
HAL Id: hal-02428277
https://hal.science/hal-02428277

Submitted on 15 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Multi-Group Key Management Protocol for
Heterogeneous IoT Devices

Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, Yacine
Challal

To cite this version:
Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, Yacine Challal. An Efficient
Multi-Group Key Management Protocol for Heterogeneous IoT Devices. IEEE Wireless Com-
munications and Networking Conference (WCNC 2019), Apr 2019, Marrakesh, Morocco. pp.1-6,
�10.1109/WCNC.2019.8885613�. �hal-02428277�

https://hal.science/hal-02428277
https://hal.archives-ouvertes.fr

An Efficient Multi-Group Key Management
Protocol for Heterogeneous IoT Devices

Mohamed Ali Kandi1, Hicham Lakhlef1, Abdelmadjid Bouabdallah1 and Yacine Challal2
1Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR7253 Heudiasyc-CS 60319-60203 Compiègne Cedex, France

2Laboratoire de Méthodes de Conception de Systèmes, École nationale Supérieure d’Informatique, Algiers, Algeria
Email: {mohamed− ali.kandi, hicham.lakhlef,madjid.bouabdallah, yacine.challal}@hds.utc.fr

Abstract—The Internet of Things (IoT) is a network made up
of a large number of devices which are able to automatically com-
municate to computer systems, people and each other providing
various services for the benefit of society. These devices have
the particularity of being heterogeneous and so have different
capabilities in terms of storage, computing, communication and
energy. One of the main challenges facing the IoT is how to secure
communication between these heterogeneous devices. Among all
the issues, the Group Key Management is one of the most
difficult. Although different approaches have been proposed to
solve it, very few of them consider the heterogeneous nature of
the IoT. We propose then a highly scalable Multi-Group Key
Management protocol for IoT that ensures the forward and
backward secrecy, efficiently recovers from collusion attacks,
guarantees the secure coexistence of several services in a single
network and balances the loads between its heterogeneous devices
according to their capabilities. The evaluation of our solution
shows that it is efficient for large-scale heterogeneous networks
even if they contain highly resource-constrained devices.

Index Terms—Internet of things, heterogeneity, security, Group
Key Management, forward and backward secrecy.

I. INTRODUCTION

The number of devices connected to Internet is constantly
increasing since its appearance. Now that this number far
exceeds that of people in the world, we are no longer talking
about Internet but about Internet of Things. This emerging
technology gives rise to revolutionary applications such as
health care, environment monitoring, smart cities...etc. The
IoT devices have the particularity of being heterogeneous and
so have different capabilities in terms of storage, computing,
communication and energy. More importantly, most of them
are constrained by their small physical size and so have
limited memories, computing abilities and energy supply. One
of the main challenges facing the IoT is how to secure
communication between these heterogeneous devices.

The Group Key Management (GKM) is the core of secure
communication. Its main role is to establish secure links
between the members of a group. To achieve this, the GKM
provides them with a secret cryptographic key that is used to
encrypt the data exchanged [20]. Nevertheless, when a member
leaves the group, it must no longer be able to decipher the
future communications (forward secrecy). Also, if a node joins
the group, it must not be able to decipher the previous ones
(backward secrecy). Backward and forward secrecy are usually
guaranteed by rekeying. Thus, when a node joins or leaves the
group, the secret key is revoked and a new one is distributed
to the remaining members.

Although different approaches of GKM have been pro-
posed, most of them assume that nodes have the same capabil-
ity. Hence, they do not balance the charges between them and
impose the same overheads on a powerful computer or a weak
sensor. Thus, while a negligible part of the former’s resources
is used by the protocol, those of the latter may not even be
enough. Furthermore, the existing protocols usually use the
same parameters to secure all communications. Since the IoT
provides various services at the same time, communications
within a service will be accessible to all network members
even those which did not subscribe to it. More importantly, the
compromise of a member will jeopardize all services. Finally,
the existing solutions rarely consider collusion as a first-class
attack and instead resort to a total member reinitialization
to recover from it. A collusion attack occurs when multiple
compromised nodes cooperate to regain access to the secret
key [17]. We propose then a highly scalable Multi-Group Key
Management (MGKM) protocol for IoT that ensures the for-
ward and backward secrecy, efficiently recovers from collusion
attacks, guarantees the secure coexistence of several services in
the network and balances the loads between its heterogeneous
nodes according to their capabilities. The evaluation of our
protocol shows that it is efficient for large-scale heterogeneous
networks such as IoT.

The remainder of this paper is organized as follows: related
works are discussed in Section II. We detail then our solution
in Section III. Section IV presents the performance evaluation
of our solution. Finally, we conclude in Section V.

II. RELATED WORKS

According to the encryption technique used, the Group Key
Management schemes can be classified into three categories:
symmetric, asymmetric and hybrid [20]. A symmetric ap-
proach involves the use of the same key for encryption and
decryption, while an asymmetric one uses two different keys.

Generally, symmetric approaches require less computation
time, than the asymmetric ones, and are more suitable for
networks containing limited resources devices such as wire-
less sensors [19]. However, most of them suffer from high
communication and memory overhead, are not scalable, are
not resilient against compromise or inefficiently recover from
collusion attacks. Symmetric approaches are usually based
on Logical Key Hierarchy (LKH) [6, 16], Exclusion Basis
Systems (EBS) [5, 8], polynomials [7], matrices [9, 18]...etc.

On the other hand, asymmetric protocols are more secure
and scalable. However, they usually require intensive comput-
ing, which makes them impractical on constrained devices. De-
spite this, some asymmetric schemes were proposed even for
wireless sensor networks. Most of them implemented an Ellip-
tic Curve Cryptography (ECC) [1, 13, 15], a CertificateLess
Public Key Cryptography (CL-PKC) [12, 14], an ID-Based
Encryption (IBE) [4]...etc. Some works [3] proposed hybrid
protocols that combine symmetric and asymmetric techniques
to take advantages of each and overcome its disadvantages.

Regardless of the type of encryption used, few researches
consider the heterogeneous nature of the IoT [1, 2, 11, 13]
and yet they usually divide the group into two classes only:
powerful and constrained nodes. In a previous work [10], we
proposed a MGKM protocol for IoT which is based on the
member join history [17]. The main idea of the protocol is to
manage several groups with independent security parameters.
Thus, different services can coexist in the network without
jeopardizing each other. Nevertheless, our previous solution
does not consider the heterogeneous nature of the IoT devices
and distributes them uniformly on the subgroups of each
group. The overheads are then the same on the powerful
devices and the weak ones. In this paper, we propose a
novel highly scalable MGKM protocol which, in addition
to ensuring the forward and backward secrecy, efficiently
recovering from collusion attacks and guaranteeing the secure
coexistence of several services in the network, balances the
loads between the nodes according to their capabilities.

III. OUR SOLUTION

Our solution uses two layers. The upper layer manages
multiple groups and assigns nodes to them according to the
services to which they subscribe. On the other hand, the
lower layer distributes the nodes of each group into logical
subgroups in order to reduce the protocol overheads on them.
The network is then divided into several groups, each of which
is also partitioned into several subgroups. By doing this, the
security parameters of services will be independent and the
protocol is lighter for the network nodes.

Each group is associated with an ID which is unique within
the network. It contains then the nodes participating in a given
combination of services. When a node joins the network, it is
assigned to a group according to the combination of services
to which it subscribes. On the other hand, if a current member
subscribes or unsubscribes from services, it migrates from a
group to another according to its new combination of services.

Each group is in turn partitioned into subgroups. It is impor-
tant to note that these subgrouping is logical and transparent to
the application layer. The aim behind this is to efficiently rekey
the network when necessary. A subgroup S is associated with
an ID , sidS , which is unique within the group and reflects
its subgroups total order. Given two subgroups S and T ,
sidS < sidT if and only if S was created before T . Thereby,
S is considered as an elder kindred of T whereas the latter is
seen as a junior kindred of the former. Also, S is associated
to two tokens: a forward, stFS , and a backward one, stBS .

When a node u joins a group G , it is assigned to one of its
subgroup S . It is then associated with an ID , nidu , which is
unique within S and reflects, its members’ total order. Given
two nodes u and v , nidu < nidv if and only if u has joined
S before v . Thus, u is considered as an elder cognate of
v whereas v is seen as a junior cognate of u . Also, u is
associated to two tokens: a forward, tFu , and a backward one,
tBu . Note that u does not know neither its tokens (tFu and tBu)
nor those of S (stFS and stBS). However, it stores the backward
and forward node tokens associated to its elder and junior
cognates and the backward and forward subgroup tokens of
the elder and junior kindred of S , respectively. The node also
holds a secret key, Ku , and shares a subgroup key, KS , with
its cognates and a group key, KG , with all the nodes of G .
Finally, u stores a key for each service in which it participates.

Our solution manages several groups having independent
security parameters so that the compromise of a service has
no effect on the others. Security within a single group is based
on the fact that nodes do not know their tokens. Thus, when
a node is compromised or when a collusion attack occurs,
the tokens of the compromised node(s) remain secret. The
MGKM can then rely on them to efficiently rekey the group.
Due to space constraints, we only detail the subgroup manage-
ment in this paper. For more details about services, groups and
nodes management (nodes joining/leaving and the recovery
from collusion attacks) please refer to our previous work [10].
Furthermore, since groups are managed independently of each
other, only one group (i.e. one service) is considered in this
paper. Finally, we assume that keys and tokens have the same
size and use the two terms interchangeably.

Although our previous solution organizes nodes into sub-
groups, the subgrouping is homogeneous. The n nodes of a
group are then uniformly distributed in p subgroups of m
members each, i.e. p = m =

√
n . We then showed that the

storage, computing and energy costs for a node vary according
to p +m = 2 .

√
n . Hence, a node has an overhead of O(

√
n)

(the performance evaluation is detailed in [10]). However, in
heterogeneous networks wherein nodes have different capabili-
ties, the same costs are imposed on powerful and weak devices.
This exhausts the resources of the constrained ones which
can significantly degrade network performance and shorten
its lifetime. More importantly, when the network becomes
too large, it may happen that some constrained nodes cannot
support the costs at all, while others can handle much more.

Since the costs on nodes depend on the size of their
subgroups (p +m), we propose the use of a heterogeneous
subgrouping. Thus, according to their capabilities, nodes of
a heterogeneous network are distributed in subgroups having
different sizes to balance the loads between them. Thereby, the
costs will be less important on constrained nodes. Network
performance is then improved and its lifetime increased.
Moreover, the constrained nodes are more likely to support
the overheads if the network becomes too large. On this basis,
we propose a novel highly scalable MGKM protocol for IoT.
Thus, by using a bit more of the resources of powerful devices,
our solution becomes much lighter for the constrained ones.

A. Formulation of the problem

Using our solution, the number of keys manipulated (stored,
hashed...etc) by the nodes of a subgroup S , of size ms , is
proportional to p +ms [10]. Thus, two points come out of
this. First, if the value of p is minimized, overheads are
reduced on any node of the group. Moreover, the number
of keys manipulated by a node depends on the size of its
subgroup. Hence, to balance the loads between the nodes of
a heterogeneous network, the most constrained ones must be
assigned to the smallest subgroups, and conversely.

Therefore, we focus in this work on the management of
heterogeneous subgroups, i.e. subgroups of different sizes,
while minimizing their number, p. Note that this does not
mean that we do not allow two subgroups to have the same
size. To achieve this, we rely on the fact that all the members
of S must be able to handle at least p +ms keys. The size of
S is then chosen so that p +ms does not exceed the capability
of its members or, to put it more simply, the capability mcs of
its weakest node. Indeed, as mcs is the minimum capability
that a member of S can have, if its value is greater than p +ms

then all the nodes of S will be able to handle the overheads.
The problem is, therefore, to choose the minimum capabilities
of subgroups and to assign them nodes so as to always satisfy:

min p (1)
under duress: ∀S , mcs ≥ p +ms (2)

B. Capability Evaluation Function

The Capability Evaluation Function (CEF) is used to eval-
uate the number of keys a node can handle. Depending on the
network requirements, several parameters can be taken into
account. We choose then three of them: memory, processing
and energy. Thus, the CEF we propose takes as input the
following arguments: the storage capability of a node u (scu)
and the amount of data that it can process per unit time (adtu)
and per unit energy (adeu). Note that the CEF takes into
account a percentage of the node resources only to balance
the overhead associated to the MGKM against other node
requirements. To calculate cu , the number of keys that can
be managed by u , the CEF determines the minimum between
the number of keys, of size ks , that the node can store (scuks)
and the number of keys that it may calculate per unit time
(adtuks) and per unit energy (adeuks) (Formula 3). According to
the network and application requirements, weighting can be
given to each parameter.

cu = Min(
scu
ks

,
adtu
ks

,
adeu
ks

) (3)

C. Heterogeneous subgrouping

The heterogeneous subgrouping management consists of
manipulating subgroups of different sizes while minimizing
their number and ensuring that the Constraint 2 is always
satisfied. A minimum capability mcs is then attributed to each
subgroup S when created. To satisfy the Constraint 2, mcs − p
nodes are assigned to S at most. Note that the size of a
subgroup varies according to its minimum capability. Thus,
the greater the capabilities of its members, the larger its size.

A node u , that can handle cu keys, is assigned to S only
if mcs is the nearest value less than cu (mcs ≤ cu < mc+s ,
mc+s is the value that follows mcs). Thus, u will have storage,
computing and energy overheads proportional to p +ms ,
instead of 2 .

√
n (if a homogeneous subgrouping is used).

Note that depending on the values of p and ms , p +ms can
be either greater or lower than 2 .

√
n . However, since the

Constraint 2 is satisfied for S , u can always support the costs.
After the assignment, depending on whether S is an existing

subgroup or a new one, the value of p or ms increases. It
can happen that for a subgroup T (T may be S or not),
the sum p +mt exceeds mct , and then some of its members
may not be able to handle all the keys anymore. In this case,
T is splitted into two subgroups having the same minimum
capability mct . The size of the resulting subgroups is equal
to the half of mt and the Constraint 2 is true again for them.

Considering the Constraint 2 and the fact that S cannot be
empty, a node u should be able to handle at least p + 1 keys.
If u can manage only p + 1 keys then it is the only node
of S and must be revoked when a new subgroup is created.
Indeed, if p increases, u cannot handle the keys anymore. For
simplicity, we assume that u is authorized to join the group
only if cu ≥ p (instead of p + 1). Therefore, smaller is p,
the more likely it is that more constrained nodes can join the
group. Subgroups may then be merged to reduce their number.

Finally comes the choice of the minimum capabilities.
The difficulty lies in the fact that subgroups are created
and removed as and when required and that the abilities of
nodes are not known a priori. We tried different increasing
sequences and found that the loads are well balanced and
p minimized if the sequence grows exponentially. We then
selected two sequences in particular: powers of two and
Fibonacci sequence. The group may be partitioned so that a
minimum capability is the double of the preceding one or the
sum of the two preceding ones. Figure 1 shows an example
of group partitioned using powers of two. The Constraint 2 is
satisfied for all the subgroups and the value of p is minimal.

Fig. 1: Example of a group partitioned into three subgroups.

D. Assignment Algorithm
The Assignment Algorithm (Algorithm 1) is run by the

MGKM when a node u is authorized to join the group. It
takes as input cu , the number of keys that can be managed by
u , and assigns it to a subgroup S according to the input value.
To achieve this, the algorithm manipulates a list of subgroups,
lsg , of size p. Each of its items contains the ID of a subgroup
S , sids , its minimum capability, mcs , and its size, ms .

When u is authorized to join the group, the Assignment
Algorithm starts by determining the minimum capability mcu
that matches it. It then rounds down cu to the nearest power of
two or term of a Fibonacci sequence. Next, it searches in lsg
a subgroup S such as mcs = mcu . If no subgroup is found, a
new one is created. It consists of determining its ID , sids , its
key, KS , its subgroup tokens, stBS and stFS , and to send the
last two to all the nodes of the group, encrypted by means of
KG . Next, the algorithm assigns u to S and renews the group
security material, following the steps described in our previous
work [10], and updates lsg . Also, the algorithm checks if the
Constraint 2 is still satisfied for all the subgroups. It browses
then the list lsg and as long as there is a subgroup T for which
mct < p +mt , the latter is splitted.

Algorithm 1: Assignment Algorithm
Input : cu = capability of the node u

1 Round down cu to the nearest minimum capability mcu ;
2 Find in lsg a subgroup S so that mcs = mcu ;
3 if no subgroup is found then Create a new one S ;
4 Assign u to S ;
5 Update lsg ;
6 while ∃ T for which mct < p +mt do
7 Split T ;
8 end

Subgroup splitting: Splitting S consists first of creating a
new subgroup T (mct = mcs). The ms

2 last nodes that have
joined S are then moved to T . We denote by S+ the subgroup
S after being splitted and by f the first node of S to join T ,
i.e. ∀u ∈ S+,nidu < nidf and ∀v ∈ T ,nidv ≥ nidf .

The algorithm determines first sidt and stBT . Next, to ensure
the forward secrecy, it randomly generates a master subgroup
token, stM , and two refresh keys, KRS and KRT . Then, using
a pseudo-random key derivation function (KDF), it computes
stFT , K+

S and KT (Formulas 4, 5 and 6). Furthermore, the
algorithm uses a one-way hash function (H) to update the
forward tokens associated to the nodes moving to T and the
backward tokens associated to the others. Also, as T is the
last subgroup to be created, its members should no longer
know any forward subgroup tokens but must receive the list
of all the backward ones, LBS . Thus, the algorithm uses H to
update the forward subgroup tokens known by the members of
S and all the backward subgroup tokens. Finally, the algorithm
sends the unicast messages SM1 and SM2 to each node u ∈ S
(nidu < nidf) and v ∈ S (nidv ≥ nidf), respectively. It also
sends SM3 to each subgroup U (U 6= S and U 6= T).

stFT = KDF (stM ||KRS) (4)

K+
S = KDF (KS ||KRS) (5)

KT = KDF (KS ||KRT) (6)
SM1 : MGKM → u :< nidm , sidt , {stM ,KRS}Ku >

SM2 : MGKM → v :< nidm , sids , {KRT ,LBS}Kv >

SM3 : MGKM → U :< sids , sidt , {stM ,KRS}KU >

Forward secrecy: When a subgroup S is splitted, it must
be rekeyed as well as the new subgroup T . Since no node joins
the group and none of its members leaves it, it is not necessary
to rekey all the group. The issue is then to prove that the nodes
moving from S to T cannot get access to the new key of S ,
or any future incarnation of it, and that they are the only ones
to receive the key of T . The MGKM rekeys the members
of S and T using the unicast messages SM1 and SM2 that
are encrypted by means of their secret keys. Therefore, the
moving nodes cannot decrypt SM1 and are excluded from the
rekeying of S . Furthermore, the remaining ones do not have
access to the key of T as they cannot decrypt SM2 .

E. Reorder Algorithm

In order to reduce the number of subgroups, p, the Reorder
Algorithm (Algorithm 2) is run after a node leaving or a recov-
ery from a collusion attack. It takes as input the percentage of
merging, pcm , and tries to remove or merge subgroups when
it is possible.

When nodes leave a subgroup S , the algorithm checks the
number of the remaining ones. If S becomes empty, it is
removed by deleting its key and tokens and informing the
nodes to remove either stFS or stBS . On the other hand, if the
size of S falls below a certain threshold, the algorithm searches
in lsg a subgroup T to merge with S . The threshold is the
product of the percentage of merging and the maximum size
of S (thr = pcm.(mcs − p)). Furthermore, T must have the
same minimum capability than S and its current size must also
be less than the threshold. If it is the case, the two subgroups
are merged. Note that pcm must not exceed 50% so that the
size of the resulting subgroup does not exceed mcs − p. Also,
the greater is pcm , the more the subgroups are merged. This
increases the merging’s cost but reduces the value of p.

Algorithm 2: Reorder Algorithm
Input : pcm = percentage of merging

1 foreach subgroup S that one or more nodes have left do
2 if ms = 0 then Remove S ;
3 else
4 thr ← pcm.(mcs − p);
5 if ms < thr then
6 Find T such as mt < thr and mct = mcs ;
7 if a subgroup T is found in lsg then
8 Merge S and T ;
9 end

10 end
11 end
12 end

Subgroup merging: Two subgroups with the same min-
imum capacity can be merged if they contain a number of
nodes that is below a certain threshold. If we assume that
sidS < sidT , merging S and T consists of deleting the latter
after moving its nodes to the former. We denote by S+ the
subgroup S after being merged.

The MGKM starts by generating a refresh key. Then, using
the KDF , it updates KS and KT (Formulas 7 and 8) and
utilizes them to compute the new subgroup key (Formula 9).
Next, the MGKM sends MM1 , encrypted using KS to the
nodes of S . The message contains: the list of IDs of T
and its members, LIDT , the updated subgroup key of T ,
K ∗T (Formula 8), and the list of the updated forward node
tokens associated to the members of T , FNTT . Also, the
MGKM sends, to the members of T , the message MM2
encrypted by means of KT . It contains: the list of the IDs
of S and all its members, LIDS , the updated subgroup key
of S , K ∗S (Formula 7), the list of the updated backward node
tokens associated to the nodes of S , BNTS , and the list of the
updated forward subgroup tokens, FSTU , of each subgroup U
for which sids < sidu < sidt . Finally, the MGKM broadcasts
MM3 , updates the backward subgroup tokens the nodes of T
know but not those of S and deletes the tokens and key of T .

K ∗
S = KDF (KS ||KR) (7) K ∗

T = KDF (KT ||KR) (8)

K+
S = KDF (K ∗

S ||K ∗
T) (9)

MM1 : MGKM → S < LIDT , {K ∗
T ,FNTT}KS >

MM2 : MGKM → T < LIDS , {K ∗
S ,BNTS ,FSTU }KT >

MM3 : MGKM → G < sids , sidt >

Backward secrecy: When the subgroups S and T are
merged, only S must be rekeyed. Indeed, no new node joins
G and none of its members leaves it. We need then to prove
that the moving nodes cannot access the current key of S ,
or any previous incarnation of it. Thus, the MGKM rekeys
S and T by means of messages MM1 and MM2 encrypted
using their current keys. Thus, nodes of S can decrypt MM1 ,
retrieve its secret material and generate the new subgroup key
of S . Moreover, nodes of T can decrypt MM2 and compute
the new subgroup key of S without knowing the current one.

IV. PERFORMANCE EVALUATION

To reduce the overheads on nodes and to increase the
chances that the constrained ones support the protocol, the
value of p must be minimized. The execution times of the
Assignment and Reorder Algorithms also depend on p, as
they mainly traverse the list of subgroups. Thus, to evaluate the
performance of our solution and show that, in a heterogeneous
network, it has improved, we analyze the behaviour of p
according to several parameters and compare the obtained
results to

√
n (the number of subgroups if a homogeneous

subgrouping is used). To give a concrete overview of these
performances, we take as example a TmoteSky sensor node
and compare the costs of the two protocols on it. To achieve
this, we implemented a simulator, using C, that randomly
generates node capabilities (based on a uniform distribution)
and runs the Assignment Algorithm to assign them. It also
simulates nodes leaving and runs the Reorder Algorithm. The
simulator takes as inputs the type of subgrouping (powers
of two or Fibonacci sequence), the number of nodes, nodes
maximum capability (the maximum value that the simulator
can generate), the percentage of merging and outputs p.

A. Effect of the parameters of the simulation on p

In this section, we analyze the effect of two of the parame-
ters of the simulation on p: the maximum capability that can
be generated and the percentage of merging, pcm . Starting
with the maximum capability, we set the values of n and pcm
to 1024000 and 0 .4 , respectively, and we vary the maximum
capability. The results are plotted in Figure 2. Note that the
more the group contains powerful nodes, the smaller the value
of p. However, even when the maximum capability is small,
the value of p is lower than

√
n . Our solution gives then better

results even for networks of constrained nodes.

Fig. 2: Effect of the maximum capacity of nodes on p.

Now, we study the effect of pcm . Thus, we set the values
of n and the maximum capability to 1024000 and 256000 ,
respectively, and we vary that of pcm . The results of the
simulations are plotted in Figure 3. They show that actually the
merging reduces the number of subgroups. Indeed, the greater
the value of pcm , the smaller that of p.

Fig. 3: Effect of pcm on p.

Finally, the results of all the simulations performed show
that, in general, the use of powers of two or a Fibonacci
sequence gives approximately the same results. However, we
noticed that a Fibonacci sequence gives slightly better results
for large groups (more than a million nodes) and conversely.

B. Concrete example: TmoteSky sensor node

To give a concrete overview of the performance of our
solution, we take as example a TmoteSky sensor node and
compare the overheads of the two protocols (the new and the
previous one) on it. Due to space constraints, we only discuss
the storage overhead. Computing and energy costs also depend
on p. The same method can then be used to discuss them.We
consider keys of 256 bits (using AES-256 for example). Thus,
featuring 48 Kbytes, a TmoteSky can store at most 1536 keys.

For the node to support the storage cost of a heterogeneous
subgrouping, it is enough if it can store at least p keys. The
percentage of storage capability to indicate to the CEF must
then be greater or equal to phet =

p
1536 . On the other hand, if a

homogeneous subgrouping is used, the percentage of memory
required to store 2 .

√
n keys is phom = 2 .

√
n

1536 . We compare
then the variation of the two values according to n . To achieve
this, we set the values of pcm and the maximum capability to
0 .4 and 256000 , respectively, and we vary that of n .

The results (Figure 4) show that our method of load balanc-
ing requires much less storage space than using subgroups of
the same size. Indeed, the value of phet is much smaller than
phom whatever the size of the group. More importantly, if the
group contains more than five hundred thousand nodes and a
homogeneous subgrouping is used, a TmoteSky cannot join the
group because it does not have enough memory space. On the
other hand, under the conditions of the simulations, only 2% of
its storage capability is enough if a heterogenous subgrouping
is used. Therefore, our protocol becomes much more scalable
by implementing the new subgroup management. Our solution
can then operate on much larger heterogeneous networks,
which makes it well suitable for the IoT.

Fig. 4: Effect of the size of the group on phet and phom .

V. CONCLUSION

In this paper, we presented a highly scalable Multi-Group
Key Management protocol which ensures the forward and
backward secrecy, efficiently recovers from collusion attacks,
guarantees the secure coexistence of several services in the
network and balances the loads between its heterogeneous
nodes according to their capabilities. To achieve this, the
network is divided into independent groups, each of which
is also partitioned into several subgroups. A group contains
the nodes participating in a given combination of services. A
subgroup requires an overhead proportional to the capability of
its members. When a node joins a group, the protocol affects
it to the subgroup that matches its capability. Subgroups are
created and can be splitted when it is necessary. On the other
hand, when a node leaves a group or when a set of colluding
nodes are evicted, the protocol tries to reduce the number
of subgroups. It removes then those that become empty and
merges the others to the extent possible. The evaluation of our
solution shows that it is efficient for large scale heterogeneous
networks even if they contain highly constrained devices. In
future works, we intend to decentralize the protocol in order
not to have a single point of failure.

ACKNOWLEDGMENTS

This work was carried out and funded by Heudiasyc UMR
CNRS 7253 and the Labex MS2T.

REFERENCES

[1] M. Alagheband and M.R. Aref. “Dynamic and secure key manage-
ment model for hierarchical heterogeneous sensor networks”. In: IET
Information Security 6.4 (2012), pp. 271–280.

[2] S. Athmani, A. Bilami, and D.E. Boubiche. “EDAK: An Efficient
Dynamic Authentication and Key Management Mechanism for het-
erogeneous WSNs”. In: Future Generation Computer Systems (2017).

[3] R. Azarderakhsh, A. Reyhani-Masoleh, and Z. Abid. “A key man-
agement scheme for cluster based wireless sensor networks”. In:
IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing, 2008. EUC’08. Vol. 2. IEEE. 2008, pp. 222–227.

[4] K. Chatterjee, A. De, and D. Gupta. “An improved ID-Based key
management scheme in wireless sensor network”. In: International
Conference in Swarm Intelligence. Springer. 2012, pp. 351–359.

[5] C. Chen, Z. Huang, Q. Wen, and Y. Fan. “A novel dynamic key
management scheme for wireless sensor networks”. In: 2011 4th IEEE
International Conference on Broadband Network and Multimedia
Technology (IC-BNMT). IEEE. 2011, pp. 549–552.

[6] G. Dini and I.M. Savino. “S2rp: a secure and scalable rekeying
protocol for wireless sensor networks”. In: 2006 IEEE International
Conference on Mobile Adhoc and Sensor Systems. 2006, pp. 457–466.

[7] Abdoulaye Diop, Yue Qi, and Qin Wang. “Efficient group key
management using symmetric key and threshold cryptography for
cluster based wireless sensor networks”. In: International Journal of
Computer Network and Information Security 6.8 (2014), p. 9.

[8] T. Divya R.and Thirumurugan. “A novel dynamic key management
scheme based on hamming distance for wireless sensor networks”.
In: 2011 International Conference on Computer, Communication and
Electrical Technology (ICCCET). IEEE. 2011, pp. 181–185.

[9] W. Du, J. Deng, Y.S. Han, P.K. Varshney, J. Katz, and A. Khalili. “A
pairwise key predistribution scheme for WSNs”. In: ACM Transac-
tions on Information and System Security (2005), pp. 228–258.

[10] M.A. Kandi, H. Lakhlef, A. Bouabdallah, and Y. Challal. “An Effi-
cient Multi-Group Key Management Protocol for Internet of Things”.
In: 2018 26th International Conference on Software, Telecommunica-
tions and Computer Networks (SoftCOM). IEEE. 2018, pp. 1–6.

[11] F. Kausar, S. Hussain, L.T. Yang, and A. Masood. “Scalable and
efficient key management for heterogeneous sensor networks”. In:
The Journal of Supercomputing 45.1 (2008), pp. 44–65.

[12] D. Mall, K. Konaté, and A.K. Pathan. “ECL-EKM: An enhanced Cer-
tificateless Effective Key Management protocol for dynamic WSN”.
In: 2017 International Conference on Networking, Systems and Secu-
rity (NSysS). IEEE. 2017, pp. 150–155.

[13] S. Rahman and K. El-Khatib. “Private key agreement and secure
communication for heterogeneous sensor networks”. In: Journal of
Parallel and Distributed Computing 70.8 (2010), pp. 858–870.

[14] S. Seo, J. Won, S. Sultana, and E. Bertino. “Effective key management
in dynamic wireless sensor networks”. In: IEEE Transactions on
Information Forensics and Security 10.2 (2015), pp. 371–383.

[15] S.R. Singh, A.K. Khan, and T.S. Singh. “A New Key Management
Scheme for Wireless Sensor Networks using an Elliptic Curve”. In:
Indian Journal of Science and Technology 10.13 (2017).

[16] J. Son, J. Lee, and S. Seo. “Topological key hierarchy for energy-
efficient group key management in wireless sensor networks”. In:
Wireless personal communications 52.2 (2010), p. 359.

[17] M. Tiloca and G. Dini. “GREP: A group rekeying protocol based on
member join history”. In: 2016 IEEE Symposium on Computers and
Communication (ISCC). IEEE. 2016, pp. 326–333.

[18] I. Tsai, C. Yu, H. Yokota, and S. Kuo. “Key Management in Internet
of Things via Kronecker Product”. In: 2017 IEEE 22nd Pacific Rim
International Symposium on Dependable Computing, pp. 118–124.

[19] F. Zhan, N. Yao, Z. Gao, and G. Tan. “A novel key generation method
for wireless sensor networks based on system of equations”. In: Jour-
nal of Network and Computer Applications 82 (2017), pp. 114–127.

[20] J. Zhang and V. Varadharajan. “Wireless sensor network key manage-
ment survey and taxonomy”. In: Journal of Network and Computer
Applications 33.2 (2010), pp. 63–75.

