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Summary

The propagation in tubes with varying cross section and wall visco-thermal effects is a classical problem
in musical acoustics. To treat this aspect, the first method was the division in a large number of short
cylinders. The division in short conical frustums with wall effects independent of the radius is better, but
remains time consuming for narrow tubes and low frequencies. The use of the WKB method for the transfer
matrix of a truncated cone without any division is investigated. In the frequency domain, the equations due
to Zwikker and Kosten are used to define a reference result for a simplified bassoon by considering a division
in small conical frustums. Then expressions of the transfer matrix at the WKB zeroth and the second orders
are derived. The WKB second order is good at higher frequencies. At low frequencies, the errors are not
negligible, and the WKB zeroth order seems to be better. This is due to a slow convergence of the WKB
expansion for the particular case: the zeroth order can be kept if the length of the missing cone is large
compared to the wavelength. Finally, a simplified version seems to be a satisfactory compromise.

1 Introduction

The calculation of the transfer matrix of wind instrument resonators is an old problem. The most general model
is one-dimensional, based on the horn equation, written for either plane or spherical waves. A classical difficulty
is the effect of boundary layers in tubes with variable cross section area, which depends on the radius. For
this reason, no analytic expression for the transfer matrix of a truncated cone with visco-thermal losses was
established yet. The general idea is to divide the resonator into frustums of cylinders (see [1]). In order to
limit the time consumption, another method uses conical frustums with boundary layer effects independent of
the radius [2, 3, 4]. The aim of the present paper is to use the well known WKB (Wentzel-Kramers-Brillouin)
method, in order to reduce the computing time by limiting the division of a truncated cone to one segment. For
this purpose, it is necessary to state the wave equation with visco-thermal effects without term of first-order
(space) derivative. Reducing the computing time is not useful for a single input impedance computation, but this
becomes useful for applications such as optimization processes, when numerous input impedance computations
are requested.

All calculations are done in the frequency domain. In Section 2, the classical derivation of the transfer matrix
of a lossless, truncated cone is briefly reminded, for spherical and plane waves. In Section 3 the result of the
Zwikker and Kosten (ZK) theory [5] is used. The second order with respect to the Stokes number is considered.
The Stokes number is the ratio of the radius to the boundary layer thickness, which is inversely proportional to
the square root of the frequency.

In Section 4 reference numerical results are sought by studying their convergence when dividing the cone
with an increasing number of conical frustums. Because losses (and dispersion) are particularly strong in
instruments with low frequencies and narrow radii, the input impedance of a simplified bassoon is the main
example considered.

Then, in Section 5, the WKB method is used in order to find approximate solutions of the Helmholtz equation
with losses. In Section 6, these solutions lead to an original expression of the transfer matrix, which allows
the number of segments to be reduced to one. In Section 7 the different formulas are compared and discussed.
Section 8 proposes simplified, approximate formulas for both the spherical and the plane wave approximation,
and Section 9 presents a conclusion.
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2 Helmholtz equation and transfer matrix for truncated cones

2.1 Geometry

Consider a truncated cone of length L, input radius R1, output radius R2. If a spherical surface (wavefront) is
assumed, the curvilinear abscissa r is preferred. The radius is R = r sinϑ, where ϑ is the half-angle at the apex.
The length L = r2−r1 is equal to (R2−R1)/ sinϑ. The area of the spherical wavefront is Σ = 2πr2 [1− cosϑ] =
2πR2/ [1 + cosϑ].

If a planar wavefront is assumed, the longitudinal coordinate denoted x is used, with R = x tanϑ. The length
` = x2− x1 is equal to L/ cosϑ. The area of the planar wavefront is simply S = πR2. For small angles, the two
expressions of the area are equivalent, at the second order of ϑ.

R1

R2

x1 x2
ϑ l x

r2
r1

Figure 1: Sketch of a conical tube. L = r2 − r1 = `/ cosϑ.

2.2 Spherical waves

In the frequency domain, k = ω/c is the wavenumber (c is the speed of sound, ω the angular frequency).
For spherical wavefront, the Helmholtz equation for the acoustic pressure P (r) is exactly derived from the 3D
Helmholtz (lossless) equation. It is written as:

d2(rP )

dr2
+ k2(rP ) = 0 (1)

and the general solution is:
Pr = Q+e−jkr +Q−ejkr (2)

Using the Euler equation, ∂rP = −jkρcV , where ρ is the air density, the particle velocity V is given by

V ρcr = Q+e−jkr −Q−ejkr +
P

jk
, (3)

The flow rate U = ΣV is deduced. Two intermediate variables are defined:

P̂ = Q+e−jkr +Q−ejkr

Û = Q+e−jkr −Q−ejkr

with the following relationships: (
P̂

Û

)
1

=

(
cos kL j sin kL
j sin kL cos kL

)(
P̂

Û

)
2

(4)(
P̂

Û

)
1,2

=

(
r 0
− 1
jk r ρcΣ

)(
P
U

)
1,2

(5)(
P
U

)
1,2

=

( 1
r 0

Σ
ρc

1
jkr2

Σ
ρc

1
r

)(
P̂

Û

)
1,2

(6)

The product of the 3 matrices lead to the following expression of the transfer matrix:(
P
U

)
1

=

(
A B
C D

)(
P
U

)
2

; (7)
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A =
r2

r1
cos(kL)− sin(kL)

kr1
; (8)

D =
r1

r2
cos(kL) +

sin(kL)

kr2
; (9)

B =
%c

Σ2

r2

r1
j sin(kL); (10)

C = (AD − 1)/B.

The value of C is obtained by using reciprocity. It can be rewritten in order to use directly for the two kinds
of cones (either diverging or converging):

A =
R2

R1
cos(kL)− sin(kL)

kL

R2 −R1

R1
; (11)

D =
R1

R2
cos(kL) +

sin(kL)

kL

R2 −R1

R2
; (12)

B =
ρc

πR1R2

1 + cosϑ

2
j sin(kL); (13)

The second factor tends to unity for cylinders (R/r tends to zero). In what follows, it is replaced by this
limits in the expression of the transfer matrices.

2.3 Plane waves

If plane wavefronts are assumed, the previous derivation remains valid if r is replaced by x, L is replaced by `,
and Σ is replaced by S. This yields:

A =
R2

R1
cos(k`)− sin(k`)

k`

R2 −R1

R1
; (14)

D =
R1

R2
cos(k`) +

sin(k`)

k`

R2 −R1

R2
; (15)

B =
ρc

πR1R2
j sin(k`); (16)

This expression was given in [8], and in another form, in [9].

3 ZK theory and Helmholtz equation with losses

3.1 Equations of the ZK theory for cylindrical tubes; extension to plane waves in
conical tubes

In this paper, we use the Zwikker and Kosten theory [5], written in the form of a telegraphist equation, such as:

dP/dx = −Zv(x)U ; (17)

dU/dx = −Yt(x)P. (18)

For a cylinder, the parameters by unit length are Zv and Yt the series impedance and shunt admittance,
respectively. They are constant. The well known expression of the transfer matrix is the following:

A = D = cosK`
B = jZcsinK`.

(19)

The wavenumber K and the characteristic impedance Zc are:

K = −j(ZvYt)1/2 and Zc = (Zv/Yt)
1/2 (20)

The theory is based upon the (excellent) approximation that the pressure is planar, independent of the
abscissa x . The parameters are:

Zv = jωρzv/S
Yt = jωytS/(ρc

2)
(21)
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with:

zv =

[
1− 2

kvR

J1(kvR)

J0(kvR)

]−1

; (22)

yt = 1 + (γh − 1)
2

kvR

J1(ktR)

J0(ktR)
. (23)

γh is the ratio of the specific heats. kv and kt are the viscous and thermal wavenumbers, respectively:

kv =

√
−jωρ

µ
; kt =

√
−jωρCp

κ
. (24)

µ is the viscosity, κ the thermal conductivity, and Cp is the specific heat at constant pressure. The Stokes
number is denoted St = |kv|R .

At the second order of St, the asymptotic expression of Eq. (22) to the viscous parameter is:

zv = 1 + 2
√
−jS−1

t − 3jS−2
t . (25)

We need also the value of yt, or that of the wavenumber, which is denoted K = kq. The asymptotic expansion
is well known (see e.g. [10, 8]). At the same order of St

q =
√
zvyt = 1 + γS−1

t + δS−2
t . (26)

where
γ = 1.044

√
−2j ; δ = −1.08j. (27)

For a cone, we assume that at each abscissa of a cone, the pressure is plane and the ZK theory is valid. The
parameters Zv and Yt depend of the abscissa x, and the transmission line is non-uniform. The theory is assumed
to be valid for tubes of variable cross section S(x), with transmission lines parameters Zv and Yt. It is possible
to write:

zv = 1 + 2
√
−j αx − 3j α

2

x2 .

q =
√
zvyt = 1 + γ αx + δ α

2

x2 ,
(28)

where, because R = x tanϑ,

α =
x

St
=

x

tanϑ

√
µ

ωρ
. (29)

In the literature on musical acoustics, the Euler equation is often kept unchanged (i.e., zv = 1, see e.g.
[6, 7]). Another approximation if often proposed: the characteristic impedance is assumed to be constant, i.e.
zv = yt = q [8, 9]. Moreover the expressions are in general limited to the first order of the Stokes number.

3.2 Differential equation for the pressure in a tube of variable cross section

We are searching for a generalization of Eqs.(14 to 16). For a tube with variable cross section, if planar
wavefronts are assumed, the pressure equation can be written, from Eqs.(17, 18), as:

P ′′

P
=
Z ′v
Zv

P ′

P
+ ZvYt , (30)

where the prime symbol ′ indicates the derivative with respect to the abscissa x. By changing the variable, this
Sturm-Liouville equation can be rewritten into a canonical form (without the first derivative of P ), as follows:

P = ψ
√
Zv (31)

P ′′

P
=
ψ′

ψ
+

1

2

Z ′v
Zv

(32)

Using the second derivative of Eq. (31), it is obtained:

P ′′

P
− P ′2

P 2
=
ψ′′

ψ
− ψ′2

ψ2
+

1

2

Z ′′v
Zv
− 1

2

(
Z ′v
Zv

)2

. (33)
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Together with Eq. (32), this leads to :
ψ′′ +K2(x)ψ = 0 (34)

K2 = −ZvYt + η (35)

where

η =
1

2

Z ′′v
Zv
− 3

4

(
Z ′v
Zv

)2

.

Writing
Z ′v
Zv

= −2
R′

R
+
z′v
zv
, (36)

the coefficient η is expressed as follows:

η = −R
′′

R
+

1

2

z′′v
zv
− 3

4

z
′2
v

z2
v

+
R′

R

z′v
zv

(37)

For a cone, R′′ = 0, R = x tanϑ, and R′/R = 1/x . Thus:

η =
1

2

z′′v
zv
− 3

4

z
′2
v

z2
v

+
1

x

z′v
zv
. (38)

z′v = −2
√
−j α

x2
+ 6j

α2

x3
. (39)

As a result, for a cone,

η =
α2

x4
(−3j + 3j) = 0. (40)

This simple result is a particularity of the axisymmetrical geometry. Furthermore, at the first order of α/x, the
vanishing of η is valid for any shape of circular tube.

3.3 Differential equation for plane waves in a cone

Finally, for a cone, the differential equation to be solved is, at the second order of α/x:

k−2ψ′′ + q(x)2ψ = 0, (41)

where
ψ = P/

√
Zv. (42)

and q is given by Eq. (26). This original equation is extremely simple. In the literature concerning the WKB
solution of the Schrödinger equation the term k−2 is the analogous to the square of the Planck constant ~.

4 Computation of a reference solution.

4.1 Numerical, “exact” results with division into conical frustums

In order to evaluate the errors made using the WKB solution, a numerical, “exact” solution is sought. The only
geometry for which there is an analytical solution for the Helmholtz equation with losses is the cylinder. It is
possible to approach the cone by cylindrical frustums of very short length and constant radius Rn. Eqs. (19)
give the transfer matrix of a cylindrical tube of length `.

However the convergence with the number of frustums is more rapid if conical frustums with constant losses
are used. For that purpose the cone is divided in several short conical frustums with a small radius variation.
The losses are approximated by the losses of a cylinder with an equivalent radius Req. In order to correctly
estimate the magnitude of the impedance peaks, Ref. [8] suggests, for the frustum between x1 and x2, to
choose this radius as follows:

`

Req
=
x1

R1
log

(
1 +

`

x1

)
, (43)

5



where ` = x2 − x1 is the length of the considered frustum. Losses are computed by using Eqs. (25 and 26)
with the equivalent radius Req. The transfer matrix of a conical frustums is given by Eqs.(14 to 16), K and Zc
being calculated for the the equivalent radius.

A =
R2

R1
cos(K`)− sin(K`)

K`

R2 −R1

R1
; (44)

B = Zcj sin(K`); (45)

D =
R1

R2
cos(K`) +

sin(K`)

K`

R2 −R1

R2
; (46)

C = (AD − 1)/B (47)

Figure 2: Reference input impedance of the simplified bassoon computed by a division in 105 conical frustums
with ZK-losses computed with Eqs.(22) and (23) for the equivalent radius Reqn of each conical frustum (Eq.(
43).

The example of a simplified bassoon (R1 = 0.002 m; R2 = 0.02 m; L = 2.43 m) is chosen for the low values of
the Stokes number at low frequencies: for the first resonance frequency, it is close to 10, and its inverse is 0.1.
The input impedance is computed by multiplying the transfer matrices of each slice and by assuming a zero
impedance at the wide end (non-radiating open pipe) (Fig.2). The computation is carried out for the frequency
range [20, 104]Hz, with a logarithmic step of 1 cent. The cent is a musical logarithmic scale (100 cents = 1
semitone) defined as dif(cents) = 1200 ∗ log2(f2/f1).

Figure 3: Evolution of the norm of the relative difference with the reference impedance Zref (105 conical frustums
with ZK-losses) versus the length of each frustum for different approximations (Cylinders with ZK-losses, conical
frustums with ZK-losses, 1st or 2nd order approximation of losses).

In order to determine the frustum length necessary to converge to the “exact” solution, the evolution of the
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norm of the difference to the finest slicing is observed (Fig.3)

||Z − Zref ||
||Zref ||

=

f=104∑
f=20

|Z(f)− Zref (f)|

f=104∑
f=20

|Zref (f)|
. (48)

The norm converges for slices of 0.1mm corresponding to about 2 · 104 frustums for the considered tube. With
this slicing the variation of the radius for one frustum is about 7 · 10−7m. Throughout this paper, the reference
impedance Zref corresponds to that computed with the finest slicing (105 conical frustums of 2.43 · 10−5m).

Conversely, Fig.3 shows that the model with cylindrical frustums seems to converge also toward the reference
impedance (Fig.3), but the convergence is slow and a too large number of cylinder would be necessary to converge
(at least 1010). Even if the convergence is not reached, the norm of the difference between this theoretical results
and the reference impedance for the finest slicing is very small (10−4).

a) b)

Figure 4: Deviation of the resonance parameters to those of the reference impedance Zref (Conical frustums
with ZK-losses for equivalent radius) for different approximations (Cylinders with ZK-losses, conical frustums
with 1st or 2nd order approximation of losses): a) resonance frequencies and b) resonance magnitudes. Finest
slicing (105 conical frustums of 2.43 · 10−5m).

The norm of the impedance difference is not the more convenient way to observe the difference between
impedance curves. The difference between the resonance peak characteristics is a more significant observation,
especially for musical instruments. The resonance frequencies f (i) and magnitudes a(i) of the impedance peaks
are computed with the finest cylindrical slicing and compared to those of the reference impedance in Figure 4.
They are estimated by applying a second order polynomial fit on the modulus in decibel over the three samples
around the peaks to be more precise than the frequency step. The resonance frequency deviations, given in
cents, are under 0.01 cents for all peaks which is negligible for musical application (it is generally assumed that
the human ears can not detect frequency difference smaller than 3 cents) (Fig.4, a). The peaks magnitude is
very well estimated with a difference within 1 · 10−3dB (Fig.4, b).

4.2 Computation using asymptotic expressions with respect to the Stokes number

The impedance is also computed for conical frustums with the asymptotic expression of zv and yt at the first
and second order of the Stokes number (sec. 3.3). The norm of the difference with the reference impedance
decreases with the slice length to reach 10−2 for the first order and 3 · 10−4 for the second order (Fig.3). These
values seem high but it is important to notice that the norm of the error is very sensitive and particularly to
a small frequency decay. Figs. 3 and 4 show that the resonance frequency deviations are within 0.1 cents for
all approximations (Fig.4, a). This is acceptable in a musical context. The magnitudes also are well estimated
by the different approximations, even if the first order approximation has a significantly lower accuracy (the
deviation is 30 times higher in dB) than the second order approximation (Fig.4, b).

As a conclusion, the asymptotic expression of the visco-thermal losses at the second order of the Stokes
number is sufficient to achieve a satisfactory accuracy.
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5 WKB solution of the second order equation

We present the classical derivation of the WKB method (see Ref.citevoros ). The solution ψ of Eq. ( 41) is
sought in the following form:

ψ = g
[
ejk

∫
udr
]

(49)

and its derivative is equal to:

ψ′ = g′ejk
∫
udr +

giu

h
ejk

∫
udr

The unknowns are the functions g and u. u is dimensionless. Calculating the second derivative ψ”, the following
equation is obtained:

g” + g (jku)
2

+ gk2q2 + jk [2ug′/g + u′] . (50)

Because they are two unknowns functions, the vanishing of the bracket can be chosen,

2g′u+ gu′ = 0. (51)

This leads to the following relationship:

g =
Λ√
u
, (52)

where Λ is a constant. The first equation yields:

g”

g
= k2(u2 − q2) (53)

If u is a solution, −u is also a solution. Therefore ψ is the superposition of two solutions, as follows:

ψ = u−1/2

[
ψ+ exp

(
−jk

∫
udx

)
+ ψ− exp

(
jk

∫
udx

)]
, (54)

where ψ±are two constants. u is the unique unknown function. It is solution of the following equation, which
is derived from Eqs.(52) and (53):

k2u2(u2 − q2) =
3

4
u′2 − 1

2
u′′u. (55)

For infinite k, a trivial solution is u = q. For large k, the solution is sought in the form of an asymptotic
expansion:

u = q + v/k2 + w/k4 + ... (56)

Simplifying by the factor 1/k2, the term v can be obtained:

(v + w/k2)(u+ q)u2 =
3

4
u′2 − 1

2
u′′u. (57)

therefore, at the second order of 1/k :

v = 3
q′2

8q3
− q′′

4q2
. (58)

Another useful expression for the function v is:

v = −1

4

[
q′

q2

]′
− q′2

8q3
. (59)

At the fourth order of 1/k, w is obtained:

w = −5

2

v2

q
+

3

4

q′v′

q3
− 1

4

[
q′′v

q3
+
v′′

q2

]
. (60)

The expression of the fourth order coefficient leads to complicated results and it is not studied in the present
paper.
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6 Transfer matrix for the WKB solution

6.1 Expression of the transfer matrix

The derivation of the transfer matrix is similar to that for the non dissipative case (Section 2)

P̂ = ψ+ exp

(
−jk

∫
udx

)
+ ψ− exp

(
jk

∫
udx

)
. (61)

Using Eqs. (31) and (54), the relationship between the pressure P and P̂ is found to be:

P = P̂

√
Zv
u

(62)

thus
P ′

P
=
P̂ ′

P̂
+

1

2

[
Z ′v
Zv
− u′

u

]
. (63)

The variable Û is defined as:

Û = ψ+ exp

(
−jk

∫
udx

)
− ψ− exp

(
jk

∫
udx

)
. (64)

Therefore
Û = jP̂ ′/(ku). (65)

For the variables P̂ and Û , the transfer matrix is written as :(
P̂

Û

)
1

=

(
cosX j sinX
j sinX cosX

)(
P̂

Û

)
2

(66)

with

X = k

∫ x2

x1

udx. (67)

This integration can be interpreted as an average of the visco-thermal effects over the conical frustum. The
development of the expression of u makes appearing the integration of 1/R (Eqs. (28, 56)), which is coherent
with the equivalent radius Req chosen in Eq. 43. The relationship between (P, U) and (P̂ , Û) is given by Eq.
(17):

U = −P
′

Zv
= −P

′

P

P̂√
Zvu

(68)

Thus, with Eq. (63):

U =
1√
Zvu

[
jkuÛ − 1

2

(
Z ′v
Zv
− u′

u

)
P̂

]
. (69)

The transition matrix at each extremity of the truncated cone is derived as follows:(
P
U

)
i

=

(
ai 0
ci di

)(
P̂

Û

)
i

(70)

with
ai =

√
Zvi/ui

di = jk
√
ui/Zvi

ci = − 1
2

1√
Zviui

(
Z′

vi

Zvi
− u′

i

ui

)
The determinant of the matrix is aidi = jk and is independent of the extremity (1 or 2). The inverse matrix is:(

P̂

Û

)
i

=

(
1/ai 0

−ci/(aidi) 1/di

)(
P
U

)
i

(71)
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The product of the 3 matrices between abscissae 1 and 2 gives the final transfer matrix:(
P
U

)
1

=

(
A B
C D

)(
P
U

)
2

; (72)

with

A = a1
a2

[
cosX − c2

d2
j sinX

]
D = d1

d2

[
cosX + c1

d1
j sinX

]
B = a1

d2
j sin(X)

(73)

The determinants of the transition matrix and its inverse matrix are inverse. Therefore the determinant of the
transfer matrix is unity, and the coefficient C can be derived from the other coefficients. The final result is:

A =

√
Zv1

Zv2

√
u2

u1

[
cosX +

1

2

1

ku2

(
Z ′v2

Zv2
− u′2
u2

)
sinX

]
; (74)

D =

√
Zv2

Zv1

√
u1

u2

[
cosX − 1

2

1

ku1

(
Z ′v1

Zv1
− u′1
u1

)
sinX

]
; (75)

B =
1

k
sinX

√
Zv1Zv2

u1u2
(76)

As a summary, the calculation of the transfer matrix requires the values of the definite integral of the function
u, of the function u itself and of its derivative. Consequently, according to Eq. (56), we need the equivalent
expressions for the functions q and v, their integral and their derivative.

6.2 Expansions of q and v with respect to the Stokes number

The starting point is the expansion of the quantity q, as written in Eq. (26), at the second order of the Stokes
number. The indefinite integral Iq = k

∫ x2

x1
qdx and the derivative q′ are given by:

Iq = x+ γα ln(x)− δα
2

x
; (77)

q′ = −γ α
x2
− 2δ

α2

x3
. (78)

Notice that x is a variable with dimension, thus the neperian logarithm ln(x) has no sense, but, in the transfer
matrix, the quantity ln(x2/x1) intervenes in X. The function v could be also expanded with respect to α/x,
but for the integral Iv it is simpler to use directly Eq. (59). The integral of the second term of the expression
(59) is complicated, but a numerical evaluation is found to be very small, therefore

Iv ' −
1

4

q′

q2
; (79)

In order to calculate v′, we need the calculation of the second and third derivatives of q′ (Eq. (58):

q′′ = 2γα
x3 + 6δα2

x4

q′′′ = − 6γα
x4 − 24δα2

x5

v′ = 1
q3

[
5
4q
′q′′ − 9

8
q′3

q −
qq′′′

4

]
.

(80)

Finally, we need to successively compute the following expressions:

� compute α, γ, δ with eqs.(29, 27) then zv, z
′
v, q, Iq, q

′, q′′ and q′′′ with eqs.(28, 39, 26, 77, 78, 80)

� compute Zv and Z ′v/Zv with eqs.(21, 36)

� compute v′ and Iv then v with eqs.(79, 80) and eq.(58)

� compute u and u′ with eq.(56)

� compute Iu and X with eq.(56) and eq.(67)

� finally compute A,B,C,D with eqs.(74, 75, 76).
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7 Comparison of the zeroth and second orders of the WKB solution

7.1 Discussion

We wish to compare the “exact” results with the WKB solutions at zeroth and second orders in k−1. The
zeroth order is obtained by writting u = q. The comparison is done with the reference result obtained in Sect.
4.1.

We first notice that the obtained transfer matrix given by Eqs.(74 to 76) is invariant by slicing: the product
of the matrix of two successive conical frustums with the same angle equals the transfer matrix of the total
cone. This invariance can be shown by a rather long calculation for both the orders of approximation. It is not
difficult, and is not developed here.

The analytical limit of validity of the WKB solution can be given by the comparison between the terms due
to the visco-thermal effects and their variations with the radius. At the first order of the Stokes number and at
the second order of the WKB solution, the function u is written as:

u = 1 +
γα

x

[
1− 1

2k2x2

]
. (81)

The second term in the bracket can be very high at low frequencies for the smaller radius of the cone. For the
first resonance of the bassoon, it is close to 5, and it appears that the convergence to a correct limit value at
higher WKB order is problematic. Similar behaviour can be found for the integral and the derivative:

Iu = x+ γα

[
ln(x)− 1

4k2x2

]
. (82)

and

u′ = −γα
x2

[
1− 3

2k2x2

]
. (83)

Using Eq. (82) the quantity X (Eq. (67) can be calculated. The result is:

X = k`+
γ

tanϑ

√
c`v
ω

[
ln

{
1 +

`

x1

}
− 1

4k2x2
2

+
1

4k2x2
1

]
(84)

Therefore, an approximate condition of validity can be estimated: kx1 > 1 . For the first peak of a divergent
cone, k ≈ π/x2, thus the condition can be written as:

π
x1

x2
= kx1 > 1

This is not satisfied for the first peak of a bassoon. However, above the third or fourth peak, this becomes
acceptable.

7.2 Numerical comparison

The impedances are computed with the zeroth order (u = q) and 2nd order (u = q+ v/k2)of the WKB transfer
matrix for a truncated cone. They are compared to the reference impedance (average ZK losses for 105 conical
frustums) in Figure 5,a.

As expected, the WKB approximations are better at higher frequencies. It is particularly true for the second
order approximation, for which the first peak is underestimated and the second peak largely overestimated.
Both correspond to frequencies for which kx1 < 1. However, the zeroth order approximation seems better at
this peaks. This observation can be quantified by applying the error norm of Eq.(48) of different frequency
ranges. If the norm is computed on the entire range, the second order result has poorer accuracy than the
zeroth order one (the error norm are respectively 0.3 and 0.1). Conversely, if the range is limited to higher
frequencies (kx1 > 2), the second order is better than the zeroth order (respectively 0.004 and 0.01).

These observations appear more clearly on the modal parameters of the impedance peaks, which are repre-
sented versus both the frequency and the normalized wavenumber kx1 in Figure 6. At low frequencies (kx1 < 1.5,
Fig.6,a) the zeroth order is better. It induces a deviation about −30cents and −4dB on the first peak, while
the second order induces a deviation about 140 cents and −14 dB. As expected, at higher frequencies (kx1 > 2,
Fig.6, b), the second order is slightly better, even if both orders show acceptable deviations to the reference
impedance (< 1 cents and < 0.5dB).

Consequently the gain of the second order of WKB on the zeroth order is questionable for this kind of
resonators. The zeroth order approximation seems much more simpler and more appropriate for musical appli-
cations, when the first peak is predominant in the sound production.
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Figure 5: Input impedance of the simplified bassoon (reference impedance) compared with the WKB formulation
on one conical frustums at the second and zeroth order (in both WKB solutions, the second order order is used
for the Stokes number).

a) b)

Figure 6: Difference between the resonance parameters of the WKB simulations (second and zeroth order)
to those of the reference impedance: top: frequencies and bottom: magnitudes. a): low frequencies, b) high
frequencies (the vertical scales are different). In both WKB solutions, the second order approximation is used
for the visco-thermal effects.

8 A simplified, general formula

8.1 Plane waves

It can be useful to search for a further simplification of the zeroth order solution. We start from Eqs. (74 to
76) with q1 = u1 and q2 = u2. First of all, we notice the following relationship: Zv/q = jkZc. The transfer
matrix can be written as follows:

A =

√
Zc1
Zc2

[
cosX +

1

2

1

kq2

Z ′c2
Zc2

sinX

]
; (85)

D =

√
Zc2
Zc1

[
cosX − 1

2

1

kq1

Z ′c1
Zc1

sinX

]
; (86)

B =
1

k
sinX

√
Zv1Zv2

u1u2
(87)

At the second order of the Stokes number, the characteristic impedance is written as:

Zc =
ρc

S

[
1 + 0.37

√
−2jS−1

t − 1.147jS−2
t

]
(88)

Therefore, by comparing with the expression of the wavenumber K = kq (see Eq. (28)), the visco-thermal
effects intervene significantly more in K than in

√
Zc (1.044 and 0.18, respectively). For this reason, we can
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ignore the influence of these effects in Zc (This is due to the difference in sign of viscous and thermal effects.
Moreover, in the transfer matrix expression, the characteristic impedance intervenes through its variation in
the cone, between x1 and x2). As a consequence, the following simplified formula can be useful:

A =
R2

R1
cosX − 1

kq2x1
sinX; (89)

D =
R1

R2
cosX +

1

kq1x2
sinX; (90)

B =
ρc

πR1R2
jsinX. (91)

Figure 7 shows that the simplification leads to satisfactory results, when compared to the complete zeroth
order formula.

Figure 7: Difference between the resonance parameters of the WKB simulations at the zeroth order (com-
plete and simplified) to those of the reference impedance: top: frequencies and bottom: magnitudes. In both
simulations, the second order approximation is used for the visco-thermal effects.

This approximation differs from other approximations published by some authors. The result of Ref. [11]
adds the approximation that q1 = q2 = 1, and does not justify the starting point. Other approaches were given
for the calculation of the impedance peaks [8, 13] or of the resonance frequencies [14], the results being also
consistent with the equation (67), which is based upon the calculation of a mean value of the inverse of the
radius.

We emphasize that this paper considers an extreme case, the bassoon. Fig. 8 shows that for a wider
instrument, such as a simplified baritone saxophone (R1 = 6.75mm, R2 = 60mm, ` = 2.38m), the final results
are much better for the first peaks. Furthermore the convergence study to the reference result justifies a classical
approximation of visco-thermal effects in cones: the second order of the asymptotic expansion with respect to
the Stokes number does not significantly improve the accuracy of the computation. This was not clear in [13].

8.2 Spherical waves

The previous analysis assumes plane waves. Nevertheless, for cones with wide apex angle, it is known that
spherical waves are more accurate. This is especially important for the division of bells into truncated cones
[7]. For such cones, visco-thermal effects are weak, and the WKB solution of zeroth order is satisfactory. It is
s not necessary to repeat the complete analysis. We propose the following formula, which is a modification of
Eqs. (8 to 10):

A =
r2

r1
cosXs −

sinXs

kq2r1
;

D =
r1

r2
cosXs +

sinXs

kq1r2
; (92)

B =
%c

Σ2

r2

r1
j sinXs;

C = (AD − 1)/B.
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Figure 8: Difference between the resonance parameters of the WKB simulations at the zeroth order (complete
and simplified) to those of a reference impedance for a simplified baritone saxophone: top: frequencies and
bottom: magnitudes. In both simulations, the second order approximation is used for the viscothermal effects.

with
Xs = Iq2 − Iq1 (93)

and

Iq = r + γαln(r)− δα
2

r
. (94)

9 Conclusion

To our knowledge the propagation equation in cones with visco-thermal effects was not derived in previous
papers. In the frequency domain, at the second order of the asymptotic expansion with respect to the Stokes
number, the canonical form (without term with the derivative of the first order) is extremely simple. With this
starting point, the WKB method leads to the possibility to compute the transfer matrix of a truncated cone
without division of its length. The result of the zeroth order is satisfactory under the condition that the length
of the missing cone x1 is large compared to the wavelength. Under this condition, the WKB second order is
even better.

However, the good accuracy of these approximations at higher frequencies is not actually necessary in practice.
Conversely, for the first resonances, the accuracy is not excellent. Paradoxically the second order seems less
accurate than the first one. This is due to the slow convergence of the series expansion of the WKB function
denoted u in this paper. It should be necessary to extend the WKB method to further orders, but this should
lead to complicated expressions. Therefore, we propose to limit the expansion to the zeroth order WKB formula,
which is well known. Moreover, from an analysis of the dependence of the characteristic impedance with respect
to the Stokes number, a significant simplification of the zeroth order is obtained. It slightly differs from formulas
found in the literature, but a numerical analysis of the analytic formulas shows that the errors of the various
formulas are of the same order of magnitude.

The values of the transfer matrix coefficients can be empirically improved at low frequencies. This is true in
particular for the examined case of the input impedance of the simplified bassoon: ignoring the visco-thermal
effects in the coefficients q1 and q2 (i.e., writing q1 = q2 = 1) diminishes the errors by a factor 2 for the first two
peaks. However, this do not seem to be general for all coefficients of the matrix. We prefer to keep the formulas
analytically derived with a clear expression of their origin. Formulas (92) are a satisfactory compromise for
conical instruments.

Finally, these unified formulas for cones with either narrow and wide apex angles can be appropriate for
impedance computation software. This is particularly useful for the application to instruments with bells, when
the plane wave approximation is not applicable. An extension of the present work could be taken for other
shapes of horns, as it was done in [7], but the corresponding work should be heavy.
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