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Lipschitz Certificates for Layered Network Structures Driven by Averaged Activation Operators *

Obtaining sharp Lipschitz constants for feed-forward neural networks is essential to assess their robustness in the face of perturbations of their inputs. We derive such constants in the context of a general layered network model involving compositions of nonexpansive averaged operators and affine operators. By exploiting this architecture, our analysis finely captures the interactions between the layers, yielding tighter Lipschitz constants than those resulting from the product of individual bounds for groups of layers. The proposed framework is shown to cover in particular many practical instances encountered in feed-forward neural networks. Our Lipschitz constant estimates are further improved in the case of structures employing scalar nonlinear functions, which include standard convolutional networks as special cases.

Introduction

Artificial neural networks are becoming increasingly central tools in tasks such as learning, modeling, data processing, and decision making. As first noted in [START_REF] Szegedy | Intriguing properties of neural networks[END_REF], neural networks are vulnerable to adversarial examples which, though close to other data inputs, lead to very different outputs. This potential lack of stability makes the networks vulnerable and unreliable in key application areas; see, for instance, [START_REF] Akhtar | Threat of adversarial attacks on deep learning in computer vision: A survey[END_REF][START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF][START_REF] Kreuk | Fooling end-to-end speaker verification with adversarial examples[END_REF] and the references therein. To protect networks against such instabilities various techniques have been explored [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF][START_REF] Papernot | Distillation as a defense to adversarial perturbations against deep neural networks[END_REF][START_REF] Raghunathan | Certified defenses against adversarial examples[END_REF][START_REF] Wong | Provable defenses against adversarial examples via the convex outer adversarial polytope[END_REF]. Although these defense strategies may be effective in certain scenarios, they do not provide formal guarantees of robustness for general networks and they have been shown to be breakable by new attacks; see, for instance, [START_REF] Athalye | Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples[END_REF][START_REF] Carlini | Adversarial examples are not easily detected: Bypassing ten detection methods[END_REF].

It has been acknowledged for some time that the Lipschitz behavior of a network plays a key role in the analysis of its robustness [START_REF] Szegedy | Intriguing properties of neural networks[END_REF]. Simply put, if a layered network is modeled by an operator T acting between normed spaces, with Lipschitz constant θ, given an input x and a perturbation z, we can majorize the perturbation on the output via the inequality

T (x + z) -T x θ z . (1.1)
Thus θ can be used as a certificate of robustness of the network provided that it is tightly estimated. Lipschitz regularity is also an important ingredient in the derivation of generalization bounds and

x W 1 + b 1 R 1 • • • W m + b m R m T x
Figure 1: In Model 1.1, the ith layer involves a linear weight operator W i , a bias vector b i , and an activation operator R i , which is assumed to be a nonlinear averaged nonexpansive operator.

approximation bounds [START_REF] Bartlett | Spectrally-normalized margin bounds for neural networks[END_REF][START_REF] Bölcskei | Optimal approximation with sparsely connected deep neural networks[END_REF][START_REF] Sokolić | Robust large margin deep neural networks[END_REF], and of reachability conditions [START_REF] Ruan | Reachability analysis of deep neural networks with provable guarantees[END_REF]. In [START_REF] Szegedy | Intriguing properties of neural networks[END_REF] the estimation of θ is performed by evaluating the Lipschitz constant of the layers individually and then defining θ as the product of these constants, which typically yields pessimistic bounds. Lipschitz constants have also been computed for specific situations, e.g., [START_REF] Balan | Lipschitz properties for deep convolutional networks[END_REF][START_REF] Hein | Formal guarantees on the robustness of a classifier against adversarial manipulation[END_REF][START_REF] Scaman | Lipschitz regularity of deep neural networks: Analysis and efficient estimation[END_REF][START_REF] Tsuzuku | Lipschitz-margin training: Scalable certification of perturbation invariance for deep neural networks[END_REF]. Overall, however, deriving analytically accurate constants for general contexts remains an open problem. The objective of the present paper is to address this question for a general class of layered networks. Mathematically, our network model is described as an alternation of affine and nonlinear operators. This type of structure also arises in variational and equilibrium problems, as well as in network science, e.g., [START_REF] Briceño-Arias | Monotone operator methods for Nash equilibria in non-potential games[END_REF][START_REF] Combettes | Deep neural network structures solving variational inequalities, Set-Valued Var. Anal[END_REF][START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF][START_REF] Yi | Distributed generalized Nash equilibria computation of monotone games via double-layer preconditioned proximal-point algorithms[END_REF]. Adopting the same terminology as in the neural network literature, where they model the activity of neurons, the nonlinear operators will be called activation operators. Our stability analysis focuses on the following m-layer model, in which the activation operators are averaged nonexpansive operators (see Fig. 1).

Recall that an operator R : H → H acting on a Hilbert space H is α-averaged for some α ∈ [0, 1] if there exists a nonexpansive (i.e., 1-Lipschitzian) operator Q :

H → H such that R = (1 -α) Id +αQ. (1.2) 
In other words, R = Id +α(Q -Id) is an underrelaxation of a nonexpansive operator (see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] for a detailed account). This class of operators was introduced in [START_REF] Baillon | On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces[END_REF] and shown in [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF] to model various problems in nonlinear analysis as it includes common operators such as projection operators, proximity operators, resolvents of monotone operators, reflection operators, gradient step operators, and various combinations thereof. Recent theoretical developments and applications to data science include [START_REF] Bayram | On the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penalty[END_REF][START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF][START_REF] Borwein | Convergence rate analysis for averaged fixed point iterations in common fixed point problems[END_REF][START_REF] Bot | A dynamical system associated with the fixed points set of a nonexpansive operator[END_REF][START_REF] Bravo | Sharp convergence rates for averaged nonexpansive maps[END_REF][START_REF] Combettes | Quasinonexpansive iterations on the affine hull of orbits: From Mann's mean value algorithm to inertial methods[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF][START_REF] Ko | Easily parallelizable and distributable class of algorithms for structured sparsity, with optimal acceleration[END_REF][START_REF] Moorsi | The forward-backward algorithm and the normal problem[END_REF][START_REF] Sun | An online plug-and-play algorithm for regularized image reconstruction[END_REF][START_REF] Yamagishi | Nonexpansiveness of a linearized augmented Lagrangian operator for hierarchical convex optimization[END_REF][START_REF] Yi | Distributed generalized Nash equilibria computation of monotone games via double-layer preconditioned proximal-point algorithms[END_REF].

Model 1.1 Let m 1 be an integer and let (H i ) 0 i m be nonzero real Hilbert spaces. For every i ∈ {1, . . . , m}, let W i : H i-1 → H i be a bounded linear operator, let b i ∈ H i , let α i ∈ [0, 1], and let R i : H i → H i be an α i -averaged operator. Set

T = T m • • • • • T 1 , where (∀i ∈ {1, . . . , m}) T i : H i-1 → H i : x → R i (W i x + b i ).
(1.3) Since the operators (R i ) 1 i m are nonexpansive, a Lipschitz constant for T in (1.3) is

θ m = m i=1 W i . (1.4)
However, as already mentioned, this constant is usually quite loose and of limited use to assess the actual stability of the network. A novelty of our approach is to take into account the averagedness properties of the individual activation operators to capture more sharply the overall interactions between the layers, yielding tighter constants than those provided by computing bounds for groups of layers. Our specific contributions are the following:

• We show that the most common activation operators used in neural networks are averaged operators. This not only provides an a posteriori justification for Model 1.1, but also indicates that this highly structured framework should be of interest in the analysis of other properties of layered networks beyond stability.

• We derive a general expression for a Lipschitz constant of T in terms of the averagedness constants of the activation operators (R i ) 1 i m and the norms of certain compositions of the linear operators (W i ) 1 i m . This Lipschitz constant is shown to lie between the simple upper bound (1.4) and the lower bound W m • • • • • W 1 corresponding to a purely linear network. Our analysis applies to any type of linear operator, in particular convolutive ones, and it does not require any additional assumptions on the activation operator. In particular, differentiability is not assumed and our results therefore cover, in particular, networks using the rectified linear unit (ReLU) and max-pooling operations.

• In the common situation when the activation operators are separable, we obtain tighter Lipschitz constants for various norms.

• Under some positivity condition, we prove that a Lipschitz constant of the network reduces to that of the associated purely linear network obtained by removing the nonlinear operators.

In [START_REF] Combettes | Deep neural network structures solving variational inequalities, Set-Valued Var. Anal[END_REF], we investigated the special case of Model 1.1 in which the activation operators (R i ) 1 i m are proximity operators, hence 1/2-averaged (see Section 3.1). The objective there was to study the asymptotic behavior of deep network structures rather than their stability. The remainder of the paper is organized as follows. In Section 2 we present an illustration of our main result in a simple special case. In Section 3.1 we provide the necessary nonlinear analysis background. In Section 3.2 we show that a wide array of activation operators used in neural networks are indeed nonexpansive. In Section 4 we derive general results concerning Lipschitz constants for Model 1.1. Section 5 refines this analysis in the case of separable activation operators.

Preview of the main results in a simple scenario

We illustrate on a simple instance the main results of the paper. More precisely, we consider a threelayer (m = 3) network where, for every i ∈ {0, 1, 2, 3}, H i is the standard Euclidean space R N i . In this case, each linear operator W i is identified with a matrix in R N i ×N i-1 . To further simplify our setting, we assume that the operators R 1 , R 2 , and R 3 correspond to ReLU layers, that is, for each i ∈ {1, 2, 3},

∀x = (ξ k ) 1 k N i ) ∈ R N i R i x = ρ(ξ k ) 1 k N i
, where ρ : ξ → max{0, ξ}.

(2.1)

In view of (1.2), ρ = (1/2) Id +(1/2)| • | is 1/2-averaged since | • | has Lipschitz constant 1.
This implies that the operators R 1 , R 2 , and R 3 are also 1/2-averaged [START_REF] Combettes | Deep neural network structures solving variational inequalities, Set-Valued Var. Anal[END_REF]. Let us now introduce two parameters which will play a central role in our analysis, namely,

θ 3 = 1 4 W 3 W 2 W 1 + W 3 W 2 W 1 + W 3 W 2 W 1 + W 3 W 2 W 1 (2.2)
and

ϑ 3 = sup Λ 1 ∈D (N 1 ) {0,1} ,Λ 2 ∈D (N 2 ) {0,1} W 3 Λ 2 W 2 Λ 1 W 1 , (2.3) 
where • is the spectral norm and, for each i ∈ {1, 2}, D

(N i )
{0,1} denotes the set of N i × N i diagonal matrices with entries in {0, 1}. In this context, our main result states that both θ 3 and ϑ 3 are Lipschitz constants of the network, and that

W 3 W 2 W 1 ϑ 3 θ 3 W 3 W 2 W 1 .
(2.4)

In addition, if the entries of the matrices

(W i ) 1 i 3 are in [0, +∞[, then a Lipschitz constant of the network is W 3 W 2 W 1 .
Example 2.1 To illustrate the improvement of the proposed bound over the classical product norm estimate, we consider a fully connected network with N 0 = 8, N 1 = 10, N 2 = 6, and N 3 = 3. The entries of the matrices (W i ) 1 i 3 are generated randomly and independently according to a normal distribution. We evaluate the Lipschitz constant estimate θ 3 provided by (2.2) and the lower bound in (2.4). The average (resp. minimal) value of θ 3 /( W 1 W 2 W 3 ) computed over 1000 realizations is approximately equal to 0.6699 (resp. 0.5112), while the average (resp. minimal) value of

W 3 W 2 W 1 /( W 1 W 2 W 3
) is approximately equal to 0.3747 (resp. 0.1208). In addition, the average (resp. minimal) value of ϑ 3 /( W 1 W 2 W 3 ) computed over 1000 realizations is approximately equal to 0.4528 (resp. 0.2424). In agreement with (2.4), this estimation of the Lipschitz constant is better than θ 3 and significantly sharper than

W 1 W 2 W 3 .
In the remainder of this paper, we show that the above results hold in a much more general context (for an arbitrary number of layers m, arbitrary Hilbert spaces, and a wide class of activation operators), and that some of them can be extended to non-Euclidean norms. To establish these results, we need to introduce suitable mathematical tools in the next section.

Nonexpansive averaged activation operators

Nonlinear analysis tools and notation

We review some key facts and definitions which will be used subsequently; see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] for further information. Throughout, H is a real Hilbert space with power set 2 H , scalar product • | • , and associated norm • .

Let R : H → H be an operator and let α ∈ [0, 1]. Then R is nonexpansive if it is 1-Lipschitzian, α-averaged if there exists a nonexpansive operator Q : H → H such that R = (1 -α) Id +αQ, and firmly nonexpansive if it is 1/2-averaged. Let A : H → 2 H be a set-valued operator. We denote by gra A = (x, u) ∈ H × H u ∈ Ax the graph of A and by A -1 the inverse of A, i.e., the operator with graph (u, x) ∈ H × H u ∈ Ax . In addition, A is monotone if

(∀(x, u) ∈ gra A)(∀(y, v) ∈ gra A) x -y | u -v 0, (3.1) 
and maximally monotone if there exists no monotone operator B : H → 2 H such that gra A ⊂ gra B = gra A. If A is maximally monotone, then its resolvent J A = (Id +A) -1 is firmly nonexpansive. We denote by Γ 0 (H) the class of proper lower semicontinuous convex functions from

H to ]-∞, +∞]. Let f ∈ Γ 0 (H). The conjugate of f is Γ 0 (H) f * : u → sup x∈H ( x | u -f (x)) (3.2)
and the subdifferential of f is the maximally monotone operator

∂f : H → 2 H : x → u ∈ H (∀y ∈ H) y -x | u + f (x) f (y) . (3.3) 
For every x ∈ H, the unique minimizer of f + x -• 2 /2 is denoted by prox f x. We have prox f = J ∂f and prox f is therefore firmly nonexpansive.

Let C be a nonempty convex subset of H. Then ι C is the indicator function of C (it takes values 0 on C and +∞ on its complement) and d C : x → min y∈C x -y is its distance function. If C is closed, its projection operator is proj C = prox ι C .

Activators as averaged operators

We show via various illustrations that the assumption made in Model 1.1 on the activation operators covers many existing instances of feed-forward neural networks. Let us start with some key properties. Proposition 3.1 Let H be a real Hilbert space, let α ∈ [0, 1], and let R : H → H be α-averaged. Then the following hold:

(i) There exist a maximally monotone operator A : H → 2 H and a constant λ ∈ [0, 2] such that R = Id +λ(J A -Id). Furthermore, if λ 1, then R is firmly nonexpansive.

(ii) Suppose that H = R. Then there exist a function φ ∈ Γ 0 (R) and a constant λ ∈ [0, 2] such that R = Id +λ(prox φ -Id). Furthermore, R is increasing if λ 1 and R is odd if φ is even.

(iii) Suppose that H = R and that R is increasing. Then there exists φ ∈ Γ 0 (R) such that R = prox φ .

Next, we illustrate the pervasiveness of nonexpansive averaged activation operators in practice, starting with activation operators on the real line. (3.4)

Here are a few explicit instantiations of this proximal representation.

(i) If λ = 1, we obtain the class of proximal activation functions discussed in [START_REF] Combettes | Deep neural network structures solving variational inequalities, Set-Valued Var. Anal[END_REF] and which was seen there to include standard instances such as the unimodal sigmoid activation function [ [START_REF] Krizhevsky | Convolutional deep belief networks on CIFAR-10[END_REF] is

(∀x ∈ R) R(x) = prox ι [0,β] (x) = min{max{x, 0}, β}, (3.5) 
and, for β 1, the exponential linear unit (ELU) function [START_REF] Clevert | Fast and accurate deep network learning by exponential linear units (ELUs)[END_REF] is

(∀x ∈ R) R(x) = x, if x 0; β exp(x) -1 , if x < 0. (3.6)
It follows from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Cor. 24.5,Prop. 24.32,and Exa. 13.2(v)] that R = prox φ , where Bottom: In blue, the activation operator R of (3.8) is the proximity operator of φ, which corresponds to λ = 1 in (3.4). The green curve corresponds to the case when λ = 0.5 in (3.4), and the red one to the case when λ = 1.5. As stated in Proposition 3.1(i), relaxation parameters λ ∈ [0, 1] yield increasing activation functions. Non-monotonic averaged activation functions in (3.4) must be generated with relaxation parameters λ ∈ ]1, 2]. As seen in Proposition 3.1(ii), since φ is even, R is odd.

(∀x ∈ R) φ(x) =                0 if x 0; (x + β) ln x + β β -x - x 2 2 , if -β < x < 0; β - β 2 2 , if x = -β; +∞, if x < -β. (3.7) | -µ | µ µ 2 (π -µ) - • • φ(x) x +∞ +∞ | | -2 -4 | | 2 3 - -3- -1- 1 - 4 R(x) x
The softplus activation function [START_REF] Glorot | Deep sparse rectifier neural networks[END_REF] R : x → ln((1 + e x )/2) is also a proximity operator since it is nonexpansive and increasing (see Proposition 3.1(iii)).

(ii) The Geman-McClure function [START_REF] Geman | Bayesian image analysis: An application to single photon emission tomography[END_REF] 

(∀x ∈ R) R(x) = µ sign(x)x 2 1 + x 2 , where µ = 8 3 √ 3 , (3.8) 
will be employed in Example 3.

3. Set ψ = | • | -arctan | • | ∈ Γ 0 (R).
Then R is nonexpansive and R = µψ . The conjugate of µψ is 1-strongly convex and given by µψ * (•/µ), where

(∀x ∈ R) ψ * (x) =            arctan |x| 1 -|x| -|x|(1 -|x|), if |x| < 1; π 2 , if |x| = 1;
+∞, otherwise.

(3.9)

It follows from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Cor. 24.5] that R = prox φ with (see Fig. 2)

φ = µψ * • µ - | • | 2 2 : x →              µ arctan |x| µ -|x| -|x|(µ -|x|) - x 2 2 , if |x| < µ; µ(π -µ) 2 , if |x| = µ;
+∞, otherwise.

(3.10) (iii) Take φ = ι [0,+∞[ . Then we obtain the leaky ReLU activation function [START_REF] Maas | Rectifier nonlinearities improve neural network acoustic models[END_REF] for 0 < λ < 1, the ReLU activation function for λ = 1, and the absolute value activation function [START_REF] Bruna | Invariant scattering convolution networks[END_REF] for λ = 2.

(iv) The use of nonmonotonic activation functions has been advocated in various papers. They turn out to be α-averaged (alternatively, in view of Proposition 3.1(ii), they are of the form (3.4) with λ ∈ ]1, 2]). To compute the averagedness constant of a nonexpansive operator R : R → R, one can proceed as follows. According to (1.2), we must find the smallest α ∈ ]0, 1] such that Q = Id +α -1 (R -Id) remains nonexpansive. This means that the supremum of the modulus of the one-sided derivatives (the derivatives if they exist) over R should be one. Thus, we obtain α = 1 for the sine activation function R = sin [START_REF] Nakagawa | An artificial neuron model with a periodic activation function[END_REF], as well as for the absolute value function

R = | • | [17]
and the mirrored ReLU activation function [START_REF] Zhao | Suppressing the unusual: Towards robust CNNs using symmetric activation functions[END_REF] 

(∀x ∈ R) R(x) = proj [0,1] |x| = |x|, if |x| < 1; 1, otherwise, (3.11) 
α ≈ 0.546 for the swish activation function [START_REF] Ramachandran | Searching for activation functions[END_REF] 

(∀x ∈ R) R(x) = 10x 11(1 + exp(-x)) , (3.12) 
α ≈ 0.536 for the exponential linear squashing (ELiSH) function [START_REF] Basirat | The quest for the golden activation function[END_REF] 

(∀x ∈ R) R(x) = 10 11 ×        x 1 + exp(-x) , if x 0; exp(x) -1 1 + exp(-x) , if x < 0, (3.13) 
and α = (1 + 2/e)/2 for the Gaussian activation function R :

x → exp(-x 2 ) [40].
Next, is a technique for lifting a proximal activation operator from R to a Hilbert space H.

Example 3.3

Let H be a real Hilbert space, let λ ∈ [0, 2], let C be a nonempty closed convex subset of H, let φ ∈ Γ 0 (R) be an even function such that φ * is differentiable on R {0} with 0 as its unique minimizer. Set

(∀x ∈ H) Rx =    (1 -λ)x + λprox φ d C (x) d C (x) (x -proj C x), if x / ∈ C; (1 -λ)x, if x ∈ C. (3.14) Then R is λ/2-averaged. In particular, set λ = 1, C = {0}, µ = 8/(3 √ 
3) and define φ as in (3.10). Then we infer that the squashing function

R : x → µ x 1 + x 2 x (3.15)
used in capsule networks [START_REF] Sabour | Dynamic routing between capsules[END_REF] is a proximal activation operator.

Another construction that builds on activation functions on the real line is the following, which is reminiscent of the original multilayer perceptrons [START_REF] Rosenblatt | The perceptron: A probabilistic model for information storage and organization in the brain[END_REF].

Example 3.4

Let H be a separable real Hilbert space, let ∅ = K ⊂ N, let (e k ) k∈K be an orthonormal basis of H, and let α ∈ [0, 1]. For every k ∈ K, let k : R → R be α-averaged and such that k (0

) = 0. Define R : H → H : x → k∈K k ( x | e k )e k . Then R is α-averaged.
Example 3.5 Let N be a strictly positive integer, let ω ∈ [0, 1], and let C be a nonempty closed convex subset of R N . Set

R : R N → R N : (ξ k ) 1 k N → ω ξ ↑ k 1 k N + (1 -ω)proj C (ξ k ) 1 k N , (3.16) 
where (ξ ↑ k ) 1 k N denotes the vector obtained by sorting the components of

(ξ k ) 1 k N in ascending order. Then R is (1 + ω)/2-averaged. Remark 3.6 Set C = (ξ k ) 1 k N ∈ R N ξ 1 = • • • = ξ N in Example 3.5. Then R : R N → R N : (ξ k ) 1 k N → ωξ ↑ k + 1 -ω N N j=1 ξ j 1 k N . (3.17) Now set W : R N → R : (ξ k ) 1 k N → ξ N .
Then W • R corresponds to the max-average pooling performed on a block of size N [START_REF] Lee | Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree[END_REF]. When ω = 0, the standard average-pooling operation is obtained, which is associated with the activation operator proj C . When ω = 1, we recover the standard maxpooling operation [START_REF] Boureau | A theoretical analysis of feature pooling in visual recognition[END_REF], which is the main building block of maxout layers [START_REF] Goodfellow | Maxout networks[END_REF]. The max-pooling operator is nonexpansive.

Example 3.7 Let 2 N ∈ N, let {τ k } 1 k N -1 ⊂ ]-1, 1[, and let θ ∈ R. Set R : R N -1 → R N -1 : (ξ k ) 1 k N -1 → US [τ 1 ξ 1 , . . . , τ N -1 ξ N -1 , θ] , (3.18) 
where U ∈ R (N -1)×N is the matrix obtained by retaining the first (N -1) rows of the identity matrix of size N × N , and S :

R N → R N : (ξ k ) 1 k N → (ξ ↑ k ) 1 k N . Then R is (1 + max{|τ 1 |, . . . , |τ N -1 |})/2- averaged. Remark 3.8 Let N 3 be an odd integer, let (τ k ) 1 k N -1 ∈ ]-1, 1[ N -1
, let θ ∈ R, let R be the activation operator defined in Example 3.7, and set W :

R N -1 → R : (ξ k ) 1 k N -1 → ξ N+1 2 . Then, for every x = (ξ k ) 1 k N -1 ∈ R N -1 , (W • R)x = median{τ 1 ξ 1 , . . . , τ N -1 ξ N -1 , θ}. This corresponds to the median neuron model introduced in [2].
Remark 3.9 Multi-component averaged activation operators can be derived from the above examples. Indeed, let (H i ) 1 i M be real Hilbert spaces and let

H = H 1 ⊕ • • • ⊕ H M be their Hilbert direct sum. For every i ∈ {1, . . . , M}, let α i ∈ [0, 1] and let R i : H i → H i be α i -averaged. Then R : H → H : (x i ) 1 i M → (R i x i ) 1 i M is α-averaged with α = max 1 i M α i .

Lipschitz constants for layered networks

The objective of this section is to derive Lipschitz constants for networks conforming to Model 1.1. Note that, if m = 1, a Lipschitz constant of T is clearly θ 1 = W 1 since R 1 is nonexpansive. We shall therefore focus henceforth on the case m 2. Throughout, the following notation is employed.

Notation 4.1 Let 2 m ∈ N and k ∈ {1, . . . , m -1}. Then J m,k = (j 1 , . . . , j k ) ∈ N k 1 j 1 < • • • < j k m -1 , if k > 1; {1, . . . , m -1}, if k = 1 (4.1)
and, for every (j 1 , . . . , j k ) ∈ J m,k ,

σ m;{j 1 ,...,j k } = W m • • • • • W j k +1 W j k • • • • • W j k-1 +1 • • • W j 1 • • • • • W 1 . (4.2)
Theorem 4.2 Consider the setting of Model 1.1 with m 2. Set

(∀ J ⊂ {1, . . . , m -1}) β m;J = j∈J α j j∈{1,...,m-1} J (1 -α j ) (4.3)
and

θ m = β m;∅ W m • • • • • W 1 + m-1 k=1 (j 1 ,...,j k )∈J m,k β m;{j 1 ,...,j k } σ m;{j 1 ,...,j k } . (4.4)
Then θ m is a Lipschitz constant of T .

The following proposition features some important special cases.

Proposition 4.3 Consider the setting of Model 1.1 with m 2, and let θ m be defined as in (4.4). Then the following hold:

(i) W m • • • • • W 1 θ m m i=1 W i . (ii) Suppose that, for every i ∈ {1, . . . , m -1}, R i = Id. Then θ m = W m • • • • • W 1 .
(iii) Suppose that, for every i ∈ {1, . . . , m -1}, R i is purely nonexpansive in the sense that α i = 1 is its smallest averaging constant. Then θ m = m i=1 W i . (iv) Suppose that, for every i ∈ {1, . . . , m -1}, R i is firmly nonexpansive. Then

θ m = 1 2 m-1 W m • • • • • W 1 + m-1 k=1 (j 1 ,...,j k )∈J m,k σ m;{j 1 ,...,j k } . (4.5) (v) Set α 0 = θ 0 = 1. Then θ m = m-1 i=0 α i θ i m-1 q=i+1 (1 -α q ) W m • • • • • W i+1 . (4.6) Remark 4.4 Proposition 4.3(i)-4.3(iii)
show that the tightest bound in terms of stability corresponds to a linear network, while the loosest corresponds to a network with nonlinearities having no stronger property than nonexpansiveness.

We close this section by observing that the Lipschitz constant exhibited in Theorem 4.2 is a componentwise increasing function of the averagedness constants of the activation operators. 

. , α m-1 ) ∈ [0, 1] m-1 . Let (α i ) 1 i m-1 ∈ [0, 1] m-1 and (α i ) 1 i m-1 ∈ [0, 1] m-1 be such that (∀i ∈ {1, . . . , m -1}) α i α i . Then θ m (α 1 , . . . , α m-1 ) θ m (α 1 , . . . , α m-1 ).
Remark 4.6 Proposition 4.5 suggests that, in terms of stability, it is better to use proximal activation operators, such as those listed in Example 3.2(i)-(ii), than α-averaged activation operators for which α > 1/2, such as those mentioned in Example 3.2(iv).

Networks using separable activation operators

We show that sharper Lipschitz constants can be derived in the case of networks featuring the type of separable structure described in Example 3.4. Note that this class of networks is the most commonly used, standard convnets being special cases. The following notation will be used. Notation 5.1 Let H be a separable real Hilbert space, let ∅ = K ⊂ N, let E = (e k ) k∈K be an orthonormal basis of H, and let I be a nonempty bounded subset of R. Then

D I (E) = Λ : H → H : x → k∈K λ k x | e k e k {λ k } k∈K ⊂ I .
(5.1)

General results

Theorem 5.2 Consider the setting of Model 1.1 with m 2. For every i ∈ {1, . . . , m -1}, suppose that

H i is separable, let ∅ = K i ⊂ N, let E i = (e i,k
) k∈K i be an orthonormal basis of H i , and, for every k ∈ K i , let i,k : R → R be α i -averaged and such that i,k (0) = 0. Assume that

(∀i ∈ {1, . . . , m -1}) R i : H i → H i : x → k∈K i i,k ( x | e i,k )e i,k (5.2) 
and define

ϑ m = s u p Λ 1 ∈D {1-2α 1 ,1} (E 1 )
. . .

Λ m-1 ∈D {1-2α m-1 ,1} (E m-1 ) W m • Λ m-1 • • • • • Λ 1 • W 1 . (5.3) 
Then the following hold:

(i) ϑ m is a Lipschitz constant of the operator T of (1.3).

(ii) Define θ m as in (4.4).

Then W m • • • • • W 1 ϑ m θ m .
Remark 5.3 An expression similar to (5.3) was proposed empirically in [START_REF] Scaman | Lipschitz regularity of deep neural networks: Analysis and efficient estimation[END_REF] for a multilayer perceptron operating on finite-dimensional spaces under the additional assumption that the activation operators are continuously differentiable and firmly nonexpansive.

Remark 5.4 In Theorem 5.2, make the additional assumption that, for some i ∈ {1, . . . , m -1}, the functions ( i,k ) k∈K i are increasing. Then it follows from Proposition 3.1(iii) that there exist functions

(φ i,k ) k∈K i in Γ 0 (R) such that (∀k ∈ K i ) i,k = prox φ i,k .
In addition, for every k ∈ K i , since i,k (0) = 0 and since the set of minimizers of φ i,k coincides with the set of fixed points of prox φ i,k [8, Proposition 12.29], we deduce that φ i,k is minimized at 0. Furthermore, α i = 1/2 and R i = prox ϕ i , where (∀x

∈ H i ) ϕ i (x) = k∈K i φ i,k ( x | e i,k
). Such a construction is used in [START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF].

As in Proposition 4.5, the Lipschitz constant exhibited in Theorem 5.2 turns out to be a componentwise increasing function of the averagedness constants of the activation operators. Proposition 5.5 Consider the setting of Model 1.1 with m 2. For every i ∈ {1, . . . , m -1}, suppose that H i is separable, let ∅ = K i ⊂ N, and let E i = (e i,k ) k∈K i be an orthonormal basis of H i . Define

ϑ m : [0, 1] m-1 → [0, +∞[ by ϑ m : (α 1 , . . . , α m-1 ) → sup Λ 1 ∈D {1-2α 1 ,1} (E 1 )
. . .

Λ m-1 ∈D {1-2α m-1 ,1} (E m-1 ) W m • Λ m-1 • • • • • Λ 1 • W 1 .
(5.4)

Let (α i ) 1 i m-1 ∈ [0, 1] m-1 and (α i ) 1 i m-1 ∈ [0, 1] m-1 be such that (∀i ∈ {1, . . . , m -1}) α i α i . Then ϑ m (α 1 , . . . , α m-1 ) ϑ m (α 1 , . . . , α m-1 ).

Extension to non-Hilbertian norms

In certain applications, Hilbertian norms may not be the most relevant measures to quantify errors. We now state a variant of Theorem 5.2 which holds for alternative norms. It involves embeddings of Hilbert spaces; standard examples can be found in [START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications[END_REF]. Let us also point out that these embedding conditions are automatically satisfied if the spaces are finite-dimensional. Proposition 5.6 Consider the setting of Model 1.1 with m 2. For every i ∈ {1, . . . , m}, suppose that

H i is separable, let ∅ = K i ⊂ N, let E i = (e i,k
) k∈K i be an orthonormal basis of H i , and, for every k ∈ K i , let i,k : R → R be α i -averaged and such that i,k (0) = 0. Let G 0 be the normed space obtained by equipping the vector space underlying H 0 with a norm for which G 0 is continuously embedded in H 0 , and let G m be the normed space obtained by equipping the vector space underlying H m with a norm for which H m is continuously embedded in G m . Assume that

(∀i ∈ {1, . . . , m}) R i : H i → H i : x → k∈K i i,k x | e i,k e i,k .
(5.5)

Then

ϑ m = s u p Λ 1 ∈D {1-2α 1 ,1} (E 1 )
. . .

Λm∈D {1-2αm ,1} (Em) Λ m • W m • • • • • Λ 1 • W 1 G 0 ,Gm (5.6 
)

is a Lipschitz constant of T : G 0 → G m .
Corollary 5.7 Consider the setting of Model 1.1 with m 2. Define G 0 and (R i ) 1 i m as in Proposition 5.6, let p ∈ [1, +∞], and let {ω k } k∈Km ⊂ ]0, +∞[ be such that one of the following holds:

(i) p ∈ [1, 2[ and k∈Km ω 2/(2-p) k < +∞. (ii) p ∈ [2, +∞] and sup k∈Km ω k < +∞.
Let G m be the normed space obtained by equipping the vector space underlying H m with the norm

∀x ∈ H m x Gm =          k∈Km ω k | x | e m,k | p 1/p , if p < +∞; sup k∈Km ω k | x | e m,k |, if p = +∞.
(5.7)

Then a Lipschitz constant of T : G 0 → G m is ϑ m = s u p Λ 1 ∈D {1-2α 1 ,1} (E 1 )
. . .

Λ m-1 ∈D {1-2α m-1 ,1} (E m-1 ) W m • Λ m-1 • • • • • Λ 1 • W 1 G 0 ,Gm .
(5.8)

Networks with positive weights

Under certain positivity assumptions, the constant ϑ m of (5.3) and (5.8) can be simplified.

Assumption 5.8 Consider the setting of Model 1.1 with m 2. For every i ∈ {0, . . . , m}, suppose that H i is separable, let ∅ = K i ⊂ N, and let E i = (e i,k ) k∈K i be an orthonormal basis of H i . For every

(k 0 , . . . , k m ) ∈ K 0 × • • • × K m , set µ k 0 ,...,km = W 1 e 0,k 0 | e 1,k 1 • • • W m e m-1,k m-1 | e m,km .
(5.9)

We suppose that

(∀(k 0 , . . . , k m ) ∈ K 0 × • • • × K m )(∀(l 0 , . . . , l m-1 ) ∈ K 0 × • • • × K m-1 )
µ k 0 ,...,k m-1 ,km µ l 0 ,...,l m-1 ,km 0. (5.10)

Example 5.9 Consider the particular case of Model 1.1 in which, for every i ∈ {0, . . . , m}, N i ∈ N {0}, H i = R N i , E i is the canonical basis of R N i and, for every k ∈ {1, . . . , N i }, χ i,k ∈ {-1, 1} with the additional condition that, for every l ∈ {1, . . . , N 0 }, χ 0,k = χ 0,l . Further, for every i ∈ {1, . . . , m}, the matrix

W i = [w i,k,l ] 1 k N i ,1 l N i-1 ∈ R N i ×N i-1 satisfies (∀k ∈ {1, . . . , N i })(∀l ∈ {1, . . . , N i-1 }) w i,k,l = χ i,k χ i-1,l |w i,k,l |.
(5.11)

Then Assumption 5.8 holds. This is true in particular if, for every i ∈ {1, . . . , m}, {w i,k,l } 1 k N i ,1 l N i-1 ⊂ [0, +∞[, which corresponds to positively weighted networks. See [START_REF] Chorowski | Learning understandable neural networks, with nonnegative weight constraints[END_REF] for the design of such networks.

In the following result, a Lipschitz constant of the network (1.3) coincides with that of the linear network W m • • • • • W 1 for standard choices of norms. Proposition 5.10 Suppose that the assumptions of Corollary 5.7 are satisfied, that

∀(ξ k ) k∈K 0 ∈ 2 (K 0 ) k∈K 0 ξ k e 0,k G 0 = k∈K 0 |ξ k |e 0,k G 0 , (5.12) 
and that Assumption 5.8 holds. Then the Lipschitz constant ϑ m of T :

G 0 → G m in (5.8) reduces to ϑ m = W m • • • • • W 1 G 0 ,Gm .
We show below that the Lipschitz constant of a positively weighted network associated with weight operators (W i ) 1 i m and nonseparable activation operators is not necessarily

W m • • • • • W 1 .

Example 5.11 Consider the toy version of Model 1.1 in which

m = 2, H 0 = H 1 = H 2 = R 2 . Set ϕ : x = (ξ 1 , ξ 2 ) → φ(ξ 1 ) + φ(ξ 2 ), where φ : R → ]-∞, +∞] : ξ →        (1 + ξ) ln(1 + ξ) + (1 -ξ) ln(1 -ξ) -ξ 2 2 if |ξ| < 1; ln(2) -1/2 if |ξ| = 1; +∞, if |ξ| > 1.
(5.13) Let ξ ∈ ]-1, 1[ = dom φ = dom (Id +φ ) = ran prox φ . Then ξ + φ (ξ) = arctanh(ξ) and therefore = (Id +φ ) -1 = tanh. Consequently, we derive from [24, Example 2.13] that 3), we get T (x + z) -T x / z ≈ 58.18, which shows that, although W 1 and W 2 have strictly positive entries, the Lipschitz constant is larger than W 2 W 1 . Note that, in this scenario, the constant of (4.4) is

(∀x = (ξ 1 , ξ 2 ) ∈ R 2 ) prox ϕ x = tanh(ξ 1 ), tanh(ξ 2 ) . Now set b 1 = b 2 = 0, U = 1 2 √ 3 1 1 - √ 3 , W 1 = 1 3 3 3 , W 2 = 10 2 7 4 , (5.14) 
R 1 = prox ϕ•U = U • prox ϕ • U [
θ 2 = ( W 2 W 1 + W 2 W 1 )/2 ≈ 60.50.
(5.15)

A sharper Lipschitz constant can be obtained by noticing that this network is equivalent to a network in which W 1 , W 2 , and R 1 are replaced by W 1 = UW 1 , W 2 = W 2 U , and R 1 = prox ϕ . Since R 1 is separable, the constant of (5.4) is ϑ 2 ≈ 59.54. In contrast, the naive bound of (1.4) is about 66.29.

For separable activators in finite-dimensional spaces, we have the following result, which does not require Assumption 5.8.

Proposition 5.12 Consider the setting of Model 1.1 with m

2. Suppose that the assumptions of Corollary 5.7 hold and that • G 0 satisfies (5.12). In addition, assume that, for every i ∈ {0, . . . , m}, H i = R N i and E i is the canonical basis of R N i . For every i ∈ {1, . . . , m}, let A i denote the matrix obtained by taking the absolute values of the entries of the matrix W i . Then the Lipschitz constant ϑ m of T :

G 0 → G m in (5.8) satisfies ϑ m A m • • • A 1 G 0 ,Gm .

Conclusion

Using advanced tools from nonlinear analysis, we have derived sharp Lipschitz constants for layered network structures involving compositions of nonexpansive averaged operators and affine operators. This framework has been shown to model feed-forward neural networks having a chain graph structure. Extending these results to networks having a more general dyadic acyclic graph (DAG) structure would be of interest. Among the many avenues of future research that this work suggests, it would be interesting to exploit it to devise training strategies to achieve better robustness. The proposed nonexpansive operator machinery could also be used to design network architectures with smaller Lipschitz constants. Finally, computing local Lipschitz constants could be of interest in practice and constitutes an important topic of future research.

A Technical lemmas

Lemma A.1 [START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF]Proposition 2.4] Let R be a function defined from R to R. Then R is the proximity operator of a function in Γ 0 (R) if and only if it is nonexpansive and increasing.

Lemma A.2 Let q ∈ N {0} and, for every i ∈ {1, . . . , q}, let S i be a nonempty subset of a real vector space X i . Let ψ :

X 1 × • • • × X q → R
be a function which is convex with respect to each of its q coordinates. Set S = S 1 × • • • × S q and let conv S be its convex envelope. Then sup ψ(S) = sup ψ(conv S).

Proof. Set µ = sup ψ(S). Clearly, µ sup ψ(conv S). Now take x ∈ conv S. Then x = j∈I α j x j , where (α j ) j∈I is a finite family in ]0, 1] such that j∈I α j = 1 and, for every j ∈ I, x j = (x j,i ) 1 i q , with (∀i ∈ {1, . . . , q}) x j,i ∈ S i . Note that (∀(j 1 , . . . , j q ) ∈ I q ) (x j 1 ,1 , . . . , x jq,q ) ∈ S. Therefore,

ψ(x) = ψ j 1 ∈I α j 1 x j 1 ,1 , . . . , jq∈I α jq x jq,q j 1 ∈I α j 1 ψ x j 1 ,1 , j 2 ∈I
α j 2 x j 2 ,2 , . . . , jq∈I α jq x jq,q . . . Proof. We saw in Example 3.4 that R is well defined. We have

Rx -Ry = k∈K k ( x | e k ) -k ( y | e k ) e . (A.2)
For every k ∈ K, there exists a nonexpansive θ k : R → R such that k = (1 -α) Id +αθ k and, therefore,

k ( x | e k ) -k ( y | e k ) = (1 -α)( x | e k -y | e k ) + α θ k ( x | e k ) -θ k ( y | e k ) . (A.3)
Consequently, for every k ∈ K, there exists

λ k ∈ [1 -2α, 1] such that (1 -α) x | e k -y | e k + α θ k ( x | e k ) -θ k ( y | e k ) = λ k ( x | e k -y | e k ). (A.4)
We deduce from (A.2) that Rx -Ry = k∈K λ k ( x | e k -y | e k )e k , as claimed. 

B Proofs of main results

(∀x ∈ H) Rx =    prox φ x x x, if x = 0; 0, if x = 0 (B.1)
and hence, in view of Example 3.2(ii), to (3.15).

B.3 Proof of Example 3.4

Let x ∈ H and y ∈ H. It follows from the nonexpansiveness of the functions

( k ) k∈K that k∈K k ( x | e k ) 2 = k∈K k ( x | e k ) -k (0) 2 k∈K x | e k -0 2 = x 2 . (B.2)
Hence, R is well defined. For every k ∈ K, by (1.2) there exists a nonexpansive function

θ k : R → R such that k = (1 -α) Id +αθ k . Hence, Rx = (1 -α)x + αQx, where Qx = k∈K θ k ( x | e k )e k . Therefore, Qx -Qy 2 = k∈K θ k ( x | e k ) -θ k ( y | e k ) 2 k∈K x | e k -y | e k 2 = x -y 2 . (B.3)
This shows that Q is nonexpansive and hence that R is α-averaged.

B.4 Proof of Example 3.5

Let S be the sorting operator of Example 3.7. Then

(∀x ∈ R N )(∀y ∈ R N ) Sx -Sy 2 = Sx 2 -2 Sx | Sy + Sy 2 = x 2 -2 Sx | Sy + y 2 x 2 -2 x | y + y 2 (B.4) = x -y 2 , (B.5)
where (B.4) follows from [START_REF] Hardy | Inequalities[END_REF]Thm. 368]. This shows that S is nonexpansive. Furthermore, Q = 2proj C -Id is nonexpansive [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Cor. 4.18]. Note that

(1 -ω)proj C + ωS = 1 - 1 + ω 2 Id + 1 + ω 2 1 -ω 1 + ω Q + 2ω 1 + ω S . (B.6) Since ((1 -ω)Q + 2ωS)/(1 + ω) is nonexpansive as a convex combination of nonexpansive operators, the operator (1 -ω)proj C + ωS is (1 + ω)/2-averaged.

B.5 Proof of Example 3.7

Set A = Diag(τ 1 , . . . , τ N -1 ). Let x and y be in R 

B.6 Proof of Theorem 4.2

For every i ∈ {1, . . . , m}, P i = R i (• + b i ) is α i -averaged and, therefore, there exists a nonexpansive operator

Q i : H i → H i such that P i = (1 -α i ) Id +α i Q i . Since T = P m • W m • • • • • P 1 • W 1 and P m is nonexpansive, it suffices to show that θ m is a Lipschitz constant of W m • • • • • P 1 • W 1 . (B.8)
Let us prove this result by induction. Let x ∈ H 0 and y ∈ H 0 . If m = 2, we derive from the nonexpansiveness of Q 1 that

(W 2 • P 1 • W 1 )x -(W 2 • P 1 • W 1 )y = (W 2 • ((1 -α 1 ) Id +α 1 Q 1 ) • W 1 )x -(W 2 • ((1 -α 1 ) Id +α 1 Q 1 ) • W 1 )y (1 -α 1 ) (W 2 • W 1 )(x -y) + α 1 (W 2 • Q 1 • W 1 )x -(W 2 • Q 1 • W 1 )y (1 -α 1 ) W 2 • W 1 x -y + α 1 W 2 Q 1 (W 1 x) -Q 1 (W 1 y) (1 -α 1 ) W 2 • W 1 x -y + α 1 W 2 W 1 (x -y) (1 -α 1 ) W 2 • W 1 + α 1 W 2 W 1 x -y . (B.9)
Hence, T is Lipschitzian with constant

(1 -α 1 ) W 2 • W 1 + α 1 W 2 W 1 = β 2;∅ W 2 • W 1 + β 2;{1} W 2 W 1 = θ 2 . (B.10)
Now assume that m > 2 and that (B.8) holds at order m -1. Then

(W m • P m-1 • • • • • P 1 • W 1 )x -(W m • P m-1 • • • • • P 1 • W 1 )y = (W m • ((1 -α m-1 ) Id +α m-1 Q m-1 ) • • • • • P 1 • W 1 )x -(W m • ((1 -α m-1 ) Id +α m-1 Q m-1 ) • • • • • P 1 • W 1 )y (1 -α m-1 ) (W m • W m-1 • • • • • P 1 • W 1 )x -(W m • W m-1 • • • • • P 1 • W 1 )y + α m-1 (W m • Q m-1 • W m-1 • • • • • P 1 • W 1 )x -(W m • Q m-1 • W m-1 • • • • • P 1 • W 1 )y (1 -α m-1 ) (W m • W m-1 • • • • • P 1 • W 1 )x -(W m • W m-1 • • • • • P 1 • W 1 )y + α m-1 W m (Q m-1 • W m-1 • • • • • P 1 • W 1 )x -(Q m-1 • W m-1 • • • • • P 1 • W 1 )y .
Hence, the nonexpansiveness of Q m-1 yields

(W m • P m-1 • • • • • P 1 • W 1 )x -(W m • P m-1 • • • • • P 1 • W 1 )y (1 -α m-1 ) (W m • W m-1 • P m-2 • • • • • W 1 )x -(W m • W m-1 • P m-2 • • • • • W 1 )y + α m-1 W m (W m-1 • P m-2 • • • • • P 1 • W 1 )x -(W m-1 • P m-2 • • • • • P 1 • W 1 )y . (B.11)
On the other hand, the induction hypothesis yields

(W m-1 • P m-2 • • • • • P 1 • W 1 )x -(W m-1 • P m-2 • • • • • P 1 • W 1 )y θ m-1 x -y = β m-1;∅ W m-1 • • • • • W 1 + m-2 k=1 (j 1 ,...,j k )∈J m-1,k β m-1;{j 1 ,...,j k } σ m-1;{j 1 ,...,j k } x -y . (B.12)
Similarly, replacing W m-1 by W m • W m-1 above, we get

((W m • W m-1 ) • P m-2 • • • • • P 1 • W 1 )x -((W m • W m-1 ) • P m-2 • • • • • P 1 • W 1 )y β m-1;∅ W m • W m-1 • • • • • W 1 + m-2 k=1 (j 1 ,...,j k )∈J m-1,k β m-1;{j 1 ,...,j k } σ m;{j 1 ,...,j k } x -y .
(B.13) Using (B.11), and then inserting (B.13) and (B.12), we obtain

(W m • P m-1 • • • • • P 1 • W 1 )x -(W m • P m-1 • • • • • P 1 • W 1 )y (1 -α m-1 ) (W m • W m-1 • P m-2 • • • • • W 1 )x -(W m • W m-1 • P m-2 • • • • • W 1 )y + α m-1 W m (W m-1 • P m-2 • • • • • P 1 • W 1 )x -(W m-1 • P m-2 • • • • • P 1 • W 1 )y (1 -α m-1 )× β m-1;∅ W m • W m-1 • • • • • W 1 + m-2 k=1 (j 1 ,...,j k )∈J m-1,k β m-1;{j 1 ,...,j k } σ m;{j 1 ,...,j k } x -y + α m-1 W m × β m-1;∅ W m-1 • • • • • W 1 + m-2 k=1 (j 1 ,...,j k )∈J m-1,k β m-1;{j 1 ,...,j k } σ m-1;{j 1 ,...,j k } x -y . (B.14)
Furthermore, we deduce from (4.3) that [START_REF] Briceño-Arias | Monotone operator methods for Nash equilibria in non-potential games[END_REF] which implies that, if m -1 ∈ {j 1 , . . . , j k }, then β m;{j 1 ,...,j k ,m-1} = α m-1 β m-1;{j 1 ,...,j k } . Hence, (B.14) yields

(∀ J ⊂ {1, . . . , m -1}) β m;J = (1 -α m-1 )β m-1;J , if m -1 ∈ J; α m-1 β m-1;J {m-1} , if m -1 ∈ J. (B.15) Therefore      β m;∅ = (1 -α m-1 )β m-1;∅ β m;{j 1 ,...,j k } = (1 -α m-1 )β m-1;{j 1 ,...,j k } if m -1 / ∈ {j 1 , . . . , j k } β m;{j 1 ,...,j k } = α m-1 β m-1;{j 1 ,...,j k } {m-1} if m -1 ∈ {j 1 , . . . , j k }, (B.
(W m • P m-1 • • • • • P 1 • W 1 )x -(W m • P m-1 • • • • • P 1 • W 1 )y / x -y β m;∅ W m • W m-1 • • • • • W 1 + m-2 k=1 (j 1 ,...,j k )∈J m-1,k (1 -α m-1 )β m-1;{j 1 ,...,j k } σ m;{j 1 ,...,j k } + α m-1 β m-1;∅ W m W m-1 • • • • • W 1 + m-2 k=1 (j 1 ,...,j k )∈J m-1,k α m-1 β m-1;{j 1 ,...,j k } W m σ m-1;{j 1 ,...,j k } = β m;∅ W m • W m-1 • • • • • W 1 + β m;m-1 σ m;{m-1} + m-2 k=1 (j 1 ,...,j k )∈J m,k \{m-1} β m;{j 1 ,...,j k } σ m;{j 1 ,...,j k } + m-2 k=1 (j 1 ,...,j k )∈J m-1,k β m;{j 1 ,...,j k ,m-1} σ m;{j 1 ,...,j k ,m-1} = β m;∅ W m • • • • • W 1 + m j=1 β m;{j} σ m;{j} + m-2 k=2 (j 1 ,...,j k )∈J m,k \{m-1} β m;{j 1 ,...,j k } σ m;{j 1 ,...,j k } + m-1 k=2 (j 1 ,...,j k )∈J m,k j k =m-1 β m;{j 1 ,...,j k } σ m;{j 1 ,...,j k } = β m;∅ W m • • • • • W 1 + m-1 k=1 (j 1 ,...,j k )∈J m,k β m;{j 1 ,...,j k } σ m;{j 1 ,...,j k } = θ m . (B.17)
Thus, we obtain

(W m • P m-1 • • • • • P 1 • W 1 )x -(W m • P m-1 • • • • • P 1 • W 1 )y θ m x -y , (B.18)
which establishes (B.8).

B.7 Proof of Proposition 4.3

Define (β m;J ) J⊂{1,...,m-1} as in (4.3). (i): For every k ∈ {1, . . . , m -1} and every (j 1 , . . . , j k ) ∈ J m,k , (4.2) yields

W m • • • • • W 1 σ m;{j 1 ,...,j k } m i=1 W i . (B.19)
Consequently, it follows from (4.4) that

W m • • • • • W 1 J⊂{1,...,m-1} β m;J θ m m i=1 W i J⊂{1,...,m-1} β m;J . (B.20)
In view of (4.3), (β m;J ) J⊂{1,...,m-1} is the discrete probability distribution of a vector of m -1 independent Bernoulli random variables. Hence, J⊂{1,...,m-1} β m;J = 1 in (B.20). (ii): For every i ∈ {1, . . . , m -1}, α i = 0. Therefore, in view of (4.3),

(∀J ⊂ {1, . . . , m -1}) β m;J = 1, if J = ∅; 0, if J = ∅. (B.21)
Hence, the result follows from (4.4). (iii): For every i ∈ {1, . . . , m -1}, α i = 1. Therefore, in view of (4.3), 

(∀J ⊂ {1, . . . , m -1}) β m;J = 1, if J = {1, . . . ,
= m-1 k=1 1 j 1 <...<j k m-1 β m;{j 1 ,...,j k } W m • • • • • W j k +1 W j k • • • • • W j k-1 +1 • • • W j 1 • • • • • W 1 . (B.23)
We decompose this expression in a sum of terms depending on the value i taken by j k , namely, 

β m;{i} W m • • • • • W i+1 W i • • • • W 1 + i-1 k=2 1 j 1 <...<j k-1 i-1 β m;{j 1 ,...,j k-1 ,i} W m • • • • • W i+1 W i • • • • • W j k-1 +1 • • • W j 1 • • • • • W 1 . (B.24)
In addition, for every (j 1 , . . . , j k-1 ) ∈ J i,k-1 , we derive from (4.3) that We infer from (4.4) that

β m;{j 1 ,...,j k-1 ,i} = j∈{j 1 ,...,j k-1 ,i} α j j∈{1,...,m-1} {j 1 ,...,j k-1 ,i} (1 -α j ) = α i j∈{j 1 ,...,j k-1 } α j m-1 q=i+1 (1 -α q ) j∈{1,...,i-1} {j 1 ,...,j k-1 } (1 -α j ) = α i m-1 q=i+1 (1 -α q ) β i;
α i m-1 q=i+1 (1 -α q ) W m • • • • • W i+1 β i;∅ W i • • • • W 1 + i k=2 1 j 1 <...<j k-1 i-1 β i;{j 1 ,...,j k-1 } W i • • • • • W j k-1 +1 • • • W j 1 • • • • • W 1 = m-1 i=1 α i θ i m-1 q=i+1 (1 -α q ) W m • • • • • W i+1 , (B.
θ m (α 1 , . . . , α m-1 ) = (1 -α l )β m,l;∅ W m • • • • • W 1 + m-1 k=1 (j 1 ,...,j k )∈J m,k l∈{j 1 ,...,j k } α l β m,l;{j 1 ,...,j k } {l} σ m;{j 1 ,...,j k } + m-2 k=1 (j 1 ,...,j k )∈J m,k l ∈{j 1 ,...,j k } (1 -α l )β m,l;{j 1 ,...,j k } σ m;{j 1 ,...,j k } = β m,l;∅ (1 -α l ) W m • • • • • W 1 + α l W m • • • • W l+1 W l • • • • • W 1 + m-2 k=1 (j 1 ,...,j k )∈J m,k l ∈{j 1 ,...,j k } β m,l;{j 1 ,...,j k } (1 -α l )σ m;{j 1 ,...,j k } + α l σ m;{j 1 ,...,j k }∪{l} . (B.29)
In view of (B.28) we conclude that 

∂θ m ∂α l (α 1 , . . . , α m-1 ) = β m,l;∅ W m • • • • W l+1 W l • • • • • W 1 -W m • • • • • W 1 + m-2 k=1 (
i = R i (• + b i ) and (∀k ∈ K i ) π i,k = i,k (• + b i | e i,k
T x -T y (W m • P m-1 • W m-1 • • • • • P 1 • W 1 )x -(W m • P m-1 • W m-1 • • • • • P 1 • W 1 )y . (B.31)
In view of Lemma A.3, for every i ∈ {1, . . . , m -1}, there exists

Λ i ∈ D [1-2α i ,1] (E i ) such that (P i • W i • • • • • P 1 • W 1 )x -(P i • W i • • • • • P 1 • W 1 )y = Λ i (W i • P i-1 • • • • • P 1 • W 1 )x -(W i • P i-1 • • • • • P 1 • W 1 )y . (B.32)
Recursive application of this identity yields

(P m-1 • W m-1 • • • • • P 1 • W 1 )x -(P m-1 • W m-1 • • • • • P 1 • W 1 )y = (Λ m-1 • W m-1 • • • • • Λ 1 • W 1 )(x -y). (B.33) This implies that T x -T y W m • Λ m-1 • • • • • Λ 1 • W 1 x -y . Thus, ϑ m = s u p Λ 1 ∈D [1-2α 1 ,1] (E 1 )
. . .

Λ m-1 ∈D [1-2α m-1 ,1] (E m-1 ) W m • Λ m-1 • • • • • Λ 1 • W 1 . (B.34) is a Lipschitz constant of T . Set S = {1 -2α 1 , 1} K 1 × • • • × {1 -2α m-1 , 1} K m-1 and C = [1-2α 1 , 1] K 1 × • • • × [1 -2α m-1 , 1] K m-1 . For every i ∈ {1, . . . , m -1}, Λ i : H i → H i is generated from a sequence (λ i,k ) k∈K i in [1 -2α i , 1
] via the construction of (5.1). The function

ψ : C → R (λ 1,k ) k∈K 1 , . . . , (λ m-1,k ) k∈K m-1 → W m • Λ m-1 • • • • • Λ 1 • W 1 (B.35)
is convex with respect to each of its coordinates. Hence, we deduce from Lemma A.2 that sup ψ(C) = sup ψ(conv S) = sup ψ(S), as claimed.

(ii): For every i ∈ {1, . . . , m-1}, the identity operator

Id i of H i lies in D {1-2α i ,1} (E i ). Hence, ϑ m W m • Id m-1 • • • • • Id 1 •W 1 = W m • • • • • W 1 . For every i ∈ {1, . . . , m -1}, let Λ i ∈ D {1-2α i ,1} (E i )
and note that the linear operator

Θ i =    Λ i -(1 -α i ) Id i α i , if α i = 0; 0, otherwise (B.36)
is nonexpansive. Using the same kind of decomposition as in the proof of Theorem 4.2 yields

W m • Λ m-1 • • • • • Λ 1 • W 1 = W m • (1 -α m-1 ) Id m-1 +α m-1 Θ m-1 • • • • • (1 -α 1 ) Id 1 +α 1 Θ 1 • W 1 θ m
and allows us to conclude that ϑ m θ m .

B.10 Proof of Proposition 5.5

It follows from (B.34) that ϑ m (α 1 , . . . , α m-1 ) = sup

Λ 1 ∈D [1-2α 1 ,1] (E 1 )
. . .

Λ m-1 ∈D [1-2α m-1 ,1] (E m-1 ) W m • Λ m-1 • • • • • Λ 1 • W 1 sup Λ 1 ∈D [1-2α 1 ,1] (E 1 )
. . .

Λ m-1 ∈D [1-2α m-1 ,1] (E m-1 ) W m • Λ m-1 • • • • • Λ 1 • W 1 = ϑ m (α 1 , . . . , α m-1 ). (B.37)

B.11 Proof of Proposition 5.6

Let us first note that, because of the embeddings, W 1 : G 0 → H 1 is continuous and, likewise, every

Λ m ∈ D [1-2αm,1] (E m ) is continuous from H m to G m . Hence, for every (Λ i ) 1 i m ∈ D [1-2α 1 ,1] (E 1 ) × • • • × D [1-2αm,1] (E m-1 ), Λ m • W m • • • • • Λ 1 • W 1 : G 0 → G m is continuous.
We now follow the same argument as in the proof of Theorem 5.2. Let x and y be in G 0 . For every i ∈ {1, . . . , m}, there exists

Λ i ∈ D [1-2α i ,1] (E i ) such that T x -T y = (Λ m • W m • Λ m-1 • • • • • Λ 1 • W 1 )(x -y). Thus, T x -T y Gm Λ m • W m • Λ m-1 • • • • • Λ 1 • W 1 G 0 ,Gm
x -y G 0 , which leads to (5.6).

B.12 Proof of Corollary 5.7

Since, for every x ∈ H m , ( x | e m,k ) k∈Km ∈ 2 (K m ), it follows from Hölder's inequality that • Gm in (5.7) is well defined and does provide a continuous embedding of H m in G m . As in the proof of Theorem 5.2, it is enough to take the supremum in (5.8) 

over D = D [1-2α 1 ,1] (E 1 ) × • • • × D [1-2α m-1 ,1] (E m-1 ). For every i ∈ {1, . . . , m}, let Λ i ∈ D [1-2α i ,1] (E i ). Then Λ m • W m • Λ m-1 • • • • • Λ 1 • W 1 G 0 ,Gm Λ m Gm,Gm W m • Λ m-1 • • • • • Λ 1 • W 1 G 0 ,
Id m •W m • Λ m-1 • • • • • Λ 1 • W 1 G 0 ,Gm , (B.40)
which concludes the proof.

B.13 Proof of Proposition 5.10

For every i ∈ {1, . . . , m -1}, let Λ i ∈ D {1-2α i ,1} (E i ) and let (λ i,k ) k∈K i be the associated sequence in (5.1). Define 

W m • Λ m-1 • • • • • Λ 1 • W 1 G 0 ,Gm = Λ m • V m • Λ m-1 • W m-1 • • • • • Λ 1 • W 1 G 0 ,Gm = V m • Λ m-1 • W m-1 • • • • • Λ 1 • W 1 G 0 ,Gm . (B.43)
Therefore, without loss of generality, we assume that

∀(k 0 , . . . , k m ) ∈ K 0 × • • • × K m µ k 0 ,...,km 0. (B.44)
Let us now show that

W m • Λ m-1 • • • • • Λ 1 • W 1 G 0 ,Gm W m • • • • • W 1 G 0 ,Gm . (B.45)
Let ε ∈ ]0, +∞[. Then there exists x ∈ H 0 such that x G 0 = 1 and

W m • Λ m-1 • • • • • Λ 1 • W 1 G 0 ,Gm (W m • Λ m-1 • • • • • Λ 1 • W 1 )x Gm + ε. (B. 46 
)
If p < +∞ in (5.7), this yields On the other hand,

W m • Λ m-1 • • • • • Λ 1 • W 1 G 0 ,Gm km∈Km ω km | (W m • Λ m-1 • • • • • Λ 1 • W 1 )x | e m,
(W m • Λ m-1 • • • • • Λ 1 • W 1 )x = k m-1 ∈K m-1 (Λ m-1 • W m-1 • • • • • Λ 1 • W 1 )x | e m-1,k m-1 W m e m-1,k m-1 (B.48)
which, in view of (5.1), implies that Using (5.9) recursively yields 

(∀k m ∈ K m ) (W m • Λ m-1 • • • • • Λ 1 • W 1 )x | e m,km = k m-1 ∈K m-1 (Λ m-1 • W m-1 • • • • • Λ 1 • W 1 )x | e m-
(∀k m ∈ K m ) (W m • Λ m-1 • • • • • Λ 1 • W 1 )
W m • Λ m-1 • • • • • Λ 1 • W 1 G 0 ,Gm km∈Km ω km | (W m • • • • • W 1 )y | e m,km | p 1/p + ε (W m • • • • • W 1 )y Gm + ε W m • • • • • W 1 G 0 ,Gm + ε. (B.52)
The same inequality is obtained similarly for p = +∞. This establishes (B.45), which leads to sup

Λ 1 ∈D {1-2α 1 ,1} (E 1 )
. . .

Λ m-1 ∈D {1-2α m-1 ,1} (E m-1 ) W m • Λ m-1 • • • • • Λ 1 • W 1 G 0 ,Gm W m • • • • • W 1 G 0 ,Gm . (B.53)
Since the converse inequality holds straightforwardly, the proof is complete.

B.14 Proof of Proposition 5.12

We use arguments similar to those of the proof of Proposition 5.10. For every i ∈ {1, . . . , m -1}, let Λ i ∈ D {1-2α i ,1} (E i ). There exists x ∈ H 0 such that x G 0 = 1 and 

W m Λ m-1 • • • Λ 1 W 1 G 0 ,Gm = (W m Λ m-1 • • • Λ 1 W 1 )x Gm . (B.
W m Λ m-1 • • • Λ 1 W 1 G 0 ,Gm A m • • • A 1 y Gm A m • • • A 1 G 0 ,
Gm , which concludes the proof.

Example 3 . 2

 32 Proposition 3.1(ii) states that activation functions on the real line can be expressed in the generic form R = Id +λ(prox φ -Id), where φ ∈ Γ 0 (R) and λ ∈ [0, 2].

Figure 2 :

 2 Figure 2: Averaged activation functions: Illustration of Example 3.2(ii). Top: The function φ of (3.10).Bottom: In blue, the activation operator R of (3.8) is the proximity operator of φ, which corresponds to λ = 1 in (3.4). The green curve corresponds to the case when λ = 0.5 in(3.4), and the red one to the case when λ = 1.5. As stated in Proposition 3.1(i), relaxation parameters λ ∈ [0, 1] yield increasing activation functions. Non-monotonic averaged activation functions in (3.4) must be generated with relaxation parameters λ ∈ ]1, 2]. As seen in Proposition 3.1(ii), since φ is even, R is odd.

Proposition 4 . 5

 45 Consider the setting of Model 1.1 with m 2. Make the Lipschitz constant θ m in Theorem 4.2 a function of (α 1 , . .

25 ,

 25 Lemma 2.8], and R 2 = Id. Then W 2 W 1 ≈ 54.72. If the input x = (-3.4, 2) is perturbed by z = 10 -4 × (1, √

j 1

 1 ∈I,...,jq∈I q i=1 α j i ψ x j 1 ,1 , . . . , x jq,q µ. (A.1) Hence, sup ψ(conv S) = sup x∈conv S ψ(x) µ. Lemma A.3 Let H be a separable real Hilbert space, let ∅ = K ⊂ N, let E = (e k ) k∈K be an orthonormal basis of H, and let α ∈ [0, 1]. For every k ∈ K, let k : R → R be α-averaged and such that k (0) = 0. Define R : H → H : x → k∈K k ( x | e k )e k , and fix x and y in H. Then there exists Λ ∈ D [1-2α,1] (E) such that Rx -Ry = Λ(x -y).

- 1 ,

 1 and define x = [(Ax) , θ] and y = [(Ay) , θ] . As seen in (B.5), S is nonexpansive. Consequently, Rx -Ry = US x -US y U S x -S y = S x -S y x -y = Ax -Ay max{|τ 1 |, . . . , |τ N -1 |} x -y . (B.7) This shows that R is Lipschitzian with constant max{|τ 1 |, . . . , |τ N -1 |} < 1. It is thus α-averaged with α = (1 + max{|τ 1 |, . . . , |τ N -1 |})/2 [8, Prop. 4.38].

m- 1 k=1 1

 11 j 1 <...<j k m-1 β m;{j 1 ,...,j k } σ m;{j 1 ,...,j k } =

1 k=1 1

 11 {j 1 ,...,j k-1 } . (B.25) Using the above equality in (B.24), factorizing common factors, and invoking (4.4) yields mj 1 <...<j k m-1 β m;{j 1 ,...,j k } σ m;{j 1 ,...,j k } =

5

 5 Let l ∈ {1, . . . , m -1} and set(∀ J ⊂ {1, . . . , m -1} {l}) β m,l;J = j∈J α j j∈{1,...,m-1} (J∪{l}) (1 -α j ). (B.27)For every k ∈ {1, . . . , m -1} and every (j 1 , . . . , j k ) ∈ J m,k , (4.2)yields σ m;{j 1 ,...,j k } σ m;{j 1 ,...,j k }∪{l} . (B.28)

  Gm . (B.38) Let us designate by (λ m,k ) k∈Km the sequence in [1 -2α m , 1] involved in the construction of Λ m in (5.1). If p < +∞, then(∀x ∈ H m ) Λ m x Gm = k∈Km λ m,k x | e m,k e m,k Gm = k∈Km ω k |λ m,k x | e m,k | p 1/p k∈Km ω k | x | e m,k | p 1/p = x Gm , (B.39)which shows that Λ m Gm,Gm 1. This inequality holds analogously if p = +∞. We then deduce from (B.38) that ϑ m sup (Λ 1 ,...,Λ m-1 )∈D W m • Λ m-1 • • • • • Λ 1 • W 1 G 0 ,Gm. On the other hand, it follows from (5.6) that ϑ m sup (Λ 1 ,...,Λ m-1 )∈D

(

  ∀k ∈ K m ) λ m,k = -1, if (∃ (k 0 , . . . , k m-1 ) ∈ K 0 × • • • × K m-1 ) µ k 0 ,...,k m-1 ,k < 0; 1, otherwise, (B.41) and set Λ m : H m → H m : x → k∈Km λ m,k x | e m,k e m,k and V m = Λ m W m .Then, by (5.10),∀(k 0 , . . . , k m ) ∈ K 0 × • • • × K m W 1 e 0,k 0 | e 1,k 1 • • • W m-1 e m-2,k m-2 | e m-1,k m-1 V m e m-1,k m-1 | e m,km 0. (B.42)In addition, it follows from (5.7) and (B.41) that

  km | p 1/p + ε. (B.[START_REF] Ruan | Reachability analysis of deep neural networks with provable guarantees[END_REF] 

  1,k m-1 W m e m-1,k m-1 | e m,km = k m-1 ∈K m-1 λ m-1,k m-1 W m e m-1,k m-1 | e m,km (W m-1 • • • • • Λ 1 • W 1 )x | e m-1,k m-1 .

  x | e m,km= (k 0 ,...,k m-1 )∈K 0 ו••×K m-1 µ k 0 ,...,km λ m-1,k m-1 • • • λ 1,k 1 x | e 0,k 0 . (B.49)We then deduce from (B.44) that(∀k m ∈ K m ) (W m • Λ m-1 • • • • • Λ 1 • W 1 )x | e m,km = (k 0 ,...,k m-1 )∈K 0 ו••×K m-1 µ k 0 ,...,km λ m-1,k m-1 • • • λ 1,k 1 x | e 0,k 0 (k 0 ,...,k m-1 )∈K 0 ו••×K m-1 µ k 0 ,...,km |λ m-1,k m-1 | • • • |λ 1,k 1 | | x | e 0,k 0 | (k 0 ,...,k m-1 )∈K 0 ו••×K m-1 µ k 0 ,...,km | x | e 0,k 0 | . (B.50) Set y = k 0 ∈K 0 | x | e 0,k 0 | e 0,k 0 .In view of (5.12), y G 0 = x G 0 = 1. Thus, (B.50) yields(W m • Λ m-1 • • • • • Λ 1 • W 1 )x | e m,km (k 0 ,...,k m-1 )∈K 0 ו••×K m-1 µ k 0 ,...,km y | e 0,k 0 = (W m • • • • • W 1 )y | e m,km . (B.51) It then follows from (B.46) and the fact that y G 0 = 1 that

54 )

 54 On the other hand, for everyk m ∈ K m , W m Λ m-1 • • • Λ 1 W 1 x | e m,km (k 0 ,...,k m-1 )∈K 0 ו••×K m-1 |µ k 0 ,...,km | | x | e 0,k 0 | . (B.55) Setting y = k 0 ∈K 0 | x | e 0,k 0 | e 0,k 0 yields W m Λ m-1 • • • Λ 1 W 1 x | e m,km (A m • • • A 1 )y | e m,km , and (B.54) implies that

2 Proof of Example 3.3

  However, by[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Prop. 4.4 and Cor. 23.9], there exists a maximally monotone operator A : H → 2 H such that Q = 2J A -Id. Hence, R = Id +λ(J A -Id), where λ = 2α ∈ [0, 2]. For the last claim, notice that, since J A is firmly nonexpansive[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Cor. 23.9], so is R = (1-λ) Id +λJ A as a convex combination of two firmly nonexpansive operators[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Exa. 4.7]. (ii)⇒(i): It follows from[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Cor. 22.23] that there exists φ ∈ Γ 0 (R) such that A = ∂φ, which provides the expression for R. The increasingness claim Let σ C be the support function of C and set f = σ C + φ • • ∈ Γ 0 (H). Then it follows from [8, Prop. 24.30] and (3.14) that R = Id +λ(prox f -Id), However, since prox f is firmly nonexpansive, it is 1/2-averaged, which makes R a λ/2-averaged operator. Now consider the function φ of (3.10). Then it is an even function in Γ 0 (R) with 0 as its unique minimizer. Next, setψ = | • | -arctan | • |. As seen in Example 3.2(ii), φ = µψ * (•/µ) -| • | 2 /2and dom ψ * is bounded. Therefore dom φ = µdom ψ * is bounded. In turn, φ is supercoercive and we derive from[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Prop. 14.15] that dom φ * = R. Hence, since φ = φ * * is strictly convex, it follows derive from[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Prop. 18.9] that φ * is differentiable on R. In addition, d C = • . Altogether,(3.14) reduces to

B.1 Proof of Proposition 3.1 (i): As seen in (1.2), there exists a nonexpansive operator Q : H → H such that R = (1 -α) Id +αQ. follows from Lemma A.1. Finally, if φ is even, then prox φ is odd [8, Prop. 24.10] and so is R. (iii): This follows from Lemma A.1.

B.

  <...<j k m-1 β m;{j 1 ,...,j k } σ m;{j 1 ,...,j k }

	m -1}; 0, if J = {1, . . . , m -1}.	(B.22)
	Invoking (4.4) allows us to conclude. (iv): For every i ∈ {1, . . . , m -1} α i = 1/2. Hence, (4.3) yields (∀J ⊂ {1, . . . , m -1}) β m;J = 2 1-m . Invoking once again (4.4) yields the result. (v): It follows from (4.2) that
	m-1	
	k=1 1 j 1	

  ). Note that, for every i ∈ {1, . . . , m} and every k ∈ K i , π i,k is α i -averaged. Furthermore, (∀i ∈ {1, . . . , m -1})(∀x ∈ H i ) P i x = k∈K i π i,k ( x | e i,k )e i,k . Now fix x and y in H 0 . It follows from(1.3) and the nonexpansiveness of P m that
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