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Abstract – The propagation in tubes with varying cross section and wall visco-thermal effects is a classical
problem in musical acoustics. To treat this aspect, the first method is the division in a large number of short
cylinders. The division in short conical frustums with uniform averaged wall effects is better, but remains time
consuming for narrow tubes and low frequencies. The use of the WKB method for the transfer matrix of a trun-
cated cone without any division is investigated. In the frequency domain, the equations due to Zwikker and
Kosten are used to define a reference result for a simplified bassoon by considering a division in small conical
frustums. Then expressions of the transfer matrix at the WKB zeroth and the second orders are derived. The
WKB second order is good at higher frequencies. At low frequencies, the errors are not negligible, and the WKB
zeroth order seems to be better. This is due to a slow convergence of the WKB expansion for the particular case:
the zeroth order can be kept if the length of the missing cone is large compared to the wavelength. Finally, a
simplified version seems to be a satisfactory compromise.

Keywords: Conical tubes, Visco-thermal effects, WKB method

1 Introduction

The calculation of the transfer matrix of wind instru-
ment resonators is an old problem. The most general model
is one-dimensional, based on the horn equation, written
for either plane or spherical waves. A classical difficulty is
the effect of boundary layers in tubes with variable cross
section area, which depends on the radius. For this reason,
no analytic expression for the transfer matrix of a truncated
cone with visco-thermal losses was established yet. The
general idea is to divide the resonator into frustums of
cylinders (see [1]). In order to limit the time consumption,
another method uses conical frustums with boundary
layer effects equal to those of a cylinder of similar length
and equivalent radius [2–4]. The aim of the present paper
is to use the well known Wentzel–Kramers–Brillouin
(WKB) method, in order to reduce the computing time
by limiting the division of a truncated cone to one segment.
For this purpose, it is necessary to state the wave equation
with visco-thermal effects without term of first-order
(space) derivative. Reducing the computing time is not
useful for a single input impedance computation, but this
becomes useful for applications such as optimization

processes, when numerous input impedance computations
are requested.

All calculations are done in the frequency domain. In
Section 2, the classical derivation of the transfer matrix of
a lossless, truncated cone is briefly reminded, for spherical
and plane waves. In Section 3 the result of the Zwikker
and Kosten (ZK) theory [5] is used. The second order with
respect to the inverse of the Stokes number is considered.
The Stokes number is the ratio of the radius to the bound-
ary layer thickness, which is inversely proportional to the
square root of the frequency.

In Section 4 reference numerical results are sought by
studying their convergence when dividing the cone with
an increasing number of conical frustums. Because losses
(and dispersion) are particularly strong in instruments with
low frequencies and narrow radii, the input impedance of a
simplified bassoon is the main example considered.

Then, in Section 5, the WKB method is used in order to
find approximate solutions of the Helmholtz equation with
losses. In Section 6, these solutions lead to an original
expression of the transfer matrix, which allows the number
of segments to be reduced to one. In Section 7 the different
formulas are compared and discussed. Section 8 proposes
simplified, approximate formulas for both the spherical
and the plane wave approximation, and Section 9 presents
a conclusion.*Corresponding author: augustin.ernoult@gmail.com
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2 Helmholtz equation and transfer matrix
for truncated cones

2.1 Geometry

Consider a truncated cone of length L, input radius R1,
output radius R2 (Fig. 1). If a spherical surface (wavefront)
is assumed, the curvilinear abscissa r is preferred. The
radius is R = r sin 0, where 0 is the half-angle at the
apex. The length L = r2 � r1 is equal to (R2 � R1)/sin #.
The area of the spherical wavefront is R ¼
2pr2 1� cos#½ � ¼ 2pR2= 1þ cos#½ �.

If a planar wavefront is assumed, the longitudinal
coordinate denoted x is used, with R = x tan #. The length
‘ = x2 � x1 is equal to L cos #. The area of the planar
wavefront is simply S = pR2. For small angles, the two
expressions of the area are equivalent, at the second order
of #.

2.2 Spherical waves

In the frequency domain, k = x/c is the wavenumber
(c is the speed of sound, x is the angular frequency). For
spherical wavefront, the Helmholtz equation for the acous-
tic pressure P(r) is exactly derived from the 3D Helmholtz
(lossless) equation. It is written as:

d2ðrPÞ
dr2

þ k2ðrP Þ ¼ 0; ð1Þ

and the general solution is:

rP ¼ Qþe�jkr þ Q�ejkr: ð2Þ
Using the Euler equation, orP ¼ �jkqcV , where q is the air
density, the particle velocity V is given by,

V qcr ¼ Qþe�jkr � Q�ejkr þ P
jk

: ð3Þ

The flow rate U = RV is deduced. Two intermediate vari-
ables are defined:

P̂ ¼ Qþe�jkr þ Q�ejkr

Û ¼ Qþe�jkr � Q�ejkr;

with the following relationships:

P̂

Û

 !
1

¼ cos kL j sin kL

j sin kL cos kL

� �
P̂

Û

 !
2

; ð4Þ

P̂

Û

 !
1;2

¼ r 0

� 1
jk r qc

R

 !
P

U

� �
1;2

; ð5Þ

P

U

� �
1;2

¼
1
r 0

R
qc

1
jkr2

R
qc

1
r

 !
P̂

Û

 !
1;2

: ð6Þ

The product of the three matrices lead to the following
expression of the transfer matrix:

P

U

� �
1

¼ A B

C D

� �
P

U

� �
2

; ð7Þ

A ¼ r2
r1

cosðkLÞ � sinðkLÞ
kr1

; ð8Þ

D ¼ r1
r2

cosðkLÞ þ sinðkLÞ
kr2

; ð9Þ

B ¼ .c
R2

r2
r1
j sinðkLÞ; ð10Þ

C ¼ ðAD� 1Þ=B: ð11Þ
The value of C is obtained by using reciprocity. It can be
rewritten in order to be used directly for the two kinds of
cones (either diverging or converging):

A ¼ R2

R1
cosðkLÞ � sinðkLÞ

kL
R2 � R1

R1
; ð12Þ

D ¼ R1

R2
cosðkLÞ þ sinðkLÞ

kL
R2 � R1

R2
; ð13Þ

B ¼ qc
pR1R2

1þ cos#
2

j sinðkLÞ: ð14Þ

The second factor of B in equation (14) tends to unity for
cylinders (R/r tends to zero). In what follows, it is replaced
by this limits in the expression of the transfer matrices.

2.3 Plane waves

If plane wavefronts are assumed, the previous derivation
remains valid if r is replaced by x, L is replaced by ‘, and R
is replaced by S. This yields:

A ¼ R2

R1
cosðk‘Þ � sinðk‘Þ

k‘
R2 � R1

R1
; ð15Þ

D ¼ R1

R2
cosðk‘Þ þ sinðk‘Þ

k‘
R2 � R1

R2
; ð16Þ

B ¼ qc
pR1R2

j sinðk‘Þ: ð17Þ

This expression was given in [6], and in another form, in [7].

x

r2
r1

Figure 1. Sketch of a conical tube. L ¼ r2 � r1 ¼ ‘= cos#:
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3 ZK theory and Helmholtz equation
with losses

3.1 Equations of the ZK theory for cylindrical tubes;
extension to plane waves in conical tubes

In this paper, we use the Zwikker and Kosten theory [5],
written in the form of a telegraphist equation, such as:

dP=dx ¼ �ZvðxÞU ; ð18Þ

dU=dx ¼ �Y tðxÞP : ð19Þ
The parameters by unit length are Zv and Yt , the series
impedance and shunt admittance, respectively.

The cylinder case, for which they are constant, is first
remembered. The well known expression of the transfer
matrix is the following:

A ¼ D ¼ cosK‘

B ¼ j Zc sinK‘;
ð20Þ

where the wavenumber K and the characteristic
impedance Zc are given by:

K ¼ �jðZvY tÞ1=2 and Zc ¼ ðZv=Y tÞ1=2: ð21Þ
The theory is based upon the approximation that the wave-
front is planar, independent of the abscissa x. The parame-
ters are:

Zv ¼ jxqzv=S

Y t ¼ jxytS=ðqc2Þ;
ð22Þ

with:

zv ¼ 1� 2
kvR

J 1ðkvRÞ
J 0ðkvRÞ

� ��1

; ð23Þ

yt ¼ 1þ ch � 1ð Þ 2
kvR

J 1 ktRð Þ
J 0 ktRð Þ ; ð24Þ

ch is the ratio of the specific heats. kv and kt are the viscous
and thermal wavenumbers, respectively:

kv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� jxq

l

r
; kt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� jxqCp

j

r
; ð25Þ

l is the viscosity, j the thermal conductivity, and Cp is the
specific heat at constant pressure. This give K ¼ k

ffiffiffiffiffiffiffiffi
zvyt

p
and Zc ¼ qc=S

ffiffiffiffiffiffiffiffiffiffiffi
zv=yt

p
. The Stokes number is St ¼ kvj jR.

For high Stokes number (wide duct and/or high fre-
quency), at the second order of 1/St, the asymptotic
expression of equation (23) to the viscous parameter is:

zv ¼ 1þ 2
ffiffiffiffiffiffi
�j

p
St�1 � 3jSt�2: ð26Þ

We need also the value of yt, or that of q=K/k. The asymp-
totic expansion is well known (see e.g., [6, 8]). At the same
order of St,

q ¼ ffiffiffiffiffiffiffi
zvyt

p ¼ 1þ cSt�1 þ dSt�2; ð27Þ

where

c ¼ 1:044
ffiffiffiffiffiffiffiffi
�2j

p
; d ¼ �1:08j: ð28Þ

For a cone, we assume that at each abscissa of a cone, the
pressure is plane and the ZK theory is valid. The parame-
ters Zv and Yt depend of the abscissa x, and the transmis-
sion line is non-uniform. The theory is assumed to be
valid for tubes of variable cross section S(x), with transmis-
sion lines parameters Zv and Yt. It is possible to write, for
high Stokes number:

zv ¼ 1þ 2
ffiffiffiffiffiffi
�j

p a
x
� 3j

a2

x2
;

q ¼ ffiffiffiffiffiffiffi
zvyt

p ¼ 1þ c
a
x
þ d

a2

x2
;

ð29Þ

where, because R = x tan #, and so St ¼ x tan# kvj j,

a ¼ x
St

¼ 1
tan#

ffiffiffiffiffiffiffi
l
xq

r
: ð30Þ

In the literature on musical acoustics, the Euler equation is
often kept unchanged (i.e., zv = 1, see e.g., [9, 10]). Another
approximation, the Heaviside condition, if often proposed:
the characteristic impedance is assumed to be constant,
i.e. zv = yt = q [6, 7]. Moreover the expressions are in general
limited to the first order of the inverse of the Stokes
number.

3.2 Differential equation for the pressure in a tube
of variable cross section

We are searching for a generalization of equations (15)–
(17). For a tube with variable cross section, if planar wave-
fronts are assumed, the pressure equation can be written,
from equations (18) and (19), as:

P 00

P
¼ Z 0

v

Zv

P 0

P
þ ZvY t; ð31Þ

where the prime symbol (0) indicates the derivative with
respect to the abscissa x. This Sturm-Liouville equation
can be rewritten into a canonical form (without the first
derivative of P) by using a change of function. P is defined
such as,

P ¼ w
ffiffiffiffiffi
Zv

p
; ð32Þ

which leads, for its first derivative, to:

P 0

P
¼ w0

w
þ 1
2
Z 0
v

Zv
: ð33Þ

Using the second derivative of equation (32), it is obtained:

P 00

P
� P 02

P 2 ¼ w00

w
� w02

w2 þ
1
2
Z 00
v

Zv
� 1
2

Z 0
v

Zv

� �2

: ð34Þ

Together with equation (33), this leads to:

w00 þ K2ðxÞw ¼ 0; ð35Þ
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where

K2 ¼ �ZvY t þ g; ð36Þ

g ¼ 1
2
Z 00
v

Zv
� 3
4

Z 0
v

Zv

� �2

: ð37Þ

Writing,

Z 0
v

Zv
¼ �2

R0

R
þ z0v
zv
; ð38Þ

the coefficient g is expressed as follows:

g ¼ �R00

R
1
2
z00v
zv
� 3
4
z02v
z2v

þ R0

R
z0v
zv
: ð39Þ

For a cone, R00 = 0, R = x tan #, and R0/R = 1/x. Thus:

g ¼ 1
2
z00v
zv
� 3
4
z02v
z2v

þ 1
x
z0v
zv
; ð40Þ

z0v ¼ �2
ffiffiffiffiffiffi
�j

p a
x2

þ 6j
a2

x3
: ð41Þ

As a result, for a cone,

g ¼ a2

x4
ð�3jþ 3jÞ ¼ 0: ð42Þ

This simple result is a particularity of the axisymmetrical
geometry. Furthermore, at the first order of a/x, the vanish-
ing of g is valid for any shape of circular tube with high
Stokes number.

3.3 Differential equation for plane waves in a cone

Finally, for a cone, the differential equation to be solved
is, at the second order of a/x:

k�2w00 þ qðxÞ2w ¼ 0; ð43Þ
where w is related to P by equation (32) and q is given by
equation (27). This original equation is extremely simple.
The term k�2 is the analogous to the square of the Planck
constant ⁄ in the literature concerning the WKB solution
of the Schrödinger equation.

4 Computation of a reference solution
4.1 Numerical, “exact” results with division

into conical frustums

In order to evaluate the errors made using the WKB
solution, a numerical, “exact” solution is sought. The only
geometry for which there is an analytical solution for the
Helmholtz equation with losses is the cylinder. It is possible
to approach the cone by cylindrical frustums of very short
length and constant radius Rn. Equation (20) give the
transfer matrix of a cylindrical tube of length ‘.

However the convergence with the number of frustums
is more rapid if conical frustums with uniform losses are
used. For that purpose the cone is divided in several short
conical frustums with a small radius variation. The losses
are approximated by the losses of a cylinder with an equiv-
alent radius Req. In order to correctly estimate the magni-
tude of the impedance peaks, reference [6] suggests, for
the frustum between x1 and x2, to choose this radius as
follows:

‘

Req ¼
x1
R1

log 1þ ‘

x1

� �
; ð44Þ

where ‘ = x2 � x1 is the length of the considered frustum.
The origin of this expression is detailed in reference [6]. For
sufficiently small conical frustums, any choice of equiva-
lent radius Req within R1 and R2 will converge to the same
solution (for small conical frustum: Req � R1 � R2). Losses
are computed by using equations (26) and (27) with the
equivalent radius Req. The transfer matrix of a conical
frustum is given by equations (15)–(17), K and Zc being
calculated for the the equivalent radius:

A ¼ R2

R1
cosðK‘Þ � sinðK‘Þ

K‘
R2 � R1

R1
; ð45Þ

B ¼ Zcj sinðK‘Þ; ð46Þ

D ¼ R1

R2
cosðK‘Þ þ sinðK‘Þ

K‘
R2 � R1

R2
; ð47Þ

C ¼ ðAD� 1Þ=B: ð48Þ
The example of a simplified bassoon (R1 = 0.002 m;
R2 = 0.02 m; L = 2.43 m) is chosen for the low values of
the Stokes number at low frequencies: for the first resonance
frequency, it is close to St = 10, and its inverse is 0.1. The
input impedance is computed by multiplying the transfer
matrices of each slice and by assuming a zero impedance
at the wide end (non-radiating open pipe) (Fig. 2). The
computation is carried out for the frequency range
[20, 104] Hz, with a logarithmic step of 1 cent. The cent is
a musical logarithmic scale (100 cents = 1 semitone) defined
as dif ðcentsÞ ¼ 1200� log2ðf2=f1Þ.

In order to determine the frustum length necessary to
converge to the “exact” solution, the evolution of the norm
of the difference to the finest slicing is observed (Fig. 3):

jjZ � Zref jj
jjZref jj ¼

Pf¼1500

f¼20
jZðf Þ � Zrefðf Þj

Pf¼1500

f¼20
jZrefðf Þj

: ð49Þ

This error norm takes into account not only the resonance
frequencies, but the entire frequency range which can influ-
ence the behaviour of the instrument. It is a usual way to
observe the convergence of numerical model. The norm con-
verges for slices of 0.1 mm corresponding to about 2 � 104

frustums for the considered tube. With this slicing the
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variation of the radius for one frustum is about 7 � 10�7 m.
Throughout this paper, the reference impedance Zref corre-
sponds to that computed with the finest slicing (105 conical
frustums of 2.43 � 10�5 m).

Conversely, Figure 3 shows that the model with cylin-
drical frustums seems to converge also toward the reference
impedance, but the convergence is slow and a too large
number of cylinders would be necessary to converge (at
least 1010). Even if the convergence is not reached, the norm
of the difference between these theoretical results and the
reference impedance for the finest slicing is very small
(10�4).

In a musical context, the difference between the reso-
nance peak characteristics is a more significant observation,
than the error norm. The resonance frequencies f (i) and
magnitudes a(i) of the impedance peaks are estimated by
applying a second order polynomial fit on the modulus in
decibel over the three samples around the maximum peaks
to be more precise than the frequency step. They are com-
puted with the finest cylindrical slicing and compared to
those of the reference impedance in Figure 4. The resonance
frequency deviations between the finest cylindrical slicing
and the finest conical frustums, given in cents, are under
0.01 cents for all peaks which is negligible for musical appli-
cation (it is generally assumed that the human ears can not
detect frequency difference smaller than three cents)
(Fig. 4a). The peaks magnitude is very well estimated with
a difference within 1 � 10�3 dB (Fig. 4b).

4.2 Computation using asymptotic expressions with
respect to the Stokes number

The impedance is also computed for conical frustums
with the asymptotic expression of zv and yt at the first
and second order of the inverse of the Stokes number
(Sect. 3.1). The norm of the difference with the reference
impedance decreases with the slice length to reach 10�2 for
the first order and 3 � 10�4 for the second order (Fig. 3).

These values seem high but it is important to notice that
the norm of the error is very sensitive and particularly to a
small frequency decay. Figures 3 and 4 show that the
resonance frequency deviations are within 0.1 cents for the
two order of approximations of the Bessel functions
(Fig. 4a). This is acceptable in a musical context. The mag-
nitudes also are well estimated by the different approxima-
tions, even if the first order approximation has a
significantly lower accuracy (the deviation is 30 times higher
in dB) than the second order approximation (Fig. 4b).

As a conclusion, the asymptotic expression of the vis-
co-thermal losses at the second order of the inverse of the
Stokes number is sufficient to achieve a satisfactory
accuracy.

5 WKB solution of the second order equation

We present the classical derivation of the WKB method
(see Ref. [11]). The solution w of equation (43) is sought in
the following form, including an indefinite integral with
respect to x:

w ¼ g � exp jk
Z

udx
� �

; ð50Þ

where g and u are two unknown functions and u is dimen-
sionless. Its derivative is equal to:

w0 ¼ g0 exp jk
Z

udx
� �

þ gjku exp jk
Z

udx
� �

: ð51Þ

Calculating the second derivative w00, and inserting into
equation (43), the following equation is obtained:

g00 þ g jkuð Þ2 þ gk2q2 þ jk 2g0uþ gu0½ � ¼ 0: ð52Þ

Figure 3. Evolution of the norm of the relative difference with
the reference impedance Z ref (10

5 conical frustums with Bessel
functions) versus the length of each frustum for different
approximations (cylinders with Bessel functions, conical frus-
tums with Bessel functions, 1st or 2nd order approximation of
losses).

Figure 2. Reference input impedance of the simplified bassoon
computed by a division in 105 conical frustums with ZK-losses
(Bessel) computed with equations (23) and (24) for the
equivalent radius Req

n of each conical frustum of equation (44).
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Because there are two unknowns functions, the vanishing of
the bracket can be chosen,

2g0uþ gu0 ¼ 0: ð53Þ
This leads to the following relationship:

g ¼ Kffiffiffi
u

p ; ð54Þ

where K is a constant. The other part of equation (52)
yields:

g00

g
¼ k2 u2 � q2

� �
: ð55Þ

If u is a solution, �u is also a solution. Therefore w is the
superposition of two solutions, as follows:

w ¼ u�1=2 wþ exp �jk
Z

udx
� �

þ w� exp jk
Z

udx
� �� �

;

ð56Þ
where w� are two constants. u is the unique unknown
function. It is the solution of the following equation, which
is derived from equations (54) and (55):

k2u2ðu2 � q2Þ ¼ 3
4
u02 � 1

2
u00u: ð57Þ

For infinite k, a trivial solution is u = q. For large k, the
solution is sought in the form of an asymptotic expansion:

u ¼ qþ v=k2 þ w=k4 þ . . . ð58Þ
Simplifying by the factor 1/k2, the term v can be obtained:

vþ w

k2

� �
uþ qð Þu2 ¼ 3

4
u02 � 1

2
u00u: ð59Þ

therefore, at the second order of 1/k :

v ¼ 3
q02

8q3
� q00

4q2
: ð60Þ

Another useful expression for the function v is:

v ¼ � 1
4

q0

q2

� �0
� q02

8q3
: ð61Þ

The expression of the fourth order coefficient leads to com-
plicated results:

w ¼ � 5
2
v2

q
þ 3
4
q0v0

q3
� 1
4

q00v
q3

þ v00

q2

� �
: ð62Þ

This expression can be a starting point for further studies.
However, the challenge of the present paper being to
avoid large complication in the expressions of the transfer
matrix, this expression is not used throughout the rest of
this study.

6 Transfer matrix for the WKB solution
6.1 Expression of the transfer matrix

The derivation of the transfer matrix is similar to that
for the non dissipative case (Sect. 2):

P̂ ¼ wþ exp �jk
Z

udx
� �

þ w� exp jk
Z

udx
� �

: ð63Þ

Using equations (32) and (56), the relationship between
the pressure P and P̂ is found to be:

P ¼ P̂

ffiffiffiffiffi
Zv

u

r
; ð64Þ

(a) (b)

Figure 4. Deviation of the resonance parameters to those of the reference impedance Z ref (conical frustums with ZK-losses for
equivalent radius) for different approximations (cylinders with ZK-losses, conical frustums with 1st or 2nd order approximation of
losses): (a) resonance frequencies and (b) resonance magnitudes. Finest slicing (105 conical frustums of 2:43� 10�5 m).
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thus,

P 0

P
¼ P̂ 0

P̂
þ 1
2

z0v
zv
� u0

u

� �
: ð65Þ

The variable Û is defined as:

Û ¼ wþ exp �jk
Z

udx
� �

� w� exp jk
Z

udx
� �

: ð66Þ

Therefore,

Û ¼ jP̂ 0=ðkuÞ: ð67Þ
For the variables P̂ and Û , thanks to equations (63) and
(66) the following transfer matrix relationship can be
introduced:

P̂

Û

 !
1

¼ cosX j sinX

j sinX cosX

� �
P̂

Û

 !
2

; ð68Þ

with

X ¼ k
Z x2

x1

udx: ð69Þ

The development of the expression of u makes appearing
the integration of 1/R (Eqs. (29) and (58)), which is coher-
ent with the equivalent radius Req chosen in equation (44).
The relationship between (P , U) and (P̂ , Û) comes from
equations (18) and (64):

U ¼ � P 0

Zv
¼ � P 0

P
P̂ffiffiffiffiffiffiffi
Zvu

p : ð70Þ

Thus, with equations (65) and (67):

U ¼ 1ffiffiffiffiffiffiffi
Zvu

p jkuÛ � 1
2

Z 0
v

Zv
� u0

u

� �
P̂

� �
: ð71Þ

The transition matrix at each extremity of the truncated
cone is derived from equations (64) and (71) as follows:

P

U

� �
i

¼ ai 0

ci di

� �
P̂

Û

 !
i

; ð72Þ

with,
ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Zvi=ui

p
di ¼ jk

ffiffiffiffiffiffiffiffiffiffiffiffi
ui=Zvi

p
ci ¼ �1

2
1ffiffiffiffiffiffiffiffiffi
Zviui

p Z 0
vi

Zvi

� u0i
ui

� �
:

The determinant of the matrix is aidi ¼ jk and is indepen-
dent of the extremity (1 or 2). The inverse matrix is:

P̂

Û

 !
i

¼ 1=ai 0

�ci=ðaidiÞ 1=di

� �
P

U

� �
i

: ð73Þ

The product of the three matrices between abscissae 1 and 2
gives the final transfer matrix:

P

U

� �
1

¼ A B

C D

� �
P

U

� �
2

; ð74Þ

with,

A ¼ a1
a2

cosX � c2
d2
j sinX

h i
D ¼ d1

d2
cosX þ c1

d1
j sinX

h i
B ¼ a1

d2
j sinðX Þ:

ð75Þ

The determinants of the transition matrix and its inverse
matrix are inverse. Therefore the determinant of the trans-
fer matrix is unity, and the coefficient C can be derived
from the other coefficients. The final result is:

A ¼
ffiffiffiffiffiffiffi
Zv1

Zv2

r ffiffiffiffiffi
u2
u1

r
cosX þ 1

2
1
ku2

Z 0
v2

Zv2
� u02
u2

� �
sinX

� �
; ð76Þ

D ¼
ffiffiffiffiffiffiffi
Zv2

Zv1

r ffiffiffiffiffi
u1
u2

r
cosX � 1

2
1
ku1

Z 0
v1

Zv1
� u01
u1

� �
sinX

� �
; ð77Þ

B ¼ 1
k
sinX

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zv1Zv2

u1u2

r
; ð78Þ

C ¼ AD� 1
B

: ð79Þ

As a summary, the calculation of the transfer matrix
requires the values of the definite integral of the function
u, of the function u itself and of its derivative. Conse-
quently, according to equation (58), we need the equivalent
expressions for the functions q and v, their integral and their
derivative.

6.2 Expansions of q and v with respect
to the Stokes number

The starting point is the expansion of the quantity q, as
written in equation (27), at the second order of the inverse
of the Stokes number. The indefinite integral Iq ¼ k

R
qdx

and the derivative q0 are given by:

Iq ¼ xþ ca lnðxÞ � d
a2

x
; ð80Þ

q0 ¼ �c
a
x2

� 2d
a2

x3
: ð81Þ

Notice that x is a variable with dimension, thus the natural
logarithm ln(x) has no sense, but, in the transfer matrix, the
quantity ln(x2/x1) intervenes in X. The function v could be
also expanded with respect to a/x, but for the integral Iv it
is simpler to use directly equation (61). The integral of the
second term of the expression (61) is complicated, but a
numerical evaluation is found to be very small, therefore,

Iv ’ � 1
4
q0

q2
: ð82Þ
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In order to calculate v0, we need the calculation of the
second and third derivatives of q0 (Eq. (60):

q00 ¼ 2ca
x3

þ 6da2

x4

q000 ¼ � 6ca
x4

þ 24da2

x5

v0 ¼ 1
q3

5
4
q0q00 � 9

8
q

03

q
� qq000

4

� �
:

ð83Þ

Finally, we need to successively compute the following
expressions:

� Compute a, c, d with equations (30) and (28) then
zv; z 0v; q; I q; q0; q00 and q000 with equations (29), (41),
(27), (80), (81), and (83).

� Compute Zv and Z 0
v=Zv with equations (22) and (38).

� Compute v0 and Iv then v with equations (82), (83),
and (60).

� Compute u and u0 with equation (58).
� Compute Iu and X with equations (58) and (69).
� Finally compute A, B, C, D with equations (76)–(79).

7 Comparison of the zeroth and second orders
of the WKB solution

7.1 Discussion

We wish to compare the “exact” results with the WKB
solutions at zeroth and second orders in k�1. The zeroth
order is obtained by writting u = q. The comparison is done
with the reference result obtained in Section 4.1.

We first notice that the obtained transfer matrix given
by equations (76)–(78) is invariant by slicing: the product
of the matrix of two successive conical frustums with the
same angle equals the transfer matrix of the total cone. This
invariance can be shown by a rather long calculation for
both the orders of approximation. It is not difficult, and
is not developed here.

Because the solution from the WKB method is aimed at
limiting the number of frustrums to only one, using a slicing
is not consistent with this aim, and therefore not useful.
This has to be distinguished from the slicing with an
approximate equation (based upon averaged losses). More
explicitly, when no losses are present, the slicing of a cone
does not improve the result given by one matrix, because
the equation to be solved is exact. Comparing the classical
method of slicing in cylindrical or conical segment (with
averaged losses), it can be noticed that the classical method
converges when the number of frustums tends to infinity,
while the WKB method could converge by extending the
order of expansion of the function u. This convergence is
out of the scope of the paper.

The analytical limit of validity of the WKB solution can
be given by the comparison between the terms due to the
visco-thermal effects and their variations with the radius.
At the first order of the inverse of the Stokes number and
at the second order of the WKB solution, the function u
is written as:

u ¼ 1þ ca
x

1� 1
2k2x2

� �
: ð84Þ

The second term in the bracket can be very high at low fre-
quencies for the smaller radius of the cone. For the first res-
onance of the bassoon, it is close to 5, and it appears that
the convergence to a correct limit value at higher WKB
order is problematic. Similar behaviour can be found for
the integral and the derivative:

Iu ¼ xþ ca lnðxÞ � 1
4k2x2

� �
; ð85Þ

and,

u0 ¼ � ca
x2

1� 3
2k2x2

� �
: ð86Þ

Using equation (85) the quantity X (Eq. (69)) can be calcu-
lated. The result is:

X ¼ k‘þ c
tan#

ffiffiffiffiffiffi
c‘v
x

r
ln 1þ ‘

x1

	 

� 1
4k2x22

þ 1
4k2x21

� �
: ð87Þ

Therefore, an approximate condition of validity can be
estimated: kx1 > 1. For the first peak of a divergent cone,
k � p/x2, thus the condition can be written as:

p
x1
x2

¼ kx1 > 1;

or ‘ < ðp� 1Þx1. This is not satisfied for the first peak of a
bassoon. However, above the third or fourth peak, this
becomes acceptable.

7.2 Numerical comparison

The impedances are computed with the zeroth order
(u = q) and 2nd order (u ¼ qþ v=k2) of the WKB transfer
matrix for a truncated cone. They are compared to the
reference impedance (average ZK losses for 105 conical frus-
tums) in Figure 5. As expected, the WKB approximations

Figure 5. Input impedance of the simplified bassoon (reference
impedance) compared with the WKB formulation on one conical
frustums at the second and zeroth order (in both WKB
solutions, the second order order is used for the Stokes number).

A. Ernoult and J. Kergomard: Acta Acustica 2020, 4, 78



are better at higher frequencies. It is particularly true for
the second order approximation, for which the first peak
is underestimated and the second peak largely overesti-
mated (Fig. 5). Both correspond to frequencies for which
kx1 < 1. However, the zeroth order approximation seems
better at these peaks (Fig. 5). This observation can be
quantified by applying the error norm of equation (49) of
different frequency ranges. If the norm is computed on
the entire range, the second order result has poorer accu-
racy than the zeroth order one (the error norm are respec-
tively 0.3 and 0.1). Conversely, if the range is limited to
higher frequencies (kx1 > 2), the second order is better than
the zeroth order (respectively 0.004 and 0.01).

These observations appear more clearly on the modal
parameters of the impedance peaks, which are represented
versus both the frequency and the normalized wavenumber
kx1 in Figure 6. At low frequencies (kx1 < 1.5, Fig. 6a) the
zeroth order is better. It induces a deviation about �30
cents and �4 dB on the first peak, while the second order
induces a deviation about 140 cents and �14 dB. As
expected, at higher frequencies (kx1 > 2, Fig. 6b), the
second order is slightly better, even if both orders show
acceptable deviations to the reference impedance (<1 cents
and <0.5 dB).

Consequently the gain of the second order of WKB on
the zeroth order is questionable for this kind of resonators.
The zeroth order approximation seems much more simpler
and more appropriate for musical applications, when the
first peak is predominant in the sound production.

8 A simplified, general formula
8.1 Plane waves

It can be useful to search for a further simplification of the
zeroth order solution. We start from equations (76)–(78)

with q1 = u1 and q2 = u2. First of all, we notice the following
relationship: Zv=q ¼ jkZc. The transfer matrix can be writ-
ten as follows:

A ¼
ffiffiffiffiffiffiffi
Zc1

Zc2

r
cosX þ 1

2
1
kq2

Z 0
c2

Zc2
sinX

� �
; ð88Þ

A ¼
ffiffiffiffiffiffiffi
Zc2

Zc1

r
cosX � 1

2
1
kq1

Z 0
c1

Zc1
sinX

� �
; ð89Þ

B ¼ 1
k
sinX

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zv1Zv2

u1u2

r
: ð90Þ

At the second order of the inverse of the Stokes number, the
characteristic impedance is written as:

Zc ¼ qc
S

1þ 0:37
ffiffiffiffiffiffiffiffi
�2j

p
St�1 � 1:147jSt�2

h i
: ð91Þ

Therefore, by comparing with the expression of the
wavenumber K = kq (see Eq. (29)), the visco-thermal
effects intervene significantly more in K than in

ffiffiffiffiffi
Zc

p
(1.044 and 0.18, respectively). For this reason, we can
ignore the influence of these effects in Zc. This is due to
the difference in sign of viscous and thermal effects. More-
over, in the transfer matrix expression, the characteristic
impedance intervenes through its variation in the cone,
between x1 and x2. As a consequence, the following simpli-
fied formula can be useful:

A ¼ R2

R1
cosX � 1

kq2x1
sinX ; ð92Þ

D ¼ R1

R2
cosX þ 1

kq1x2
sinX ; ð93Þ

B ¼ qc
pR1R2

j sinX : ð94Þ

(a) (b)

Figure 6. Difference between the resonance parameters of the WKB simulations (second and zeroth order) to those of the reference
impedance: top: frequencies and bottom: magnitudes. (a) Low frequencies and (b) high frequencies (the vertical scales are different). In
both WKB solutions, the second order approximation is used for the visco-thermal effects.
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Figure 7 shows that the simplification leads to satisfactory
results, when compared to the complete zeroth order
formula.

This approximation differs from other approximations
published by some authors. Concerning the original
approach by Kulik [12], there are two differences with the
present approach: firstly the series impedance Zv does not
vary with the radius (q1 ¼ q2 ¼ 1 in our Eqs. (89) and
(90)); secondly the differential equation to be solved is
not explicitly written: the starting point built with the
equations (2) and (8) is not clearly justified, even if the
quantity �kL is the same as our quantity X. Other
approaches were given for the calculation of the impedance
peaks [6, 13] or of the resonance frequencies [14], the results
being also consistent with the equation (69), which is based
upon the calculation of a mean value of the inverse of the
radius. The approach by Nederveen [14] was a perturbation
method, limited to the first order of the variation of losses
with the radius, and the computation was limited to the res-
onance frequencies (real wavenumbers). The generalization
to complex wavenumbers could be probably possible.

We emphasize that this paper considers an extreme
case, the bassoon. Figure 8 shows that for a wider instru-
ment, such as a simplified baritone saxophone
(R1 = 6.75 mm, R2 = 60 mm, ‘ = 2.38 m), the final results
are much better for the first peaks. Furthermore the conver-
gence study to the reference result justifies a classical
approximation of visco-thermal effects in cones: the second
order of the asymptotic expansion with respect to the
inverse of the Stokes number does not significantly improve
the accuracy of the computation. This was not clear in [13].

8.2 Spherical waves

The previous analysis assumes plane waves. Neverthe-
less, for cones with wide apex angle, it is known that

spherical waves are more accurate. This is especially impor-
tant for the division of bells into truncated cones [10]. For
such cones, visco-thermal effects are weak, and the WKB
solution of zeroth order is satisfactory. It is not necessary
to repeat the complete analysis. We propose the following
formula, which is a modification of equations (8)–(10):

A ¼ r2
r1
cosX s � sinX s

kq2r1
;

D ¼ r1
r2
cosX s þ sinX s

kq1r2
;

B ¼ qc
R2

r2
r1
j sinX s;

C ¼ AD�1
B ;

ð95Þ

with,

X s ¼ k Iq2 � Iq1
� �

; ð96Þ

and,

Iq ¼ r þ ca lnðrÞ � d
a2

r
: ð97Þ

9 Conclusion

To our knowledge the propagation equation in cones
with visco-thermal effects was not derived in previous
papers. In the frequency domain, at the second order of
the asymptotic expansion with respect to the inverse of
the Stokes number, the canonical form (without term with
the derivative of the first order) is extremely simple. With
this starting point, the WKB method leads to the possibil-
ity to compute the transfer matrix of a truncated cone with-
out division of its length. The result of the zeroth order is
satisfactory under the condition that the length of the

Figure 7. Difference between the resonance parameters of the
WKB simulations at the zeroth order (complete and simplified)
to those of the reference impedance: top: frequencies and bottom:
magnitudes. In both simulations, the second order approxima-
tion is used for the visco-thermal effects.

Figure 8. Difference between the resonance parameters of the
WKB simulations at the zeroth order (complete and simplified)
to those of a reference impedance for a simplified baritone
saxophone: top: frequencies and bottom: magnitudes. In both
simulations, the second order approximation is used for the
viscothermal effects.
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missing cone x1 is large compared to the wavelength. Under
this condition, the WKB second order is even better.

However, the good accuracy of these approximations at
higher frequencies is not actually necessary in practice.
Conversely, for the first resonances, the accuracy is not
excellent. Paradoxically the second order seems less accu-
rate than the first one. This is due to the slow convergence
of the series expansion of the WKB function denoted u in
this paper. It should be necessary to extend the WKB
method to further orders, but this will lead to complicated
expressions. Therefore, we propose to limit the expansion to
the zeroth order WKB formula, which is well known.
Moreover, from an analysis of the dependence of the charac-
teristic impedance with respect to the Stokes number, a
significant simplification of the zeroth order is obtained. It
slightly differs from formulas found in the literature, but
a numerical analysis of the analytic formulas shows that
the errors of the various formulas are of the same order of
magnitude.

The values of the transfer matrix coefficients can be
empirically improved at low frequencies. This is true in par-
ticular for the examined case of the input impedance of the
simplified bassoon: ignoring the visco-thermal effects in the
coefficients q1 and q2 (i.e., writing q1 ¼ q2 ¼ 1) diminishes
the errors by a factor 2 for the first two peaks. However, this
do not seem to be general for all coefficients of the matrix.
We prefer to keep the formulas analytically derived with a
clear expression of their origin. Formulas (95) are a satisfac-
tory compromise for conical instruments.

The aim of the present work is the analytical derivation
of the WKB solution, in order to avoid the slicing in frus-
tums. This derivation is done at the second order of the
asymptotic expansion with respect to the inverse of the
Stokes number, and is shown to be sufficiently accurate
for the application to low wind instruments. For other
applications, to extend the expansion to other orders, or
even to consider the very small Stokes number (capillary
tubes) could be done by using the other asymptotic expan-
sion (see [8, 15]).

For real woodwind instruments, tone holes or change of
conicity impose to slice the main bore in several conical frus-
tums. For the narrow parts where the condition kx1 > 1 is
not respected, it is better to use the usual method (slice
in several frustums with equivalent losses), but for the wide
parts, the WKB solution can improve and ease the compu-
tation of the transfer matrices.

Finally, these unified formulas for cones with either
narrow and wide apex angles can be appropriate for impe-
dance computation software. This is particularly useful for
the application to instruments with bells, when the plane
wave approximation is not applicable. An extension of the
present work could be taken for other shapes of horns, as
it was done in [10], but the corresponding work should be
heavy.
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