Fig. 4: Group Key Management.

For Device-to-Device Communication, we prove that our
solution provides a level of resilience, against node capture,
comparable to that offered by the deterministic schemes. Fur-
thermore, we show that, unlike most of the existing probabilis-
tic approaches, our solution is flexible and has a good network
connectivity. Thus, it provides the best compromise between
the PKM requirements for the IoT (Figure 5). To achieve this,
we take advantage of the grouping and subgrouping previously
presented. A device shares then a distinct pairwise key with
each member of its subgroup, a unique pairwise subgroup key
with the members of each of the subgroups of its group and
a single pairwise service key with the other members of each
service in which it participates. This will significantly reduce
storage costs and make our solution more scalable.

Resilience

Scalability Flexibility

Efficiency Connectivity

Fig. 5: Peer-to-Peer Key Management.

A. Overview

Our solution is organized into three layers (Figure 6). The
upper layer divides the network N into multiple groups. Nodes
are then assigned to them according to the services to which
they subscribe. Current members can be moved from a group
to an other when they subscribe to new services or unsubscribe
from others. By doing this, the security parameters of services
will be independent and the compromise of one of them will
have no effect on the others. Each group, Gj, is associated
with an ID, gid;, which is unique within V.

On the other hand, the middle layer distributes the nodes
of each group into subgroups. Note that these subgrouping
is logical and transparent to the application layer. The aim
is to enhance the protocol efficiency and scalability. Each
subgroup requires an overhead proportional to the capability of
its members. When a node joins a group, the protocol assigns
it to the subgroup that matches its capability. Subgroups are
created and can be splitted when it is necessary. Also, when a
node leaves a group, the protocol tries to reduce the number
of subgroups. It removes then those that become empty and
merges the others to the possible extent. Each subgroup, sz"
of the group G; is also associated with a unique ID, sid;.

Finally, the lower layer manages the nodes and the crypto-
graphic keys they hold. Just like groups and subgroups, each
node u;” of the subgroup Sf is associated with a unique
ID, m'd,i’j . The keys can be classified into two types: Data
Encryption Keys (DEKs), which are used to encrypt the data
exchanged between nodes, and Key Encryption Keys (KEKs),
which are used to protect the DEKs.

Fig. 6: Example of a network partitioning.

B. Layer 1: Node and key management

The first layer manages the nodes and the keys they store.
Each node is first assigned to a subgroup Sf of the group G;.
The group is chosen according to the combination of services
in which the joining node participates (Section III-D). Also,
the choice of the subgroup is made according to the node’s
capability (Section III-C). The node u,” is then associated
with an ID, m‘d;’J , which is unique within SJ’? and reflects its
members’ total order. Given two nodes u,ij and u,zj , we have
nidy? < nid,? if and only if u;” has joined S} before u;”.
Thus, u,” is considered as an elder cognate of u;”’ whereas

0.

u;” is seen as a junior cognate of u,”.
ks k

[[Notation Definition

Gi/G The ™" group of the network / The group of the network if there is only one
S; /5; The j** subgroup of the group G; / The j** subgroup of its group
u? [y, The k™ node of the subgroup S} / The k™ node of its subgroup
A; The combination of services associated to the group G;
n The number of nodes in the network (or the group if there is only one)
i/ P The number of subgroups of the group G; / The number of subgroups of the group G
mj The number of nodes in the subgroup S
mc; The minimum capacity of the subgroup S
Ck The capability of the node wy,
Kl]/Kk The node key of the node w, /uy,

K, kg /Kk,k, | The pairwise node key shared by the nodes u,’ “J uy and ukz /uk2
K] i / K; The subgroup key of the subgroup SJ’ /S;
K]?’].g / K; 4, The pairwise subgroup key shared by the subgroups S7/S; and S}, /S,
K¢ The service key of the e’ service
K iy The pairwise service keys shared between the groups G; and G,
K / K The left/right part of the key K

A refresh key

KDF A key derivation function
H A hash function
lsg The list of subgroups
pem The percentage of merging

TABLE I: Summary of notations.

1) Classification of Cryptographic Keys:

According to their usage, the keys managed by our solu-
tion can be classified into two types: Data Encryption Keys
(DEKs) and Key Encryption Keys (KFEKs). The DEKs are
used by nodes to encrypt the data exchanged between them.
These keys may be either group keys (used to secure Group
Communication) or pairwise keys (used to secure Device-
to-Device Communication). The KFEK, on the other hand,
are used to secure the communication between the KM and
the nodes in order to protect the DEKs. These keys allow
then to ensure the backward and forward secrecy (for Group
Communication) and the dynamic deployment of nodes (for
Device-to-Device Communication). Thus, nodes can securely
join and leave the network at any time. Let us consider a node

.~ which belongs to the subgroup SZ of the group G;. The
node holds the f0110w1ng keys:

« A node key, K , which is a KFK known only to uk .
It allows the KM to communicate with the node safely

« A pairwise node key, Kﬁ; , for each of its cognate u;”.
This is a DEK used to secure the Device-to-Device
Communication between the node and its cognate uk’]

o A subgroup key, KJZ which is a KEK known by the
members of S/ only. It is used to secure the communi-
cation between the KM and the subgroup members.

o A pairwise subgroup key, K; j,» for each subgroup S;Q
It is a DEK used to secure the Device-to-Device Com-
munication between the node and the members of Sjig.

¢ A service key, K¢, for each service e in which the node
participates. This is a DEK used to secure the Group
Communication between the service members.

o A pairwise service key, K, ;,, for each group G;, con-
taining members that participate in the same service. It
is a DEK used to secure the Device-to-Device Commu-
nication between the node and the members of G,,.

Service and subgroup keys are used, instead of the node
keys, in order to enhance the protocol scalability and effi-
ciency. Table II shows the keys held by the members of the
network, presented in Figure 6, in which two services coexist.
The groups G; and G, contain the nodes participating in
the first and second service, respectively, while those of Gy
participate in both services. Note that the keys K, ,i i and K, kl I g
are the same and can be used interchangeably. The same goes
for the keys K/ ;, and K} ; as well as K; ;, and K, ;.

2) Hash Functions:

To reduce the storage cost, nodes can share some pairwise
keys. They are then able to decipher some Device-to-Device
messages that are not intended for them. To enhance the
resilience of our solution without loss of scalabilty, we propose
the use of a Hash Function (H) or two (One-level and Two-
level approach, respectively). The aim is to create different
keys from a single pairwise key. Thus, a node will store a
single pairwise key without sharing it with the others.

One-level approach: In this approach, instead of storing
the pairwise subgroup k¢y, K} ,,, and the pairwise service
key, K;i,, the node u,” stores the (k— 1) hash of the
former, K ,270 ’jg), and the (5 — 1)*" hash of the latter, Kj(“é)

(Formulas 1 and 2, respectively).
KZ;(JJ?) — H(k—l)(Kji’jg) (])
Kj(l,w) — H(Jil)(Kz,zg) (2)

Although nodes will have different pairwise keys, one of
them can calculate the key known by the other. This is due
to the fact that the keys they hold are calculated from the
same key and using the same Hash Function. To have a
common communication key, the nodes relay on their IDs.
Thus, knowing the IDs of each other, the node with the
smallest one can use H to calculate the key of the other.

H Node ‘ Node key Pairwise node keys

Subgroup key

Pairwise subgroup keys | Service keys | Pairwise service keys H

| K KL KL
| Kl K2 K/ K2 K
K KoLK
| K KD D L
| KL KL KL KL .l - K Kis
W | K K300 K :
u, "’ kj* K[K5 K]
wt | K Kiy K} Ki,, K1,
| K KL :
| K KL K7
| K KL K K K2,
| K KL K
W | KPT | KIS K K K K
uPP | KPT | KPE KD KD KDL KD? ? e
LG N N
uf‘l Klfxx,z R K Ki?,2’Ki?,3
K K2 KD
W7 | K RS2 KL KL o T
wt | Ky K5 K5 K] ’ nreee
u)? K]? K[KD K] K1, K? Ks,1,Ks,2
K K I I
K K5 KK o -
| K K0 KK :
ujﬂ? kf,.? KZ: }’97 Kf,’g, ij, g

TABLE II: Example of keys held by a network members.
For pairwise subgroup keys, let us consider that the
nodes wu,” and w,’”* wish to communicate. The first one i) o)
stores K,z’(J’”):H(k*Z)(Kj,jg) and the second knows K, = HYP " (Kig,) 4)

K,z;(j’”) = Hk==D(K7). If we assume that k < kg, u;”
can calculate the (k2 — k)™ hash of its key and both nodes
will have the same key (Figure 7). Indeed, we have:

KO = B0 (K]) ®

_ ky—1)—(k—1 k—1 i
— f(k2=1) (. '?)(H()(Kj,jg))
_ H(kz—k)(Klz,(Juz))

With regard to the pairwise service keys, let us as-
sume that the node wu,” wishes to communicate with
w,”*. In this case, the two nodes do not belong to the
same group. However, we assume that they participate
in the same service and therefore can communicate. The
first node stores Kj(z’”) = HU=1)(K,;,) and the second
Kj(;’l‘?) = HU:= (K,). If § < ja, u,i“ can calculate the
(j2 — 7)™ hash of its key and both nodes will have the same
pairwise service key. Indeed, we have:

= HG=D=0=D)(gU-1)(K, .))
— gUe—j (i,42)
— gz])(Kj)

Since Hash Functions are irreversible, the One-level ap-
proach ensures that nodes cannot decipher the Device-to-
Device messages exchanged between the other nodes that have
smaller IDs. Although the resilience is improved, nodes are
still able to decrypt the communications of those having bigger
IDs. This has led us to propose the Two-level approach.

1
Kl,Z

H(Ki2)

SH®G)
&)

H® (k1) HO®KL)
1,2

Fig. 7: Example of using One-level approach.

Two-level approach: In this second approach, two different
Hash Functions (H and Hy) are used. The pairwise subgroup
keys are therefore split into two parts (/& and K'), each hashed
separately with one of the two functions. The node u,” stores
then the (k — 1)* hash (calculated using H) of the left part of
the key and the (m — k)% hash (calculated using Hs) of the
right part (Formula 5). Note that || is a concatenation operation
and m is the maximum number of the subgroup members.

P09 = gD YK))

»J2 J

Like the One-level approach, the Hash Functions and the
IDs can be used by the nodes to calculate a comman key.
Knowing the IDs of each other, the node with the smallest
one can apply H on the left part of its key and the other may
apply Hz on the right part of its key. They will then have the

same communication key. Let us consider that u,” and u,”*

wish to communicate. If we assume that & < ks, u,i’J can use
H to calculate the (kg — k)™ hash of the left part of the key
it knows and u,”* may use H, to calculate the (kg — k)™

hash of the right part of its key (Figure 8). Indeed, we have:

%Z;(Joz): H(kz—l)(?]i_dé) ©6)
_ ko—1)—(k—1 k—1 i
— g (te=1)=(=1) (p(>(?;,j2))
and:
K09 0" DK))

m—=k)—(m—ks m—ks i

— HQ(()—(4))(H£(’ z)(?j’jg))
ko—k {:}z, i,

_ HQ(2)(kz(J Ja))

This second approach is more resilient than the first one
since it ensures that nodes cannot decipher, in addition to
the messages exchanged between the members with smaller
IDs, those exchanged by the nodes with larger /Ds. This
is because two different Hash Functions are used, one in
ascending order of IDs and the other in descending order.
Note that, in the same way, we can use the Two-level approach
with the pairwise service keys.

kLB (R)

KL 11HD (kL
LallHgY (K1) o
_ - HEL)IIHS (RE)
H(KL)|IHy (R2) ot
H (K1) |Hz(Ki2)

H®KL)IIKL, H®(KE,)|IKE,

Fig. 8: Example of using Two-level approach.

In the following, we can afford not to put exponents on a
notation if there is no risk of ambiguity (For example, we can
use uy, instead of u,” if we now that the node is in S}). We
also assume that a One-level approach is used.

3) Rekeying upon joining:

We consider a node u;, joining the subgroup S; of G;. We
assume that G; contains the nodes participating in the set of
services A;. The KM starts by determining the node ID. Then,
it generates some new keys and updates some of the existing
ones to ensure the backward secrecy. Next, the KM provides
some nodes with the new keys and sends to others the elements
allowing them to update some of their keys. The process of
rekeying upon joining consists of the following steps.

Key generation: The KM starts by determining the secret
key of the joining node. Next, it generates a pairwise key for
each existing member of the subgroup S;. Finally, the KM
uses the Hash Function H to generate the (k —) hash of all
pairwise subgroup keys associated to S; (Formula 1).

Key update: The KM starts by randomly generating a
refresh key, Kr. Then, using it and a pseudo-random key
derivation function, KDF', the KM updates the subgroup and
all the service and pairwise service keys associated to A;
(Formulas 8, 9 and 10 respectively).

K" = KDF (K;||KR) (®)
K" = KDF(K®||Kg), (Ve € A;) ©)
K%, = KDF(K; 1,||KR),(VGi, € N, A;, N A; #0) (10)

Key distribution: After the keys generation and update
are completed, the KM distributes these new keys to the
appropriate nodes. Thus, it sends to each current member, uy,,
of S the unicast message JM1 encrypted by means of the
node secret key. The message contains the ID of the joining
node, the pairwise key associated to it, the refresh key and
the list of the updated pairwise service keys uy, knows, Ly, .
The KM also broadcasts the message JM2 for each other
subgroup S;, (may be in G; or not) that contains members
participating in at least one of the services of A;. The message
is encrypted using the current subgroup key and contains the
list of services A;, the refresh key and the list of the updated
pairwise service keys its members know, Ly, . Finally, the KM
provides the joining node, via a pre-existing secure channel,
with all the keys associated to it and discards Kp.

JM1 : KM — Uy < {nidk7Kk’k2’KR7Lk‘2}Kk2 >
IM2: KM — 8j, < {Ai, Kn, Ly, } o >

Key installation: When a node wuy, (ug, € S;) receives
JM1, it first decrypts the messages, using its secret key, and
installs K, , as the pairwise key to use for encrypting the
communication with the joining node. It also uses the KDF'
and Kp to update the subgroup and all the service keys
it knows (Formulas 8 and 9, respectively). The node also
replaces the compromised pairwise service keys it knows by
those contained in the list Ly, . After that, uy, discards K. On
the other hand, when a node wuy, (ux, € S},) receives JM2,
it first decrypts the message, using the current subgroup key.
Then, it uses Kz and the KDF' to update, among the service
keys it knows, those that are related to A;. The node also
replaces the compromised pairwise service keys it knows by
those contained in the list Ly,. Finally, u, discards Kp.

4) Rekeying upon leaving:

A node wuy, can leave a subgroup S;, of the group Gj, or
be evicted when it gets compromised. In both cases, the keys
it knows must be revoked. We assume that (; contains the
nodes participating in the set of services A;. The KM removes
then some of these keys and updates some others. The aim is
to ensure the forward secrecy. Indeed, if these keys are not
updated, the leaving node will be able to decipher the future
messages. Next, the KM provides the remaining nodes with
the elements allowing them to remove the keys that must be
removed and to update those that must be updated. The process
of rekeying upon leaving consists of the following steps.

Key removal: The first step in the rekeying process consists
of removing the ID and the secret key of the leaving node as
well as all the pairwise keys associated to it.

Key update: The KM starts by randomly generating the
refresh key. Then, using the pseudo-random key derivation
function, it updates the subgroup and service keys as well
as the pairwise service keys related to A; and the pairwise
subgroup keys associated to S; (Formulas 8, 9, 10 and 11,
respectively).

Kj—t_p = KDF(KJ'JZHKR), (VSJ‘Z € Gy, Sj2 7é S]) (1

Key distribution: The KA sends to each node uy, of G;
(uk, # wi) the unicast message LM encrypted by means of
the node key. The message contains the ID of the leaving
node, that of its subgroup, the list of services A;, the refresh
key and the list of the updated pairwise subgroup and service
keys uy, knows, Ly,. The KM also broadcasts the message
LM?2 for each subgroup S;, (S;, ¢ G;) that contains members
participating in at least one of the services of A;. The message
is encrypted using the subgroup key and contains the list of
services A;, the refresh key and the list of all the updated
pairwise service keys its members know, Ly, . Finally, the KM
discards Kg.

LM1 : KM — uy, :< {nidy, sid;, Ai, Kg, L, } 5. >
LM2 : KM — Sj, :< {Ai, Kp, L, } e, >

Key installation: When a node wuy, receives LMI, it
first decrypts the message using its secret key ans looks at
the leaving member’s subgroup ID. If it is its cognate, the
node starts by removing the pairwise key which was used
for encrypting the messages exchanged with it. Next, the
node uses Kr and the KDF' to update the subgroup key
(Formula 8). Furthermore, whether it is the cognate of the
leaving member or not, the node wuy, updates all the service
keys related to A; (Formula 9). The node also replaces the
compromised pairwise subgroup and service keys it knows by
those contained in the list Lj,. Then, it discards K. On the
other hand, when a node uy, (ux, € S;,) receives LM2, it first
decrypts the message using the subgroup key. Then, using the
KDF, it updates all the service keys related to A; (Formula
9). The node also replaces the compromised pairwise service
keys it knows by those contained in Ly, and discards Kp.

C. Layer 2: Subgroup management

In order to reduce the nodes’ storage overhead, each group
G, is partitioned into a set of logical subgroups. It is important
to note that these subgrouping is logical and transparent to
the application layer. Since the number of services is usually
negligible compared to that of nodes and as groups are
managed independently of each other, only one group (i.e.
one service) is considered in this section. Let us denote by
G the group in question, by p the number of its subgroups
and by m; the number of nodes in each of them, S;. In this
case, a node of the subgroup S; will store one secret key,
m; — 1 pairwise node keys, one subgroup key, p — 1 pairwise
subgroup keys and one service key. The storage is therefore
proportional to the sum p + m;.

Two points come out of this. First, regardless of the sub-
group to which a node belongs, the value of p is the same.
Thus, if it is minimized, storage overheads are reduced on any
node of the group. Moreover, the number of keys held by a
node depends on the size of its subgroup. Hence, to balance the
loads between the nodes of a heterogeneous network, the most
constrained ones must be assigned to the smallest subgroups,
and conversely. Indeed, for a node to store fewer keys than a
more powerful one, the former must be assigned to a subgroup
smaller than the one to which the latter belongs.

We focus in this section on the management of hetero-
geneous subgroups, i.e. subgroups of different sizes, while
minimizing their number, p. Note that this does not mean
that we do not allow two subgroups to have the same size.
To achieve this, we rely on the fact that the nodes of \S; must
be able to handle at least p 4+ m; keys. The size of S; is then
chosen so that p + m; does not exceed the storage capability
of its members or, to put it more simply, the capability mc; of
its weakest node. Indeed, as mc; is the minimum capability
that a member of S; can have, if its value is greater than
p + m; then all the nodes of S; will be able to handle the costs.
The problem is, therefore, to choose the minimum capabilities
of subgroups and to assign them nodes so as to always satisfy:

12)
13)

min p

under duress: vS;, mc; > p+m;

1) Storage Capability Evaluation Function:

Before we introduce the heterogeneous subgroup manage-
ment, we present the Storage Capability Evaluation Function
(SCEF) used to evaluate the number of keys a node can store.
The SCEF takes as input the storage capability of a node wuy
(sck), the percentage of memory the protocol can use (pm),
and the size of a key (ks). The SCEF takes into account a
percentage of the node resources only to balance the cost
associated to the KM against other node requirements. This
percentage is chosen according to the network and application
demands. The SCEF calculates then cj, the number of keys
that can be held by u; (Formula 14).

SCk

cp = pm.—

ks (14

2) Heterogeneous subgrouping:

The heterogeneous subgrouping management consists of
manipulating subgroups of different sizes while minimizing
their number and ensuring that the Constraint 13 is always sat-
isfied. To achieve this, a minimum capability mc; is attributed
to each subgroup S; when created. To satisfy the Constraint 13,
mc; — p nodes are assigned to S; at most (m; < mc; — p).
Note that mc; must always be greater than p for m; to be
greater than 0. Also, the size of a subgroup varies according
to its minimum capability and the value of p. Thus, the greater
the capabilities of its members, the larger its size.

A node uy, that can handle c;;, keys, is assigned to S; only if
mc; is the nearest value less than ¢ (me; < ¢ < mcj, while
mc;' is the value that follows mc;). Thus, u, will store p + m;
keys, in the worst case. Since the Constraint 13 is satisfied for
S; and ¢, > mc; then ¢ > p + m;. In other words, u;, can
always support the storage overheads. Moreover, thanks to this,
the loads are well balanced between the nodes according to

their capabilities.

After the assignment, depending on whether S is an exist-
ing subgroup or a new one, the value of p or m; increases.
It can happen that for a subgroup S;, (S;, may be .S; or not)
the sum p + m;, exceeds mc;, and then some of its members
may not be able to handle all the keys anymore. In this case,
S;, is splitted into two subgroups having the same minimum
capability mc;,. The size of the resulting subgroups is equal
to the half of m,, and the Constraint 13 is true again for them.
However, S;, cannot be splitted if it contains only one node.
It is then removed and its member is revoked.

Considering the Constraint 13 and the fact that S; cannot
be empty, any node uy should be able to store at least p + 1
keys. On the other hand, if u; can manage only p + 1 keys
then it is the only node of S; and must be revoked when a
new subgroup is created. Indeed, if the value of p increases,
u cannot handle all the keys anymore. For simplicity, we
assume that wuy is authorized to join the group only if it can
store at least p keys (i.e. ¢y > p instead of p + 1). Therefore,
smaller is p, the more likely it is that more constrained nodes
can join the group. This is one of the reasons why p should
be minimized. For this purpose, depending on the state of the
group, subgroups may be merged to reduce their number.

Finally comes the choice of the minimum capabilities of
subgroups. The difficulty lies in the fact that subgroups are
created and removed as and when required and that the
abilities of nodes are not known a priori. We tried then
different increasing sequences and found out that the loads
are well balanced and p is minimized when the sequence
grows exponentially. Indeed, if the minimum capabilities are
close to each other, the subgroups will be well balanced but
their number will be too large. However, the aim of the
subgrouping is precisely to minimize the number of subgroups
and thereby reduce the nodes’ storage overhead. We then
selected two sequences in particular: powers of two and
Fibonacci sequence. Note that other sequences can be used
as long as they grow exponentially.

If powers of two are used, the group is partitioned so that
a minimum capability is the double of the preceding one
(Formula 15).

me(l) = { 2.me(l—1), if 1> 0.

1, otherwise. a5)

On the other hand, if a Fibonacci sequence is used, a
minimum capability is the sum of the two preceding ones
(Formula 16). Note that ¢; and cp are arbitrary constants.

me(l — 1) +me(l —2), ifl>1.
me(l) =< ¢, ifl=1. (16)
cy, otherwise.

The heterogeneous subgrouping is based on two algorithms.
The Assignment Algorithm is run when nodes join the group
and assigns them to the right subgroups. It creates new ones
when it is necessary and may split others so that the Constraint
13 remains always satisfied. On the other hand, the Reorder
Algorithm is executed after a node leaving to reduce the
number of subgroups. It then removes those that become
empty and merges others to the possible extent. Figure 9 shows
an example of a group partitioned using powers of two. Note
that the Constraint 13 is satisfied for all the subgroups and the
value of p is minimal.

capacity

Fig. 9: Example of a group partitioned into three subgroups.

3) Assignment Algorithm:

The Assignment Algorithm (Algorithm 1) is run by the KM
when a node uy is authorized to join the group. It takes as input
¢, the number of keys that can be stored by wy, and assigns
it to a subgroup according to the input value. To achieve this,
the algorithm manipulates a list of subgroups, lsg, of size p.
Each of its items contains the ID of a subgroup S;, sid;, its
minimum capability, mc;, and its size, m;.

Algorithm 1: Assignment Algorithm

Input : c; = capability of the node wuy,

1 Round down ¢ to the nearest minimum capability mcg;
2 Find in lsg a subgroup S; so that mc; = mcy;

3 if no subgroup is found then Create a new one S; ;

4 Assign uy to Sj;

5 Update [sg;

6 while 3 S}, for which mc;, < p + m;, do

7 | Split Sj,:

8 end

When wy, is authorized to join the group, the Assignment
Algorithm starts by determining the minimum capability mcy,
that matches it. It then rounds down c;, to the nearest power of
two or term of a Fibonacci sequence. Next, it searches in Isg
a subgroup S; such as mc; = mcy. If no subgroup is found
(this includes the case where the group is empty), a new one
is created. Next, the algorithm assigns u; to .S;, updates Isg
and renews the group security material following the steps
described in section III-B3.

Also, the algorithm checks if the Constraint 13 is still
satisfied for all subgroups. It browses then the list Isg and
as long as there is a subgroup S, for which mc;, < p + m,,
it is splitted. The size of the resulting subgroups will then be
equal to the half of m,, and the inequality 13 will be true
again for them.

Subgroup creation: Creating a new subgroup .S; consists of
determining its 1D, sid;, its key, K;, and a pairwise subgroup
key for every subgroup S;, of the group. Each of these
pairwise subgroup keys, K; ;,, is encrypted using the key of
the subgroup associated to it and sent to its members (message
CM).

CM : GKM — S, :< {sidj, Kj j, } o >
7]

Subgroup splitting: Splitting S; consists first of creating
a new subgroup S;, (mc;, = mc;). The % last nodes that
have joined S; are then moved to S;,. We denote by S;“
the subgroup S; after being splitted and by uy the first
node of §; to join Sj,, ie. Vu, € Sf,mdk < nidy and
Yug, € 8j,, nidy, > nidy.

The algorithm determines first sid;,. Next, to ensure the
forward secrecy, it randomly generates two refresh keys,
Kg, and Kp,. Then, using the KDF, it computes Kj+ and
K;, (Formulas 17 and 18). After that, all the pairwise keys
associated to two nodes which no longer belong to the same
subgroup are removed. Also, for each subgroup .S;, (including

S;), a pairwise subgroup key Kj, ;, is created.
K" = KDF(K;||KR,) (17)
Kj, = KDF(K;||Kg,) (18)

Furthermore, the algorithm sends the unicast message SM1
to each node u;, € S; (nidy, < nidy). The message is encrypted
by means of the node secret key and contains Kp, as well
as the (k — 1)™ hash of the pairwise subgroup key K; ,. It
also sends the unicast message SM2 to each node wuy, € S;
(nidy, > nidy) encrypted using the node secret key. SM2
contains Kr, and Ly, , the list of the (ks — 1)™ hashes of the
pairwise subgroup keys associated to .S;,. Finally, the unicast
message SMS is sent to each node uy, of each subgroup Sj,
(S, # S; and S, # S;,). It is encrypted by means of the node
secret key and contains the (ks — 7)™ hash of the pairwise
subgroup key Kj, j,.
SM1 : KM — wy, :< {uidy, Kp,, H* "1 (K; ;,)} Ki >

SM2 : KM — U, < {Uidf;KRg,LkZ}KkZ >

SMS s KM — uy, i< {H®D(K;, 5,) } Ki, >

4) Reorder Algorithm:

After a node leaving (Section III-B4), the Reorder Algo-
rithm (Algorithm 2) is run in order to reduce the number of
subgroups, p. It takes as input the percentage of merging, pcm,
and tries to remove or merge subgroups when it is possible.
Thus, when a node leaves a subgroup S}, the algorithm checks
the number of the remaining ones. If S; becomes empty,
it is removed. On the other hand, if the size of S; falls
below a certain threshold, thr, the algorithm searches in Isg a
subgroup S;, to merge with .S;. The threshold is the product
of the percentage of merging and the maximum size of S;
(thr = pem.(mc; — p)). Furthermore, S;, must have the same
minimum capability as S; and its current size must also be
less than the threshold. If it is the case, the two subgroups
are merged. Note that pcm must not exceed 50% so that the
size of the resulting subgroup does not exceed mc; — p. Also,
the greater is pcm, the more the subgroups are merged. This
increases the merging’s cost but reduces the value of p.

Algorithm 2: Reorder Algorithm
Input : pcm = percentage of merging
1 foreach subgroup S; that a node has left do

2 if m; = 0 then Remove S; ;

3 else

4 thr < pcm.(mc; — p);

5 if m; < thr then

6 Find S, such as m;, < thr and mc;, = mc;;
7 if a subgroup S;, is found in lsg then
8 | Merge ; and Sj,;

9 end

10 end

11 end

12 end

Subgroup removal: Removing a subgroup S; consists of
deleting its ID, sid;, its key, K, and all the pairwise subgroup
keys associated to it. The message RM, containing the ID of
the subgroup, is then sent to each remaining subgroup so that
its members can remove the pairwise subgroup key they share
with the nodes of S;.

RM : KM — sz < {Sidj}K >
J2

Subgroup merging: Merging S; and S;, consists of three
steps. A new subgroup is first created. Next, the members of
S; and S, are moved to the new subgroup. New pairwise keys
are then generated for every pair of nodes wuy, uk, (ur € S;
and u, € S5;,) and sent to them (Messages MM1 and MMZ2).
These messages are encrypted by means of the node keys.
They contain, in addition to the new cognate ID and the
pairwise key associated to it, the list of the hashes (L, or Ly,,
respectively) of the pairwise subgroup keys related to the new
subgroup. Finally, the two subgroups S; and S, are removed.

MMI1 : KM — wu, :< {nidkB’Kkvk—?’Lk}Kk >
MM2 : KM — U, < {nidk)Kk,k27Lk2}Kk >
2

D. Layer 3: Service and group management

An IoT service is a transaction between two entities: a
provider and a consumer [14]. The former measures the state
of the latter or initiates actions which will cause a change to it
[44]. The provider is usually a device while the consumer can
be a human, the environment or an other device. The main role
of the KM is to establish secure communications between the
IoT devices. A network member can participate to a service
as a provider, a consumer or both. It may also participate
to different services, at the same time, and subscribe or
unsubscribe from services at any time. The IoT can then be
seen as a set of overlapping classes each gathering nodes
which collaborate to provide a service and others that benefit
from it (Figure 10). As these classes are overlapping, a group
of the protocol cannot be associated to a service. Indeed, the
independence of the group security parameters will then lose
its meaning and the compromise of a node can jeopardize
several groups. We propose then the creation of a group for
each possible combination of services. A combination A; of
a; services, of a finite set A of a services, is a subset of q;
elements of A. The number of combinations, nc, is equal to:

nc:za:Cé:,?“—l
1=1

The network N is then partitioned into groups. Each group
G; is associated with a unique ID, gid;. It contains then
the nodes participating in the services of the combination
A; associated to it. When a current member subscribes or
unsubscribes from services, it migrates from a group to another
according to its new combination of services. In other words,
the node leaves a group (Section III-B4) and joins an other
(Section III-B3). Note that repeated operations are done once.
The number of groups can reach nc (Formula 19) if there are
nodes participating in every possible combination of services.
Also, it cannot exceed the number of network nodes, n,
because empty groups are not allowed. The maximum number
of groups, maz,, is therefore equal to:

maz, = Min(2% — 1,n)

19)

(20)

Groups are created and removed as and when required and
the probability of having only one node in each group is
low. Their number can then be much smaller than maz,. In
Figure 10, two services F; and E» coexist in N. Three com-
binations are then possible: A; = {F;,Eo}, As = {F;} and
Ag = {Ez}. Each group G; contains the nodes participating
in the combination of services A; associated to it (Figure 6).

N
E, E,

Fig. 10: Network partitioning according to services.

IV. SECURITY ANALYSIS

In this section, we analyze the security of our solution and
prove that it secures the two modes of IoT Communication.

A. Threat model

A malicious node can be inside or outside the network [6]
and may jeopardize the security of both modes of Communi-
cation (Figure 11). An outsider node can store the messages
exchanged between its members, while it is not allowed to
join it, and then decipher them later, when it gains access.
Furthermore, an evicted member can still pose a threat to the
network, if it is still able to decipher the future communica-
tions. Also, if a node inside the network is captured, it may
try to decrypt the Group Communication of the members of
the other services or the Device-to-Device Communication of
the other members of the services to which it belongs.

Group
Communication

Node Node
joining leaving

Device-to-Device
Communication

Compromise of a| | Compromise of a
: Threat source
network member service member

Resilience
against node
capture

Forward secrecy
and collusion
resistance

Independence

Countermeasure
of services

Fig. 11: Threat model and countermeasures

B. Theoretical analysis

The issue is to prove that, for Group Communication, our
solution ensures the backward and forward secrecy, resists
to collusion attacks and guarantees the secure coexistence of
several services in the network. We also show that it is resilient
against node capture, for Device-to-Device Communication.

1) Backward secrecy:

We prove that a joining node cannot access the current
subgroup and service keys or any previous incarnation of them.
The same goes for the pairwise subgroup keys related to its
subgroup and the pairwise service keys associated to its group.

Proposition 1: Backward secrecy is guaranteed as the
joining node never gets knowledge of the old security material.

Proof: Let us consider a node wy, that joins a subgroup S;
of the group G;. The KM updates the keys mentioned above.
Then, before u; can actually join the group, the KM rekeys
all current members of the network, by means of messages
JM1 and JM2. These messages are encrypted by means of
their node and subgroup keys, respectively. Since none of these
keys are known to uy, the joining node is excluded from the
process of rekeying.

2) Forward secrecy and collusion resistance:

We prove that leaving nodes cannot access the new subgroup
and service keys or any future incarnation of them. The same
goes for the pairwise subgroup keys associated to its subgroup
and the service keys related to its group.

Proposition 2: Our solution guarantees the forward secrecy
and resists to collusion attacks after nodes leaving since they
do not have access to the new security material.

Proof: Let us consider a node wu; that leaves a subgroup
S; of the group G;. The KM rekeys the members of G;
and the rest of the nodes by means of the messages LM1
and LM2, respectively. The former is encrypted by means of
the node keys and the latter using the subgroup keys. Since
none of these keys are known to wug, the leaving node is
excluded from the process of rekeying. Furthermore, as these
keys are independent of each other, several evicted nodes can
not collude to decipher the rekeying messages.

3) Independence of services:

Using our solution, the security parameters of services are
independent of each other. This is due, firstly, to the fact that
the members of a group participate in the same services and,
secondly, because nodes do not share any key if they have no
service in common.

Proposition 3: Our solution ensures that the compromise of
a service has no effect on the others.

Proof: Let us consider two groups G; and G;, associated
to the combinations of services A; and A,;,, respectively.
When a member of G; gets compromised, only the service
keys of A; are exposed. If G; and G, share some services
(A; N A;, # 0), the keys of services to which the members of
G, participate but not those of G; (A;\A;,) remain secret.
Indeed, the compromised node does not know them. Further-
more, if the groups do not share services (4; N 4;, =), any
of the service keys of A;, gets compromised. In both cases,
only the services in which the node participates are exposed
and the others remain secret.

4) Resilience against node capture:

We assume that the number of services is negligible and
consider then only one group. Although our solution uses a
heterogeneous subgrouping, a homogeneous one allows us to
evaluate resilience with no significant lack of generality. In
this case, the n nodes (n > 1) of the group are uniformly dis-
tributed in p subgroups of m members each, i.e. p = m = /n.

Zero-level approach: Without using Hash Functions, a
node shares a distinct pairwise key with each cognate and a
single pairwise key for each subgroup. It can then decrypt, in
addition to messages intended for it, those that are exchanged
between its cognates and the other nodes (Figure 12).

<-> Communications the node 1 can decrypt
<—> Communications the node 1 cannot decrypt

Fig. 12: An example of communications a node can decrypt.

Lemma 1: The number of links a node can decrypt is:

Proof: A node can decrypt the communications linking it
to the n — 1 other group members as well as those between
its v/n — 1 cognates and the n — /n other group members
(Dp =n—1+(Vn—1)(n—yn).

Lemma 2: The number of links in a group of n nodes is:

T n(n—1)
2

Proof: The total number of links is equal to the number
of possible combinations that can be obtained by taking two
nodes from n (T = C?).

Proposition 4: The percentage of compromised links is:

2(n+1)

TNCE))

Proof: From Lemmas 1 and 2 and the fact that P, = %,

we deduce that Py = W

2

(22)

(23)

One-level approach: Using a Hash Function ensures that
nodes cannot decipher the messages exchanged between the
nodes that have smaller IDs.

Lemma 3: The number of links a node wj; can decrypt is:

D;=(/n—1)(n+1—(k—1)%) (24)

Proof: A node wy cannot decrypt the links that connect
each of its k — 1 elder cognates with the k& — 7 members,
that have smaller IDs, of each of the /n — 1 other subgroups

(D1 = Dy — (Vi — 1)(k = 1)?).

Proposition 5: The new percentage of links a compromised
node wuy; can decipher is:
2(n+1—(k—1)?)

n(y/n+1)

Proof: From Lemmas 2 and 3 and the fact that P; = D—TI,
we deduce that P; = 2(/n=1)(nt1—(h=1)")

n(n—1)

P, = (25)

Two-level approach: The Two-level approach makes a
member u unable to decrypt, in addition to the messages ex-
changed between the nodes with smaller IDs, those exchanged
by the members with larger IDs.

Lemma 4: The number of links a node u; can decrypt is:

Dy =(Vn—1)(n+1—(k—-1)"=(/n—k)?) 26
Proof: A node uy, cannot decrypt the links that connect each
of its v/n — k junior cognates with the \/n — k members, that
have a larger ID, of each of the \/n — I other subgroups
(Dg =Dy — (Vn — 1)(v/n—k)*).
Proposition 6: The percentage of links a compromised node
u, can decipher is:

2+ 1— (k= 1)? = (Va—k)?)
n(y/n+ 1)

Proof: From Lemmas 2 and 4 and the fact that Py, = %,

we deduce that Py = 2<ﬁ71)(n+17z?7(bk—71§)Zi(ﬁik)z)~

Py = 27)

C. Comparison

To compare the resilience of the three approaches, we con-
sider a group of 10000 members, divided into 100 subgroups
of 7100 members each. We then compare the variation of the
three percentage Py, P; and Ps according to the node ID.
The results are plotted in Figure 13. They show that the use of
Hash Functions reduces indeed the rate of compromised links.
If a Zero-level approach is used, the percentage is maximal
and constant regardless of the node ID. This method is still
the best in terms of calculation cost. On the other hand, if a
One-level approach is used, the bigger the /D of the captured
node, the smaller the percentage of compromised links. This
method is therefore interesting if we trust the old nodes more
than the new ones. Finally, the Two-level approach provides

the best resilience regardless of the node ID.
0,025

0,02

0,015

0,01

0,005

The percentage of compromised links

0 »
1 10 20 30 40 50 60 70 80 90 100
Node ID

~a= Zero-level ~o- One-level Two-level

Fig. 13: Variation of the percentage of compromised links
according to the node ID.

Now, we compare the resilience provided by our protocol
with the perfect resilience offered by some deterministic
schemes (e.g. Pairwise Key protocol [17]). Using the Zero-
level approach, this percentage is equal to Py (Proportional to
ﬁ). On the other hand, a perfect resilience is achieved when
each pair of nodes share a distinct key. Thus, a captured node
can only decipher the n — I communications linking it to the
other network members. The percentage of compromised links
is then equal to 2 EZ:;% = 2 (Proportional to 1). Providing a
perfect resilience, none of the existing solutions can do better.
Figure 14 shows that the value of P, is negligible for large
networks (n > 1000) such as the IoT. It is even comparable
to the rate provided by the perfectly resilient approaches. Our
solution offers then a good level of resilience.

= I
B - 3 o N
o o o o 5}

~N
5}

The percentage of compromised links

o

10 100 1000 10000 100000 1000000
Number of nodes (n)
-o- Perfect resilience ==-0ur solution

w

Fig. 14: Variation of the percentage of compromised links

according to n.

V. APPLICATION AND PERFORMANCE EVALUATION

To give a concrete overview of the performance of our
solution, we consider the example of a smart city. This
choice is motivated by the fact that a smart city contains a
huge number of heterogeneous devices (servers, computers,
smartphones, gateways, sensors...etc) spread across the city to
provide various services to the benefit of society (healthcare,
intelligent transportation system...etc.). These devices can use
the two communication modes of the IoT. It is clear that the
number of services is generally negligible with respect to the
network size. Thus, the number of services does not have a
significant influence on the protocol performance compared
to that of nodes. For simplicity, we consider then only one
group of p subgroups containing m; members each. We also
assume that no Hash Function is used. The KM may then
broadcast some messages (e.g. LMI1) to all the subgroup
members instead of sending them in a unicast manner.

A. Theoretical analysis

We begin by briefly analyzing the overheads of our solution
on the KM before detailing them on the network members.

1) Overheads on the KM:

The KM can be implemented on servers or gateways in a
centralized or decentralized manner to secure communication.

Property 1: The communication overhead on the KM is
proportional to the sum p + m;.

Proof: Regardless of the rekeying operation performed
(node joining S;, node leaving Sj,...etc), the KM sends a
unicast message to each of the m; members of S; and
broadcasts a message for each of the other p — 1 subgroups, in
the worst case. The KM sends then a total number of messages
proportional to the sum p + m.

Property 2: The calculation overhead on the KM is pro-
portional to the sum p + m;.

Proof: Regardless of the rekeying operation performed
(node joining .S;, node leaving .5;,...etc), the KM updates the
keys which are or will be known by the node in question. The
calculation overhead on the KM is therefore proportional to
the storage cost on nodes, which will be proved to be of the
order of p + m; in the next Section.

Property 3: The storage overheads on the KM is propor-
tional to O(n).

Proof: 1t is obvious that the number of nodes is more
important than that of subgroups or services. Therefore, if we
choose not to store the pairwise node keys (which are used
for Device-to-Device Communication between the network
members) in the KM’s memory, the largest number of keys
to store will then be that of the node secret keys. The KM
will then store a total number of keys proportional to O(n).

Discussion: The communication and calculation costs on
the KM are proportional to p + m;. The storage, on the other
hand, is of the order of O(n). Considering the significant
improvement (presented in the next section) that our solution
provides on the node side, the costs on the KM are very
reasonable. Also, as the KM has usually plentiful of resources,
we aimed to make the costs more affordable on the nodes.

35 700

30 600
25 500
20 400

p p
15 300
10 200

5 100
0 0

4000 16000 64000 256000 8000
Nombre of nodes (n)

=Powers of 2 - Fibonacci Sequence

(a) Effect of the number of nodes.

1024000

=Powers of 2

16000 32000 64000 128000 256000 512000
Maximum capacity of nodes

(b) Effect of the nodes maximum capability.

40

36
32
p
28

24

20
0 0,1 0,2 0,3 04
Percentage of merging (pcm)

- Fibonacci Sequence -=Powers of 2 -+ Fibonacci Sequence

(c) Effect of pcm.

Fig. 15: Effect of the algorithm parameters on p.

2) Overheads on nodes:

After evaluating the costs of our solution on the KM, let
us analyse the overheads on the node side.

Property 4: The communication cost on nodes is O(1).

Proof: Regardless of the rekeying operation performed
(node joining, node leaving,...etc), a node receive a constant
number of rekeying messages (e.g. JMI or JM2 upon a node
joining). The communication overhead on nodes is therefore
independent of the network size (i.e.O(1)). Since commu-
nication is the operation that consumes the most energy, our
solution is efficient and highly scalable.

Property 5: The calculation overhead on nodes is propor-
tional to the sum p + m;.

Proof: Regardless of the rekeying operation performed
(node joining S;, node leaving .5j,...etc), a node can, in the
worst case, update all the keys it knows. The calculation cost
on nodes is then proportional to the storage, which will be
proved to be of the order of p + m; in the following.

Property 6: The storage overhead on nodes is proportional
to the sum p + m;. .

Proof: Using our protocol, a node u;” stores one secret
key, m; — 1 pairwise node keys, one subgroup key, p; — I
pairwise subgroup keys and a negligible number of service
and pairwise service keys. The storage overhead on nodes is
therefore proportional to the sum p + m;.

Discussion: The communication cost of our solution is
O(1), while the calculation and storage overheads are pro-
portional to the sum p + m;. Thus, to reduce these costs as
well as those of the KM, we aimed to minimize the number
of subgroups, p. We implemented then a simulator to analyze
the behaviour of its value according to several parameters.

B. Simulation

The simulator, we implemented in C, randomly generates
node capabilities (based on a uniform distribution) and runs the
Assignment Algorithm to assign them. It also simulates nodes
leaving and runs the Reorder Algorithm. The simulator takes
as inputs the subgrouping type (powers of two or Fibonacci
sequence), the number of nodes, nodes maximum capability
(the maximum value that the simulator can generate), the per-
centage of merging. It then divides the nodes into subgroups
and outputs their number (p), which is represented by the size
of [sg. This allows us to analyze the effect of these parameters
on the value of p.

Starting with the network size, we set the values of pcm and
the maximum capability to 0.4 and 256000, respectively, and
we vary that of n. The results of the simulations are plotted
in Figure 15a. They show that, regardless of the network size
and the subgrouping type (powers of two or Fibonacci), by
using our method of load balancing the number of subgroups
is reasonable. Figure 15a shows that even when the size of the
network exceeds one million of nodes, the value of p does not
exceed a few dozen. This makes our solution scalable since the
constrained nodes manipulate a reasonable number of keys.

Next, we analyze the effect of the maximum capability,
that can be generated by the simulator, on the number of
subgroups. We then set the values of n and pem to 1024000
and 0.4, respectively, and we vary the maximum capability.
The results are plotted in Figure 15b. They show that the more
powerful the nodes are, the smaller the value of p is. This is
because powerful devices are able to manage more keys and
can be assigned to larger subgroups. Note that the larger the
subgroups are, the more their number diminishes. Therefore,
since the costs of our solution on the constrained nodes mainly
depend on the number of subgroups, they are more likely
to support the overheads if the network becomes too large.
Moreover, even when the maximum capability is small, the
value of p remains reasonable for a network containing over a
million nodes. To sum up, our solution is scalable regardless
of the nodes maximum capabilities but it can become even
more if the network contains enough powerful members.

Now, we study the effect of pcm. Thus, we set the values
of n and the maximum capability to 1024000 and 256000,
respectively, and we vary that of pcm. The results of the
simulations are plotted in Figure 15c. They show that the
greater the percentage of merging is, the smaller the value
of p is. Therefore, the merging operation actually reduces
the number of subgroups and makes our solution lighter for
the constrained devices and thereby more scalable. Note that
most of the overheads imposed by the subgroup merging are
at the level of the KM and have no significant influance on
the performance of nodes.

Finally, the results of all the simulations performed show
that the use of powers of two or a Fibonacci sequence
generally gives approximately the same results. However, we
noticed that a Fibonacci sequence gives slightly better results
for large networks, such as the IoT, and conversely.

- 120,00 250

=y
)

Number of nodes (n)

[26, 41, 45, 46) =a= Our solution - [17] =@~ [26,45]

(a) Efficiency and scalability.

Node storage capacity

(b) Heterogeneity.

3 3 <

2 100,00 8 200 5 12 ‘*\o—o—o‘.\‘
g @ g 10

S 80,00 £ 2

£ = 150 = s

] =

2 60,00 o g

— < 100 o 6

© 40,00 3 &

& £ 5o g ?

£ 20,00 g 2

c I 2

o © o

g 0,00 0 = - - - = - -
a 0 200 400 600 800 1000 1200 1400 1600 0 400 800 1200 1600 2000 40 50 60 70 75 100 150

Number of keys stored on a node

== Our solution =0~ [17] =a= Our solution

(c) Connectivity.

Fig. 16: Comparison.

C. Comparison

In this section, we show that our solution provides the best
compromise between the IoT requirements for both modes of
IoT communication (Figures 4 and 5).

1) Efficiency and scalability:

Both GKM and PKM schemes need to be efficient and
scalable. The communication cost of our solution is O(1) and
therefore does not need to be discussed anymore. On the other
hand, the calculation cost on nodes is proportional to storage.
For these reasons, we only need to analyze the storage costs to
compare the efficiency and scalability of our solution to those
of the existing schemes. We then take as example a TmoteSky
sensor node and compare the storage cost of our solution to
different existent GKM (MGKMP [26] and GREP [45]) and
PKM (Pairwise Key scheme [17], Trades [41] and Kronecker
[46]) schemes. We consider keys of 256 bits (using AES-256
for example). Featuring 48 Kbytes, a TmoteSky can store up
to 1536 keys (ignoring the other node’s memory requirements).

For the node to support the storage cost of our solution, it is
enough if it can store at least p keys. The percentage of storage
capability to indicate to the SCEF must then be greater or
equal to P, = 15’%. On the other hand, the authors of GREP,
MGKMP, Trades and Kronecker show that the storage cost
of their solutions are proportional to O(y/n). The memory
rate required to store these \/n keys is therefore P, = 7%z,
Finally, as the Pairwise Key scheme do not divide the network
members into subgroups, the nodes storage cost is of the order
of n. The percentage of memory required is P, = 175-. We
compare then the variation of the three values according to n.

Figure 16a shows that our solution requires less storage on
a TmoteSky than the other protocols. Indeed, the value of P,
is smaller than P, and P,, no matter the group size. More
importantly, if the group contains more than 1536 nodes, the
memory of the TmoteSky will not be enough to store all the
keys of a Pairwise Key scheme. On the other hand, under
the conditions of the simulations, less than 1% of its storage
capability is enough if a our solution is used. This is because
storage cost is well balanced between the group members
according to their capabilities. Thus, by using a bit more of
the resources of powerful devices, our solution becomes much
lighter for the constrained ones. It can then operate on much
larger heterogeneous networks such as the IoT.

2) Heterogeneity for Group Communication:

Unlike most of the existing GKM schemes, our solution
balances the loads between the heterogeneous devices of
the network according to their capabilities. To illustrate this
difference, we consider the protocols MGKMP [26] and GREP
[45]. The authors show that their calculation and storage costs
are proportional to O(y/n) for all the network members, while
they are both proportional to the nodes’ storage capability,
using our solution. We consider then a network of 10000
nodes and analyze the variation of the calculation and storage
cost according to the node’s storage capability (number of keys
it can store), for the three protocols. Note that the percentage
of storage capability that we choose to indicate to the SCEF
is 10% (i.e. only 10% of the real capability of the node is
used). The results are plotted in Figures 16b.

We take as example two nodes u; and up that can store
200 and 1800 keys, respectively. For both nodes, 10% of their
memory is used by our solution, in the worst case. MGKMP
and GREP, on the other hand, use 50% of the former and
5% of the latter. As the calculation overhead on node depends
on the storage, these protocols quickly exhausts the resources
of u; while ug has much more. More importantly, the nodes
having a capability lower than 700 can not even store all the
keys, while our solution uses 10% of their memory only. Thus,
although the overheads imposed by MGKMP and GREP are
lower than that of our solution for powerful devices (capability
greater than 1000), they are much greater for the weak ones.

3) Connectivity and flexibility for Device-to-Device Com-
munication:

Unlike most of the existing PKM schemes, our solution
ensures a total connectivity coverage. While the probability
that two neighboring nodes share a common key does not
exceed 0.25 in [41] and is approximately lower bounded by
0.632 in [7], this probability is always equal to I using our
solution. Indeed, each pair of communicators share a pairwise
node or subgroup key and can establish a direct secure link.
It provides then a good connectivity. Note that when network
connectivity is low, some neighboring relay on intermediate
nodes to establish a secure link. The path length represents
the number of nodes separating two communicators, which is
always equal to zero using our solution. The results presented
in [23] give an overview about the average path length between

two nodes using a probabilistic scheme. Figure 16¢ shows
the large gap between the value of this parameter using a
probabilistic scheme [17] and our solution, regardless of the
group size. It is important to note that the longer the path, the
more the communication between nodes requires calculation
and energy. This reduces the efficiency of the protocol.

Some PKM schemes [16, 32, 53] are based on the deploy-
ment knowledge to maximize the network connectivity. The
application of this method is, nevertheless, restrictive if the
deployment knowledge is not possible. It is therefore clear
that the KM we propose is more flexible as it is based on
a logical subgrouping and operates well regardless of the
position of nodes. Furthermore, regardless of their category,
most of the existing PKM schemes are based on key pre-
distribution. These schemes suffer from poor flexibility as it
is hard to add new nodes to the network. Our solution, on the
other hand, supports the dynamic deployment of nodes thanks
to its rekeying mechanism. Indeed, we previously showed that
nodes can join and leave the network at any time without
jeopardizing the security of the network. Our solution is
therefore more flexible.

VI. CONCLUSION

In this paper, we presented a novel versatile Key Man-
agement protocol for the Internet of Things, which secures
both Group and Device-to-Device Communication. For this
purpose, our solution is organized into three layers. The upper
layer divides the network into multiple groups. Nodes are
then assigned to them according to the services to which
they subscribe. The middle layer distributes the nodes of
each group into logical subgroups. Each of them requires an
overhead proportional to the capability of its members. The
aim is to balance the loads between the heterogeneous devices
according to their capabilities. The lower layer manages the
network members and the keys they hold. Keys are classified in
two types: Data Encryption Keys (DFEKs) and Key Encryption
Keys (KFEKs). The DEKs are used to encrypt the data
exchanged between nodes. These keys may be either group
keys (used to secure Group Communications) or pairwise
keys (used to secure Device-to-Device Communication). The
KFEKs, on the other hand, are used to protect the DEKs. The
aim is to ensure the backward and forward secrecy (for Group
Communication) and the dynamic deployment of nodes (for
Device-to-Device Communication).

We then analyze the security and performance of our
solution and compare it to the existing schemes. For Group
Communication, we show that our solution ensures the for-
ward and backward secrecy and, unlike most of the existing
GKM protocols, guarantees the secure coexistence of several
services in the network. With regard to Device-to-Device
Communication, we prove that our solution provides a good
level of resilience compared to the existing PKM schemes.
We finally demonstrate that, by balancing the loads between
the heterogeneous devices according to their capabilities, our
solution is both efficient and scalable. It provides then the best
compromise between the IoT requirements.

In future works, we intend to decentralize the protocol.
Cryptographic material will then be spread across more than
one entity in order not to have a single point of failure and to
make it more difficult to access or modify this secret material.

ACKNOWLEDGMENTS

This work was carried out and funded by the INS2I STFOC
project, Heudiasyc UMR CNRS 7253 and the Labex MS2T.

REFERENCES

[1] FEA. Alaba, M. Othman, I.A.T.A Hashem and F. Alotaibi. “Internet
of Things security: A survey”. In: Journal of Network and Computer
Applications 88 (2017), pp. 10-28.

[2] M. Alagheband and M.R. Aref. “Dynamic and secure key manage-
ment model for hierarchical heterogeneous sensor networks”. In: IET
Information Security 6.4 (2012), pp. 271-280.

[31 J. Ayuso, L. Marin, A. Jara and A. F. G. Skarmeta. “Optimization of
Public Key Cryptography (RSA and ECC) for 16-bits Devices based
on 6LoWPAN”. In: Ist International Workshop on the Security of the
Internet of Things, Tokyo, Japan. 2010, pp. 1-8.

[4] R. Azarderakhsh, A. Reyhani-Masoleh and Z. Abid. “A key man-
agement scheme for cluster based wireless sensor networks”. In:
IEEE/IFIP Int. Conf. on Embedded and Ubiquitous Computing, 2008.
EUC’08. Vol. 2. IEEE. 2008, pp. 222-2217.

[5] E. Baburaj et al. “Polynomial and multivariate mapping-based triple-
key approach for secure key distribution in wireless sensor networks”.
In: Computers & Electrical Engineering 59 (2017), pp. 274-290.

[6] N. Baracaldo, B. Palanisamy and J. Joshi. “G-sir: an insider attack
resilient geo-social access control framework”. In: IEEE Transactions
on Dependable and Secure Computing (2017).

[71 W. Bechkit, Y. Challal, A. Bouabdallah and V. Tarokh. “A highly
scalable key pre-distribution scheme for wireless sensor networks”.
In: IEEE Transactions on Wireless Communications 12.2 (2013),
pp. 948-959.

[8] R. Blom. “An optimal class of symmetric key generation systems”.
In: Workshop on the Theory and Application of of Cryptographic
Techniques. Springer. 1984, pp. 335-338.

[9] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro and

M. Yung. “Perfectly-secure key distribution for dynamic conferences”.

In: Annual international cryptology conference. Springer. 1992.

H. Chan, A. Perrig and D. Song. “Random key predistribution

schemes for sensor networks”. In: Symposium on Security and Pri-

vacy, 2003. Proceedings. IEEE. 2003, pp. 197-213.

C. Chang, H. Yen and D. Deng. “V2V QoS guaranteed channel access

in IEEE 802.11 p VANETSs”. In: IEEE Transactions on Dependable

and Secure Computing 13.1 (2016), pp. 5-17.

K. Chatterjee, A. De and D. Gupta. “An improved ID-Based key

management scheme in wireless sensor network™. In: Int. Conf. in

Swarm Intelligence. Springer. 2012, pp. 351-359.

O. Cheikhrouhou. “Secure group communication in wireless sensor

networks: a survey”. In: Journal of Network and Computer Applica-

tions 61 (2016), pp. 115-132.

R. Chen, F. Bao and J. Guo. “Trust-based service management

for social internet of things systems”. In: IEEE transactions on

dependable and secure computing 13.6 (2016), pp. 684-696.

Y. Chen and W. Tzeng. “Group key management with efficient

rekey mechanism: a semi-stateful approach for out-of-synchronized

members”. In: Computer Communications 98 (2017), pp. 31-42.

J. Choi, J. Bang, L. Kim, M. Ahn and T. Kwon. “Location-based

key management strong against insider threats in wireless sensor

networks”. In: IEEE Systems Journal 11.2 (2015), pp. 494-502.

T. Choi, H.B. Acharya and M.G. Gouda. “The best keying protocol

for sensor networks”. In: Pervasive and Mobile Computing 9.4 (2013),

pp. 564-571.

W. Du, J. Deng, Y. S. Han, S. Chen and P. K. Varshney. “A key

management scheme for wireless sensor networks using deployment

knowledge”. In: IEEE INFOCOM 2004. Vol. 1.

W. Du, J. Deng, Y.S. Han, PK. Varshney, J. Katz and A. Khalili. “A

pairwise key predistribution scheme for wireless sensor networks”.

In: ACM Transactions on Information and System Security (TISSEC)

8.2 (2005), pp. 228-258.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

M. Eltoweissy, M.H. Heydari, L. Morales and I.H. Sudborough.
“Combinatorial optimization of group key management”. In: Journal
of Network and Systems Management 12.1 (2004), pp. 33-50.

M. Eltoweissy, M. Moharrum and R. Mukkamala. “Dynamic key man-
agement in sensor networks”. In: JEEE Communications magazine
44.4 (2006), pp. 122-130.

M. Eltoweissy, A. Wadaa, S. Olariu and L. Wilson. “Group key
management scheme for large-scale sensor networks”. In: Ad Hoc
Networks 3.5 (2005), pp. 668—688.

L. Eschenauer and V.D. Gligor. “A key-management scheme for
distributed sensor networks”. In: 9th ACM conference on Computer
and communications security. 2002, pp. 41-47.

A. William H. Harb and O.A. El-Mohsen. “Context aware group
key management model for internet of things”. In: The Seventeenth
International Conference on Networks 28-34 (2018).

D. Huang, M. Mehta, D. Medhi and L. Harn. “Location-aware key
management scheme for wireless sensor networks”. In: Proceedings
of the 2nd ACM workshop on Security of ad hoc and sensor networks.
ACM. 2004, pp. 29-42.

M.A. Kandi, H. Lakhlef, A. Bouabdallah and Y. Challal. “An Efficient
Multi-Group Key Management Protocol for Internet of Things”. In:
26th International Conference on Software, Telecommunications and
Computer Networks (SoftCOM). 1IEEE. 2018, pp. 1-6.

M.A. Kandi, H. Lakhlef, A. Bouabdallah and Y.Challal. “An Ef-
ficient Multi-Group Key Management Protocol for Heterogeneous
IoT Devices”. In: IEEE Wireless Communications and Networking
Conference (WCNC). 2019.

J.Y. Kim, W. Hu, H. Shafagh and S. Jha. “SEDA: Secure over-the-
air code dissemination protocol for the internet of things”. In: IEEE
Transactions on Dependable and Secure Computing (2016).

Y. Kung and H. Hsiao. “Grouplt: Lightweight group key management
for dynamic IoT environments”. In: IEEE Internet of Things Journal
5.6 (2018), pp. 5155-5165.

A. Lei, C. Ogah, P. Asuquo, H. Cruickshank and Z. Sun. “A
secure key management scheme for heterogeneous secure vehicular
communication systems”. In: ZTE Communications 21 (2016), p. 1.
X.S. Li, YR. Yang, M.G. Gouda and S.S. Lam. “Batch rekeying for
secure group communications”. In: group 1 (2001), p. 9.

D. Liu and P. Ning. “Improving key predistribution with deployment
knowledge in static sensor networks”. In: ACM Transactions on
Sensor Networks (TOSN) 1.2 (2005), pp. 204-239.

Z. Liu, X. Huang, Z. Hu, M.K. Khan, H. Seo and L. Zhou. “On
emerging family of elliptic curves to secure internet of things: ECC
comes of age”. In: IEEE Transactions on Dependable and Secure
Computing 14.3 (2017), pp. 237-248.

D. Mall, K. Konaté and A K. Pathan. “ECL-EKM: An enhanced Cer-
tificateless Effective Key Management protocol for dynamic WSN”.
In: International Conference on Networking, Systems and Security
(NSysS), 2017. IEEE. 2017, pp. 150-155.

D.A. McGrew and A.T. Sherman. “Key Establishment in Large
Dynamic Groups using One-way Function Trees, TIS Labs at Network
Associates”. In: Inc. Gleenwood, Maryland (1998).

L. Militano, G. Araniti, M. Condoluci, I. Farris and A. Tera. “Device-
to-device communications for 5G internet of things”. In: EAI En-
dorsed Transactions on Internet of Things 15.1 (2015), pp. 1-15.
M.K. Pedhadiya, R.K. Jha and H.G. Bhatt. “Device to device
communication: A survey”. In: Journal of Network and Computer
Applications (2018).

Z. Qin, X. Zhang, K. Feng, Q. Zhang and J. Huang. “An efficient
identity-based key management scheme for wireless sensor networks
using the bloom filter”. In: Sensors 14.10 (2014), pp. 17937-17951.
S. Rafaeli and D. Hutchison. “A survey of key management for secure
group communication”. In: ACM Computing Surveys (CSUR) 35.3
(2003), pp. 309-329.

S.M.M. Rahman and K. El-Khatib. “Private key agreement and secure
communication for heterogeneous sensor networks”. In: Journal of
Farallel and Distributed Computing 70.8 (2010), pp. 858-870.

S. Ruj, A. Nayak and I. Stojmenovic. “Pairwise and triple key
distribution in wireless sensor networks with applications”. In: IEEE
Transactions on Computers 62.11 (2012), pp. 2224-2237.

S.H. Seo, J. Won, S. Sultana and E. Bertino. “Effective key manage-
ment in dynamic wireless sensor networks”. In: IEEE Transactions
on Information Forensics and Security 10.2 (2015), pp. 371-383.

[43]

[44]

[45]

[46]

(471

(48]

(49]

[50]

(51]

(52]

[53]

[54]

[55]

[56]

S.R. Singh, A.K. Khan and T.S. Singh. “A New Key Management
Scheme for Wireless Senm Networks using an Elliptic Curve”. In:
Indian Journal of Science and Technology 10.13 (2017).

M. Thoma, S. Meyer, K. Sperner, S. Meissner and T. Braun. “On iot-
services: Survey, classification and enterprise integration”. In: 2012
IEEE International Conference on Green Computing and Communi-
cations. 1IEEE. 2012, pp. 257-260.

M. Tiloca and G. Dini. “GREP: A group rekeying protocol based on
member join history”. In: 2016 IEEE Symposium on Computers and
Communication (ISCC). IEEE. 2016, pp. 326-333.

I. Tsai, C. Yu, H. Yokota and S. Kuo. “Key management in Internet
of Things via Kronecker product”. In: 2017 IEEE 22nd Pacific Rim
International Symposium on Dependable Computing (PRDC). IEEE.
2017, pp. 118-124.

L. Veltri, S. Cirani, S. Busanelli and G. Ferrari. “A novel batch-based
group key management protocol applied to the internet of things”. In:
Ad Hoc Networks 11.8 (2013), pp. 2724-2737.

D. Wallner, E. Harder and R. Agee. Key management for multicast:
Issues and architectures. Tech. rep. 1999.

C. Wan. “IBKES: Efficient Identity-Based Key Exchange with Scala-
bility for Wireless Sensor Networks Using Algebraic Signature.” In:
Adhoc & Sensor Wireless Networks 39 (2017).

J. Wang, H. Wang, X. A. Wang and Y. Cao. “An Authentication
Key Agreement Scheme for Heterogeneous Sensor Network Based on
Improved Counting Bloom Filter”. In: 10th International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing. IEEE. 2015,
pp- 815-820.

C.K. Wong, M Gouda and S.S. Lam. “Secure group communications
using key graphs”. In: IEEE/ACM transactions on networking 8.1
(2000), pp. 16-30.

M.FE. Younis, K. Ghumman and M. Eltoweissy. “Location-aware com-
binatorial key management scheme for clustered sensor networks”. In:
IEEE transactions on parallel and distributed systems 17.8 (2006),
pp. 865-882.

Z. Yu and Y. Guan. “A robust group-based key management scheme
for wireless sensor networks”. In: IEEE Wireless Communications and
Networking Conference, 2005. Vol. 4. IEEE. 2005, pp. 1915-1920.
F. Zhan, N. Yao, Z. Gao and G. Tan. “A novel key generation method
for wireless sensor networks based on system of equations”. In: Jour-
nal of Network and Computer Applications 82 (2017), pp. 114-127.
J. Zhang, H. Li and J. Li. “Key establishment scheme for wireless
sensor networks based on polynomial and random key predistribution
scheme”. In: Ad Hoc Networks 71 (2018), pp. 68-77.

J. Zhang and V. Varadharajan. “Wireless sensor network key manage-
ment survey and taxonomy”. In: Journal of network and computer
applications 33.2 (2010), pp. 63-75.

