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ABSTRACT
This paper proposes a Tone Mapping Operator (TMO) to
convert High Dynamic Range (HDR) images into Low
Dynamic Range (LDR) images. It is related on two
consecutive stages. The first one decomposes the HDR
image on several resolution levels according to a non-
separable multiresolution approach using Essentially Non-
Oscillatory (ENO) strategy where adapted bi-quadratic
interpolations are exploited. The underlying idea of this
decomposition is to better represent the details of the
complex HDR image preserving as much as possible the
HDR image quality. In the second stage, a weighting
coefficients process is deployed to reduce judiciously the
dynamic range of each subband’s coefficient. The weights
are deduced from Gaussian filtering operations combined
with a monotonic decreasing function where its parameters
depend on the statistical properties of each HDR subband,
neighborhood and resolution level. Simulation results show
that the proposed image TMO has the ability to better
represent the details compared to other operators.

1. INTRODUCTION

High Dynamic Range (HDR) images are considered as
high-quality images on which different levels of exposure
areas of the real-world scene are rendered at the same time
faithfully to the Human Visual System (HVS). However
these images cannot be viewed on standard Low Dynamic
Range (LDR) display devices since their dynamic range
is smaller than those of HDR images. Unfortunately HDR
display devices are still too expensive to replace all LDR
devices. To overcome this problem, Tone Mapping Opera-
tors (TMOs) have been developed [1]. Their main purpose
is to reduce the dynamic range (contrast, color gamut,
details...) of HDR images to LDR dynamic range device
while preserving as much as possible the captured scene
appearance. For more details, a complete state of the art is
available in reference [1] where a classification into local,
global, segmentation, frequency and perceptual operators
is proposed. Although each TMO approach has its own
specificity, it is not possible to review the wide range
of the developed work in this paper. Only those selected

(according to their good performance) to be compared to
our approach are summarized below.

In [5], Durand and Dorsey proposed an edge-
preserving bilateral filter to decompose the HDR image
into two layers : a base layer encoding large-scale va-
riations and a detail one. Contrast is then reduced only
in the first layer while the details are kept unchanged.
The combination of these tone mapping layers produces an
LDR image. In [2], Drago et al. presented an adaptive loga-
rithmic mapping method of luminance values. It concerns
the adaptive adjustment of the logarithmic basis depending
on the radiance of the pixels. A set of logarithmic func-
tions ranging from log 2 to log 10 were used to preserve
scene details and improve the rendering contrast. A bias
power function was used to ensure a smooth interpolation
between the different logarithm bases. In [11], Li et al.
proposed a subband architecture related on an oversampled
Haar pyramid representation. Subband coefficients are re-
scaled using a gain control function reducing the high
frequency magnitudes and boosting low ones. The modi-
fied subbands are then convolved with the Haar synthesis
filters and summed to reconstruct the final LDR image. In
[8], Duan et al. proposed an optimization approach based
on a histogram adjustment between linear mapping and
equalized histogram mapping. In [9], Fattal et al. proposed
a second generation of wavelets based on the edge content
of the image avoiding having pixels from both sides of an
edge. This approach was then exploited to map an HDR
image into an LDR image. In [10], the authors proposed
non-linear separable multiresolution families using data
dependent interpolation where a set of operators have
been derived. These latter have the ability to consider in
their mathematical models the image singularity points.
However the weakness of this approach is that the detail
and approximation coefficients are weighed in the same
way without taking into account the statistical properties
of the coefficients. To improve the performance of this
TMO, this paper investigates on non-separable and non-
linear Essentially Non-Oscillatory (ENO) multiresolution
where each subband’s coefficient is weighted according to
the statistical properties of the subband.

This paper is organized as follows. Section 2 intro-



duces the basic concepts of the non-linear multiresolution
approach using data dependent interpolation. Section 3
presents the non-separable and non-linear multiresolution
image TMO. Section 4 evaluates the TMO approach per-
formance. Section 5 concludes this paper.

2. BASIC CONCEPTS OF HARTEN’S
NON-LINEAR MULTIRESOLUTION

This section introduces the non-linear multiresolution
approach based on Essentially Non-Oscillatory (ENO) in-
terpolation strategy developed by Harten [12], [13]. Cell-
Average (CA) multiresolution is considered since it has the
ability to introduce in its mathematical model the isolated
singularities such as edge points in the image avoiding
the Gibbs phenomenon particularly harmful in HDR tone
mapped images.

Denote j the resolution level. Harten’s multiresolution
strategy is based on two discrete interlevel operators, cal-
led ”projection” Dj−1

j and ”prediction” P jj−1 operators.
The pixel value vjk, located at position k = (k1, k2) and
resolution level j, is defined by the cell average of the
underlying bidimensional function v modeling the image,
as follows :

vjk = 22j
∫
Cjk

v(x, y)dxdy, (1)

where Cjk is the cell defined as [2−jk1, 2
−j(k1 + 1)] ×

[2−jk2, 2
−j(k2 + 1)] with 0 ≤ k1, k2 ≤ 2j − 1.

The projection operator Dj−1
j , acting from the fine to

coarse level, computes the dataset vj−1 = Dj−1
j vj corres-

ponding to the coarser version of vj . In the cell average
context, the operator Dj−1

j is the averaging operator and
is always linear :

vj−1k =
1

4
(vj2k + vj2k+e1 + vj2k+e2 + vj2k+e1+e2), (2)

where e1 and e2 are unit vectors oriented to the right and
upward, respectively.

The prediction operator P jj−1 acts from the coarse
to fine levels by computing an approximation v̂j of vj

from vj−1 : v̂j = P jj−1v
j−1. This operator may be non-

linear. Both prediction and projection operators satisfy the
following consistency condition : Dj−1

j P jj−1 = I , where I
is the identity operator. The null space of Dj−1

j represents
the detail space of dimension Nj −Nj−1. The prediction
error εj = vj − v̂j belongs to the detail space and then
expanding it on a basis of that space getting the detail
vector (dj−1k )k=1,..,Nj−Nj−1 . Therefore, one can equiva-
lently write vj in the form (vj−1, dj−1). Iterating this
process, one obtains a multiresolution representation of the
representation vJ at the scale J into (v0, d0, d1, ..., dJ−1).

3. NON-SEPARABLE MULTIRESOLUTION
IMAGE TMO USING BI-QUADRATIC

INTERPOLATIONS

This section deals with the proposed HDR image
TMO given by the scheme of Figure 1. The first stage
is based on the non-separable decomposition developed
in [14], [15]. The prediction operator is related on the
smoothness properties of the function v, considered as
a bi-dimensional smooth function and represented by a
piecewise polynomial function of degree 2, modeling the
complex HDR image (i.e. smooth regions separated by
edges). To adapt the prediction near the singularities, ENO
interpolation techniques are then deployed.

3.1. Prediction step

Consider a shift vector defined as r ∈ {−e1 −
e2,−e1,−e1 + e2,−e2, 0, e2, e1 − e2, e1, e1 + e2}. Define
for a given cell Cjk and a shift r the set of cells :

Sj(k, r) = {Cjk+l+r; l = (l1, l2),−1 ≤ l1, l2 ≤ 1
and k = (k1, k2),−1 ≤ k1, k2 ≤ 1}, (3)

called stencil of the cell Cjk associated to the shift r.
The stencil Sj(k, r) has 3 × 3 cells and contains the

cell Cjk. An example of such stencil is the center stencil
obtained for k = 0 and shift r = 0, i.e. :

Sj(0, 0) =

C
j
(−1,−1) Cj(0,−1) Cj(+1,−1)

Cj(−1,0) Cj(0,0) Cj(+1,0)

Cj(−1,+1) Cj(0,+1) Cj(+1,+1)

 . (4)

Therefore 9 stencils of size 3 × 3, containing the cell
Cjk associated to the different shifts r, exist. To emulate the
ENO strategy, the cost function ζ for the stencil Sj(k, r)
is defined as :

ζ(Sj(k, r)) =
∑ ∑

l∈Sj(k,r)

|∆vj−1l |, (5)

where ∆vj−1l = vj−1l+1 − v
j−1
l and l = (l1, l2).

This cost function measures the sum of oscillations in
Sj(k, r). The least oscillatory stencil, for the cell Cjk, is
retained as follows :

r∗ = argmin−M+1≤r1,r2≤M−1ζ(Sj(k, r)). (6)

The least oscillatory stencil Sj(k, r∗) is then retained. The
predicted values v̂j are deduced from the values at the
coarse level vj−1k on Sj(k, r∗). For this, a bi-quadratic
polynomial pk,r∗ , defined by its 9 unknown coefficients
pmn, is selected :

p(x, y) =
∑

0≤m,n≤2

pmnx
myn, (7)

to predict the values as follows :

v̂j2k+w,r = 22j
∫
Ijw

pk,r∗dxdy, (8)
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Fig. 1. Forward non-separable multiresolution and adaptive weighting strategy

where w is a vector basis in two dimensions w ∈
{0, e1, e2, e1 + e2}. The 9 unknown coefficients are de-
duced from the 9 interpolation conditions on the stencil
Sj(k, r∗) defined by :

vkl =

k∫
k−1

l∫
l−1

pk,r∗(x, y)dxdy. (9)

3.2. Detail step

The prediction errors, with respect to vj , are by
construction :

εjw = vjw − v̂jw with w ∈ {0, e1, e2, e1 + e2}. (10)

Due to the consistency property Dj−1
j P jj−1 = I , we

get that
∑

w∈{0,e1,e2,e1+e2} ε
j
w = 0. These errors can

be written in a non-redundant way by representing
them in a basis of of KerDj−1

j . The matrix of this
change of basis H has the columns hlo = [ 14 ,

1
4 ,

1
4 ,

1
4 ],

hh = [ 14 ,−
1
4 ,

1
4 ,−

1
4 ], hv = [ 14 ,

1
4 ,−

1
4 ,−

1
4 ], and hd =

[ 14 ,−
1
4 ,−

1
4 ,

1
4 ]. Therefore the details vectors are deduced

from εj2k, ε
j
2k+e1

, εj2k+e2 , ε
j
2k+e1+e2

as follows :

dj−1h = {hh × [εj2k, ε
j
2k+e1

, εj2k+e2 , ε
j
2k+e1+e2

]′}, (11)

for horizontal detail block ;

dj−1v = {hv × [εj2k, ε
j
2k+e1

, εj2k+e2 , ε
j
2k+e1+e2

]′}, (12)

for vertical detail block ; and

dj−1d = {hd × [εj2k, ε
j
2k+e1

, εj2k+e2 , ε
j
2k+e1+e2

]′}, (13)

for diagonal detail block.

Note that the size of the block is half of each
direction of vj . The multiresolution representation is
then obtained vj := (vj−1, (dj−1d , dj−1h , dj−1v )). Ite-
rating the process until resolution level J involves
a set of approximation and detail coefficients :
(v0, (d0d, d

0
h, d

0
v), (d

1
d, d

1
h, d

1
v), ..., (d

J−1
d , dJ−1h , dJ−1v )).

3.3. Adaptive weighting coefficients strategy

This section proposes to independently weight each
subband’s coefficient to reduce in an appropriate way the
HDR image dynamic range.

The proposed weight is a positive value between 0 and
1 depending on the statistical properties of each subband
and the neighborhood. The main operations are presented
below.

First, the absolute value of all subband coefficients is
taken : A0

0 = |v0|, Ajd = |djd|, A
j
h = |djh|, Ajv = |djv| for

j = 0, ..., J − 1.
Denote Ajsb(x, y), with sb = 0, d, h, v and j =

0, ..., J − 1, the positive coefficient at position (x, y) of
the subband sb at resolution level j. Define g(x, y) the
Gaussian filter given by :

g(x, y) =
1

2πσ2
sb

e
− x

2+y2

2σ2
sb , (14)

where σsb is the standard deviation of the Gaussian dis-
tribution of the subband sb deduced from the median
component as in [14] :

σsb =
median(Ajsb)

0.6745
. (15)



This filter is used to compute the weighting coefficient
ajsb(x, y) associated to each coefficient Ajsb(x, y) in the
corresponding domain as follows :

ajsb(x, y) = Ajsb(x, y) ∗ g(x, y), (16)

where ∗ is the convolutional product.
After this, a monotonic nonlinear decreasing function

F (as in [11]) is applied on the coefficients ajsb, resulting
in the positive weighting coefficient qjsb(x, y) between 0
and 1, as follows :

qjsb(x, y) = F (ajsb(x, y)) =
1

(
ajsb(x,y)+ε

δj
)1−γ

, (17)

where γ ∈ [0, 1] is the compressive factor ; j the resolution
level (i.e. j = 0, ..., J − 1) associated to the subband sb.
ε is used to avoid singularities when the power 1− γ is a
positive value. δj is considered as a gain control stability
level depending on the resolution level j and the subband
coefficients :

δj = [1− j(1− ξ)
J

]× Ājsb, (18)

where Ājsb is the average of Ajsb.
Finally, the subband coefficients are weighted as fol-

lows :
v′

0
= q00 ⊗ v0 and d′jsb = qjsb ⊗ d

j
sb (19)

with sb = d, h, v ; j = 0, ..., J − 1 ; and ⊗ is the product
term by term.

4. SIMULATION RESULTS

This section evaluates the performance of the propo-
sed TMO using the TMQI (Tone-Mapped image Quality
Index) metric developed in [16]. It evaluates the quality
of the HDR image tone mapped compared to the original
HDR image. Note that this metric is upper-bounded by 1.

Simulations have been conducted under Matlab en-
vironnement using the HDR Toolbox with its HDR test
images : ”Anturium”, ”Bottle Small” renamed ”Bottle”,
”Office”, ”Oxford Church”, ”Memorial” and ”Light” [1].
The different parameters are chosen so as to give the best
results in terms of TMQI metric in all methods. These
latter are performed on the logarithmic transformation of
the Luma values Lw (i.e log10(Lw + ε), ε avoiding the
logarithmic singularities).

Simulation results are compared to competitive me-
thods : (i) SEP [10] with β = 0.3, γ = 0.7, J=2, upd=0,
b = e ; (ii) Li TMO [11] with Haar multiscale ; (iii) Fattal [9]

using RBW method with α = 0.8, β = 0.3, γ = 0.8, J=2,
upd=0 ; (iv) Drago [2], Reinhard [3], Ward [4], Durand [5],
Tumblin [6], Schlick [7] with the default parameters as given
in the HDR Toolbox ; and (v) Duan [8] using β = 0.5.
For the proposed method, denoted ”Proposed”, simulations
are conducted with the following parameters : ε = 10−9,
J = 2, γ = 0.6, ξ = 0.1, σi deduced from equation (15).

Figure 2 clearly shows the impact of the second stage
on the visual quality of the LDR image.

Fig. 2. (Up) Without adaptive weighting ; (Down) With
adaptive weighting (ε = 10−9 ; J = 2 ; γ = 0.6 ; ξ = 0.1).

To further improve the visual quality of some HDR
tone mapped images, it is possible to add the histogram ad-
justment, developed in [8], as a post-processing. This post-
processing can be applied on the HDR tone mapped image
in a local way on equal non-overlapping blocks of size
32×32 or in a global way. Indeed this approach adjusts the
contrast between linear mapping and histogram equalized
mapping thanks to a control parameter β ∈ [0, 1] (we set
β = 0.3). The two approaches are named ”Proposed G”
for global and ”Proposed L” for local post-processing.

Table 1 provides the TMQI of the HDR tone mapped
images according to the above listed methods. One can ob-
serve that our approach is competitive to those developed
in the literature.

Figure 3 shows the ”Bottle” HDR tone mapped images
according to the ”Proposed”, ”Proposed G” and ”Propo-
sed L” approaches. Figure 4 presents the ”Bottle” HDR
tone mapped images using [8] with local (”Duan L”) and
global (”Duan G”) methods. The visual rendering of our
tone mapped images is better than those developed in
[8], even when the post-processing is not used. This is
observed even if the TMQI is higher for ”Duan G” (0.91)
and ”Duan L” (0.92) than our ”Proposed” (0.87) (see
Table 1) where ”Proposed L” TMQI remains high (0.93).
Note that the TMQI metric does not always reflect the
visual quality.

Figures 5, 6, 7 and 8 provide the visual quality of the
”Memorial” HDR tone mapped images. One can observe
that the details are well rendered in favor of our method
(e.g. tiles, rosette). In Figure 6, the tiles on the top right on
the tone mapped image are better rendered in our method.

Based on these simulation results, the proposed opera-
tor has the ability to better represent the details compared
to other operators. Its strength points are inherent not



only to the non-separable multiresolution decomposition
but also to the ENO strategy. It suffices to compare its
performance with that of separable multiresolution ENO
strategy developed in [10].

TMOs Anturium Bottle Office Church Memorial Light
Drago [2] 0.874 0.801 0.801 0.814 0.800 0.800
Reinhard [3] 0.778 0.807 0.826 0.789 0.792 0.794
Ward [4] 0.806 0.783 0.775 0.817 0.793 0.789
Durand [5] 0.811 0.892 0.825 0.929 0.814 0.800
Tumblin [6] 0.715 0.713 0.735 0.675 0.761 0.750
Schlick [7] 0.770 0.835 0.926 0.970 0.788 0.780
Duan G [8] 0.964 0.916 0.955 0.986 0.935 0.969
Duan L [8] 0.910 0.924 0.927 0.906 0.839 0.924
Fattal [9] 0.889 0.928 0.928 0.889 0.927 0.971
SEP [10] 0.888 0.931 0.928 0.885 0.903 0.960
Li [11] 0.964 0.954 0.854 0.877 0.834 0.888
Proposed 0.938 0.873 0.948 0.820 0.846 0.932
Proposed G 0.975 0.927 0.828 0.968 0.896 0.946
Proposed L 0.920 0.930 0.861 0.939 0.881 0.909

Table 1. Tone Mapped Image Quality Index (TMQI)

5. CONCLUSION

This paper focused on HDR image tone mapping
operator. As a first stage, the operator decomposes the
HDR image into several resolution levels according to non-
separable orthogonal transform using ENO bi-quadratic
interpolation. This latter has the advantage to take into
its mathematical model the possible singularities in all
directions. Therefore the details are well represented in
the subbands. As a second stage, a weighting strategy
adapted to each subband’s coefficient is developed in
order to reduce adequately the dynamic range of the HDR
image while preserving the more important details in the
HDR image. Simulation results show good performance
achieved not only in terms of TMQI metrics but also in
terms of visual quality.
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