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Abstract

The method of fundamental solutions (MFS) has been
extensively used for the electrocardiographic imaging
(ECGI) inverse problem. One of its advantages is that it
is a meshless method. We remarked that the using cm in-
stead of mm as a space unit has a high impact on the re-
constructed inverse solution. Our purpose is to refine this
observation, by introducing a rescaling coefficient in space
and study its effect on the MFS inverse solution. Results
are provided using simulated test data prepared using a
reaction-diffusion model. We then computed the ECGI in-
verse solution for rescaling coefficient values varying from
1 to 100, and computed the relative error (RE) and cor-
relation coefficient (CC). This approach improved the RE
and CC by at least 10 % but can go up to 40 % indepen-
dently of the pacing site. We concluded that the optimal
coefficient depends on the heterogeneity and anisotropy of
the torso and does not depend on the stimulation site. This
suggests that it is related to an optimal equivalent conduc-
tivity estimation in the torso domain.

1. Introduction

Electrocardiographic imaging (ECGI) is a noninvasive
technique to assess the electrical potential on the epicardial
surface from measures realized on the thoracic surface. A
meshless approach that employs the method of fundamen-
tal solutions (MFS) has been adopted [1] to solve the in-
verse problem of electrocardiography. Its performance is
similar to other, more elaborate techniques such as finite-
element models [2]. However, the MFS assumes a homo-
geneous isotropic torso conductivity. In reality several or-
gans have highly deviating conductivities and some, such
as the skeletal muscle, are strongly anisotropic. These
heterogeneities have an important effect on forward solu-
tions of the surface potentials [3, 4], and therefore might
affect the quality of the MFS solution as well. To as-
sess the severity of this problem we tested the MFS on
data generated with homogeneous, inhomogeneous, and
inhomogeneous-anisotropic forward models. In addition

we investigated whether a scaling factor added to the MFS
kernel can compensate for it.

2. Methods

2.1. Standard MFS

The solution given by the MFS approach is represented
in the form of a linear superposition of source functions
(Laplace fundamental solutions) located on a set of virtual
source points yj , j = 1 . . .M over an auxiliary surface [1].
The method uses a set of measured body surface potentials
u(xi) at electrode positions xi, (xi|i = 1 . . . N) and at-
tempts to express these in terms of the source functions
with weight factors aj . The source functions and aj can
then be used to predict the potential at any point on the
torso or cardiac surface.

When using Dirichlet and Neumann conditions we ob-
tain the linear system

A~a = ~b (1)

where

~a = (a0, a1, . . . , aM )T ,

~b = (u(x1), . . . u(xN ), 0, . . . , 0)T ,

and

A =



1 f(‖x1 − y1‖) · · · f(‖x1 − yM‖)
...

... · · ·
...

1 f(‖xN − y1‖) · · · f(‖xN − yM‖)

0
∂f(‖x1 − y1‖)

∂n
· · · ∂f(‖x1 − yM‖)

∂n
...

... · · ·
...

0
∂f(‖xN − y1‖)

∂n
· · · ∂f(‖xN − yM‖)

∂n


(2)



in which f(r) = 1/(4πr) is the fundamental solution of
Laplace’s equation in 3D, and ‖x− y‖ is the 3D euclidean
distance between points x and y.

2.2. MFS with scaling factor

We added a rescaling coefficient α to the kernel of the
MFS matrix. The approximate solution of the MFS relies
upon the Laplace fundamental solution which hinges upon
the euclidean distance r = ‖x − y‖ . We made the as-
sumption that reducing the distance will help to make our
problem better conditioned. To do this let R be the new
reduced distance expressed by:

R =
r

α
, with α ≥ 1

f(R) = f(
r

α
) = αf(r). (3)

Similarly,

∂f(R)

∂n
=
∂f( rα )

∂n
= α2 ∂f(r)

∂n
(4)

Taking this new distanceR in the MFS matrix (2) amounts
to use the old distance r in the matrix Aα given by the
expression

1 αf(‖x1 − y1‖) · · · αf(‖x1 − yM‖)

...
... · · ·

...

1 αf(‖xN − y1‖) · · · αf(‖xN − yM‖)

0
α2∂f(‖x1 − y1‖)

∂n
· · · α2∂f(‖x1 − yM‖)

∂n
...

... · · ·
...

0
α2∂f(‖xN − y1‖)

∂n
· · · α2∂f(‖xN − yM‖)

∂n


(5)

In both cases the Tikhonov regularization method [5] with
a fixed parameter λ = 10−2 was used to stabilize the solu-
tion and obtain ~a.

2.3. Simulated data

Test data were prepared with a reaction-diffusion model
of the heart on a finite-difference mesh with 0.2 mm res-
olution. Computed transmembrane currents were trans-
ferred to a torso model with 1-mm resolution to com-
pute torso potentials [6]. Three sets of parameters were
used for the torso conductivities. The first was fully ho-
mogeneous and isotropic (HOM), the second piecewise
heterogeneous (lungs, liver, blood, skeletal muscles, and
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Figure 1. Relative errors and Correlation coefficients of
homogeneous model (HOM) with pacing site in mid ante-
rior septal junction (MASJ), high anterior septal junction
(HASJ) and left ventricular septum (LVS).

the remaining tissue) (HET) and isotropic, and the third
model was the same as the second but the skeletal mus-
cles were anisotropic (ANISO). We simulated three cases
with different stimulation sites: mid anterior septal junc-
tion (MASJ), high anterior septal junction (HASJ) and left
ventricular septum (LVS). All simulations were performed
with the Propag-5 software [7] on a Bullx cluster machine.

2.4. Evaluation of reconstructed potentials

To compare the reconstructed potentials on the epi-
cardium with the simulated ones correlation coefficients
(CC) and relatives errors (RE) were computed through
time and then averaged to get only two values for each
scaling factor. RE quantifies the amplitude difference and
CC the pattern similarity between the simulated and the
computed potentials.

3. Results

We studied the influence of the α factor inside the MFS
matrix for α ∈ [1, . . . , 95] with three different pacing
sites in each of the three models. Results for a com-
pletely homogeneous and isotropic torso model are shown
in Figure 1, those for a heterogeneous and isotropic one
in Figure 2, and those for a heterogeneous model with
anisotropic skeletal muscle in Figure 3.

The results show that RE and CC vary widely with α and
that the shape of the error function was different for each
model. For the HOM model, small values of α resulted
in the largest errors (Figure 1), whereas for the ANISO
model they resulted in the smallest errors (Figure 3). For
the HET model, both small and large α values resulted in
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Figure 2. Relative errors and Correlation coefficients of
heterogeneous and isotropic model (HET) with pacing site
in mid anterior septal junction (MASJ), high anterior septal
junction (HASJ) and left ventricular septum (LVS).
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Figure 3. Relative errors and Correlation coefficients of
heterogeneous and isotropic with anisotropic skeletal mus-
cles model (ANISO) with pacing site in mid anterior septal
junction (MASJ), high anterior septal junction (HASJ) and
left ventricular septum(LVS).

relatively large errors and the optimum solution was found
for intermediate values.

For all six cases an “optimal” scale factor could be
found. The effect of this factor on the reconstruction of
the signal is summarized in tables 1 and 2.

To illustrate the impact of α-optimization on recon-
structed electrograms we reconstructed the signal on the
heart for the standard MFS approach and the one with op-
timal scaling and compared them to the simulated one for
a location near the stimulation site (LVS in this case) as
shown in Figure 4.

Table 3 shows the estimated activation time at the pac-
ing site position. It is defined as the instant of steepest

Pacing Site Model MFS Scaled MFS

MASJ
HOM 0.80 0.40
HET 0.86 0.63

ANISO 0.88 0.72

HASJ
HOM 0.77 0.45
HET 0.85 0.67

ANISO 0.87 0.77

LVS
HOM 0.74 0.37
HET 0.83 0.69

ANISO 0.83 0.64

Table 1. Mean RE of the reconstructed potentials along
the time for the standard MFS Method and the “optimal”
scaled method.

Pacing Site Model MFS Scaled MFS

MASJ
HOM 0.65 0.90
HET 0.63 0.78

ANISO 0.62 0.72

HASJ
HOM 0.67 0.89
HET 0.58 0.77

ANISO 0.57 0.68

LVS
HOM 0.61 0.91
HET 0.63 0.79

ANISO 0.63 0.78

Table 2. Mean CC of the reconstructed potentials along
the time for the standard MFS Method and the “optimal”
scaled method.

Model Simulated MFS Scaled MFS
HASJ-HOM 9 ms 54 ms 25 ms
HASJ-HET 9 ms 55 ms 23 ms

HASJ-ANISO 9 ms 52 ms 22 ms

Table 3. Estimated activation time near the pacing site
for the standard MFS Method and the “optimal” scaled
method.

downstroke in the electrogram. The error approximates
45 ms for the original MFS method in each case, and ap-
proximately 15 ms error for the scaled MFS approach. The
modified method was also better at reconstructing the deep
S wave seen in the simulated signal.

4. Discussion and conclusions

By applying the MFS to torso potentials with homoge-
neous and inhomogeneous torso models we have shown
that torso heterogeneity reduces the quality of the MFS in-
verse solution, both in terms of RE and CC. In addition
we have shown that the use of a scaling factor in the MFS
can reduce the RE in estimated cardiac potential by upto
50 % and improve the CC by upto 30 percent-points. We
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Figure 4. Comparison of reconstructed potentials for
HASJ - standard MFS (red line) and scaled MFS (orange
line) - against simulated one (blue line) in a point near the
pacing site for three different torso models (a), (b) and (c).

conclude that the optimal coefficient depends on the het-
erogeneity of the torso and does not depend on the stimu-
lation site. In fact for the three stimulation cases the value
of the optimal coefficient was 38 (respectively, 11 and 13)
for the HOM (respectively HET and ANISO) case. We
can suppose that the obtained optimal coefficients are cor-
related with an optimal equivalent conductivity in the torso
domain.

In terms of RE and CC our correction worked best in
case of a homogeneous torso model. Thus, even with
this correction, the torso heterogeneity remains a prob-
lem for the MFS. Yet, if we focus on activation time this
method shows some promising results by reducing errors
by around 30 ms.

In this study we fixed the Tikhonov factor to understand
the results more easily. Using a method to find the opti-

mal regularization factor as described by Barnes and John-
ston [8] could improve them. Moreover, to determine the
optimal value of α we need to know the true solution. For
practical applications it would be of interest to develop a
method looking for both the optimal regularization factor
and the optimal scaling factor at the same time.
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