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Abstract. Wood furniture is often composed of simple parts that may be modeled as beams or plates. These
particularities allow using simplified approaches that reduces the number of degrees of freedom (dof for short) in a
finite element simulation of the furniture’s behavior. Generally, connections are not taken into account in such
simulations but these connections are critical in the failure process of the furniture and it worth studying it precisely.
Using amulti-scale approach, this paper introduces a numerical procedure to identify the connection contribution in
the furniture’s stiffness. Comparing 3D finite element calculations with a Timoshenko’s beam calculation on a
corner of twowooden parts, we identify the specific behavior of the connection elements (pins, nut, screw… and local
3D effects) to introduce it as a punctual 0D element in the beam code. Two validations of the approach are presented
here: (i) a numerical validation by comparing the result of the beam code with a complete 3D finite element
simulation on a representative plane structure of wooden furniture; (ii) an experimental validation by managing a
global bending test and measuring the displacement field using digital image correlation (DIC for short).

Keywords: Wood product / connection / multi-scale approach / digital image identification
1 Introduction: from dispersion of wood
properties to the necessity of a fast
modeling tool

Bunk bed furniture is widely produced for domestic use.
Since furniture may be described as a mechanical structure
submitted to various loadings [1], it can be classified into
three groups depending on their construction design [2]:

–
 frame type structure constructed of beam-like elements of
wood or wood based materials, such as chipboard,
MediumDensity Fiberboard (MDF for short) or plywood;
–
 can type structure constructed of plate-like elements of
wood based materials;
–
 combined structure constructed of both beam and plate
elements.

The different components of each structure are
assembled with a variety of joining techniques. These
techniques are either simple with only one or two fixing
components or more complex.
uc.chevalier@univ-paris-est.fr
In service, bunk bed structure is subjected to static
loads such as punctual static forces and dynamic loads,
such as cyclic or impact loads. It is mostly for safety
reasons, that the European committee of standardization
(CEN) has issued a particular norm [3] for this type of
furniture that includes validation tests for both dynamic
and static loads.

Generally, the strength and the stiffness of wood
furniture are highly influenced by three main factors [4]:

–
 the type of wood or wood-based material out of which
furniture is manufactured;
–
 the assembling technique used to join the elements;

–
 the type of load applied.

Wood highlights a complex behavior, heterogeneous,
anisotropic and sensitive to hygrometric conditions and a
classical orthotropic elastic model is often used to carry out
finite element simulations. To take into account the
uncertainties of the model in our calculations, it is necessary
to characterize all parameters with probabilistic laws so it is
possible to carry out numerous simulations. In that way we
can obtain a statistical response for the structure: mean
displacement or stress, standard deviation, confidence region
as it is presented in [5]. Making thousands of simulation is
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Fig. 1. Screen shot of the CADmodel of the corner. Lengths are h=447m and d=428.5mm. Sectional areas are 57� 57mm2 edge for
the vertical part and 20� 140mm2 for the horizontal one. All dof are naught in section A and loads are applied in section B.
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possible in this context thanks to the geometrical particular-
ity of the bunk bed structure composed of long elements
where the use of the beam theory is possible.

Nevertheless, 3D effects appear in the junctions between
beams and one must take these effects into account to make
sure of the accuracy of the simulations. In a beam finite
element code, junctions are 0D punctual element that can
be interpreted as local springs. In this paper we study the
behavior of a specific assembly (bolt � dowel nut � pins)
used to fasten the main corners in a wood bunk bed frames
under static loads. The multi-scale approach developed is
quite classical but here, we chose to run a purely numerical
procedure to identify the behavior of the 0D element: results
of 3D finite element calculations done using the SolidWorks
software are compare with a Timoshenko’s beam calculation
on a corner of two wooden parts, this enables the
identification of the specific behavior of the connection
elements (pins, nut, screw… and local 3D effects). The choice
of SolidWorks instead of another finite element code is
imposed by the furniture manufactory context.

Two validations of the approach are presented: (i) a
numerical validation by comparing the result of the beam
code with a complete 3D finite element simulation on a
representative plane structure of wooden furniture; (ii) an
experimental validation by managing a global bending test
and measuring the displacement field using digital image
correlation.
In the next section (Sect. 2), we present the multi-scale
approach. We develop the stiffness matrix of a perfect
corner under beam theory as well as the 3D results and
explain the identification process and justify the assump-
tion made (neglecting the elongation effects in regards of
rotational effects in the 0D model). We finally conclude
that rotational stiffnesses are not constant values and
depend on the load intensity.

In Section 3, we compare the deformed shape of a bunk
bed structure using the SolidWorks 3D code (we focus on
the mean line of each beam) with the displacement field
obtained with the beam code where we included the non-
linear behavior of the 0D junctions. This comparison is very
good despite the complexity of the bed structure in regards
of the simplicity of the corner. Finally, an experimental
section is devoted to validate this approach.
2 A multi-scale analysis of the jointing
element influence

A through-bolt with dowel-nut connection is studied in this
section. This system is usually used both as primary
connectors and also to reinforce weaker joints [6]. The
through-bolt with a dowel-nut connection is of particular
interest because of its strength and reliability [7] thus it’s
widely used to connect bed rails to bed posts. Figure 1
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introduces the geometrical characteristics of the corner
studied to manage the multi-scale approach. First we
manage calculation on a perfect corner using the Timo-
shenko’s beam theory andwe highlight a first stiffnessmatrix
between the load applied at section B and the displacements
and rotations of the section B. Second, we use a 3D finite
element code (SolidWorks) tomanage 3D calculations on the
3D model of the corner including bolt and other wood pins
used to fix the two parts together. The difference between the
displacements components of the 3D calculations and
the beam ones leads to the influence of the connection on
the corner behavior. This is the global procedure of themulti-
scale approach used in the following sections.

2.1 Perfect corner via beam theory

Considering that the beams’ behavior is elastic, one can use
superposition of the six independent loading cases: forces
FX, FY, FZ and moments MX, MY, MZ applied on the
section at B. These six cases are representative of any
loading case.

F extf g ¼ ~F ¼ Fx~x þ Fy~y þ Fz~z
~MB ¼ Mx~x þMy~y þMz~z

( )
B

: ð1Þ

In the following, the vertical part is denoted (1) and the
horizontal one is denoted (2). Young’s modulus and shear
modulus are noted Ei and Gi (spruce is used for the two
parts and subscript ‘i’ is not necessary here) and quadratic
momentum and cross section are respectively denoted Iix or z
and Si When we apply forces FX, FY or bending momentMz
the displacements field stays in-plane and only two
displacements uB and vB and a rotation uz are non naught.
For example if we apply a force FX, the displacements and
rotation are:

uB ¼ h3

3E1xI1z
þ h

G1xyS1

� �
Fx; vB ¼ � h2d

2E1xI1z
Fx;

uz ¼ � h2

2E1xI1z
Fx : ð2Þ

Because of the great difference between E (11 580MPa)
and G (540MPa) the shear effect is as important as the
uB

vB
�z

0
@

1
A ¼

h3

3E1xI 1z
þ h

G1xyS1
� h2

2E1

� h2d

2E1xI 1z

hd2

E1xI 1z
þ d3

3E2xI

� h2

2E1xI 1z

hd

E1xI 1z
þ

2
66666664

wB

�x
�y

0
@

1
A ¼

hd2

G1xzJ 1
þ h3

3E1xI 1y
þ d3

3E2xI 2y
þ h

G1xzS1
þ d

G2xzS2

h2

2E1xI 1y

� hd

G1xzJ 1
þ d2

2E2xI 2y

� �

2
66666664
bending effect. Compression or tension effects in longitu-
dinal direction are neglected because their contribution
leads to small displacements in regards of the bending and
shear effect. Consequently, if one applies a Fy force:

uB ¼ � h2d

2E1xI1z
Fy; vB ¼ hd2

E1xI1z
þ d3

3E2xI2z
þ d

G2xyS2

� �

Fy; uz ¼ hd

E1xI1z
þ d2

2E2xI2z

� �
Fy : ð3Þ

For the bending moment Mz we have:

uB ¼ � h2

2E1xI1z
Mz; vB ¼ hd

E1xI1z
þ d2

2E2xI2z

� �
Mz;

uz ¼ h

E1xI1z
þ d

E2xI2z

� �
Mz : ð4Þ

These in-plane results can be summarized in the compli-
ance matrix where coupling between the 3° of freedom
appears clearly.

See equation 5 below:

Out-of-plane loadings are force Fz and torques Mx
and My. Some complementary torsion deformations
superpose the shear and bending effects already observed
in the in plane problem. The out-of-plane compliance
matrix also shows coupling between rotations dof.

See equation 6 below:

3D finite element calculations are managed in the
SolidWorks environment and the results are compared to
these analytical expressions in order to identify the
influence of the connection elements (screw, nut, pins)
and the influence of local contact effects.
2.2 3D FEA of the real corner behavior and focus on
rotational stiffness

To carry out the finite element simulation of the “real”
corner including contacts, pins, screw and nuts, one must
address several topics: (i) the material characteristics
d
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Table 1. Transversal isotropic elastic characteristics for
spruce.

Er=Et Eℓ Grt Grℓ=Gtℓ yrt yrℓ= ytℓ

500MPa 11 580MPa 175MPa 450MPa 0.44 0.02
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(ii) the meshing refinement (iii) the contact definition and
(iv) the bolt preload. This last was the trickiest and we used
the temperature difference between the bolt and the
wooden parts to model the preload: (i) first assembly is
created without any gap or preload, (ii) the temperature of
the screw is imposed to a small value and (iii) the thermal
problem is computed and the contraction of the screw
generates an axial preload in the connection.

Finally, the determination of the displacements uB and
vB of point B and the rotation uz of the section at B cannot
be obtained directly from the finite element results. It is
necessary to make an extraction of the nodes coordinates
Xi, Yi and Zi and displacements ui and vi to obtain this
angle using the least squaremethod. The displacement field
of a assumed rigid section can be represented by:

UsectionBg ¼
C
! ¼ ux~x þ uy~y þ uz~z

uMi
��! ¼ uB þ uyZi � uzY i

� �
~x

þ vB � uxZið Þ~y þ wB þ uxY ið Þ~z

8>>><
>>>:

9>>>=
>>>;

Mi

: ð7Þ

The sum of squared difference between the rigid displace-
ments and the finite element nodal displacements is given by:

S ¼
XN
i¼1

e2i ¼
XN
i¼1

uB þ uyZi � uzY i � ui

� �2n
þ vB � uxZi � við Þ2 þ wB þ uxY i � wið Þ2

o
; ð8Þ

where N is the total number of nodes at the face B.
Minimizing S with respect to uB, vB, wB, ux, uy, uz yields to a
system of 6 linear equations that gives the needed rotations
and displacements for the comparison. The linear system
can be written in a matrix form as follows:

See equation 9 below:

Thanks to the numerous bibliographic references [8–18]
the mean values for the spruce properties are well known.
The longitudinal Young modulus Eℓ of the wood is greater
than the moduli Er and Et in the cross section of the tree.
N 0 0 0
XN
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0 N 0 �
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i¼1

Zi 0

0 0 N
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i¼1

Y i 0
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ðY i
2 þ Zi

2Þ 0
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Zi 0 0 0
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i¼1

Zi
2

�
X
i¼1

Y i 0 0 0 �
XN
i¼1

Y iZ

2
6666666666666666666666664
Er is the modulus in the radial direction of the expansion of
the tree and is more or less 4% of the longitudinal modulus
while Et that is the modulus measured tangentially to the
wood rings of growth is about 8%. Nevertheless, these two
are significantly lower than Eℓ and we will assume that the
elastic behavior is transversally isotropic. Values of Table 1
are implemented in the finite element code for the
simulations.

The finite element used is a quadratic tetrahedron with
a characteristic length of 2mm in regular parts and the
mesh is refined near the connections where the size reduced
to 0.5mm. Junction needs also more than one hundred
contact elements (see Fig. 2). This leads to more than
350 000 dof and, because of the non-linearity of the contact
element, one simulation needs 5–15min to be completed on
a PC using Intel i7 processor. This is already quite long for
the corner only and one can easily understand that the
entire bunk bed would lead to unreasonable CPU time.
When furniture’s elements are assembled, junctions are
tightened and a preload appears between the assembled
elements. To apply this preload on the finite element model
there are actually no simple option in SolidWorks so we use
the thermal properties and gave an initial temperature
lower to the bolt than for all other parts that where at
ambient temperature. In case of a classical assembly, the
bolt force can be written in function of DT as:

F 0 ¼ l0a�
1
kb
þ kc1þkc2

kc1kc2

�DT ¼ bDT : ð10Þ

kc1 and kc2 are stiffnesses of the assembled part 1 and 2
and kb the bolt stiffness. In this relation a denotes the
thermal expansion coefficient for the bolt material
�
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Fig. 2. CAD and meshing of the “real” corner.
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(a=1.5� 10�5K�1) and DT is the temperature change
imposed on the bolt. Because kc1 and kc2 are global values
not easily known, calculating the coefficient b that appears
in equation (10) necessitates finite element calculation of
the stiffness of two differently sized, compressed and
oriented wood parts. Simulation gives b equal to a constant
value of 8.74N/K and equation (10) can be used to
determine the temperature variation needed to generate
the desired preload. Some experiences with different users
were carried out and the maximum torque was measured
for each tightening: the mean value was chosen to evaluate
a reasonable preload value. Because of the low strength of
wood in transversal direction the dispersion on all
experiences is not so important.

For the in-plane case, considering a nodal spring
between the twowooden parts introduces 3 complementary
terms in the matrix of equation (5). Our approach gives 5
potential relations from which one can identify the 3 values
of ku, kv and kg:

See equation 11 below:
uB
vB
�z

0
@

1
A ¼

h3
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þ h

G1xyS1
þ 1
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� h
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3E2xI 2z
þ

� h2

2E1xI 1z

hd

E1xI 1z
þ
2E

2
66666664
If FX≠ 0 and Fy=Mz=0 the first column gives a
relation to identify ku from the calculated displacement uB
obtained from the 3D finite element simulation.

ku ¼ 1
uB
Fx

� h3

3E1xI1z
þ h

G1xyS1

� � : ð12Þ

In the case of the kuz stiffness, one can use three different
relations: (i) FY≠ 0 and FX=Mz=0 and using the angle uz
coming from the finite element simulation; (ii) Mz≠ 0 and
FX=Fy=0 and using the displacement vB coming from the
finite element simulation or (iii)Mz≠ 0 andFX=Fy=0 and
using the angle uz coming from the finite element
simulation. All three cases give quasi-identical values
(difference less than 5%) and for sake of simplicity we will
use the case (i) in the following, which leads to:

kuz ¼
d

uz
Fy

� hd
E1xI1z

þ d2

2E2xI2z

� � : ð13Þ
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Fig. 3. Left, stiffness vs. moment and right, moment vs. relative rotation (results and model).

Table 2. Mz vs. urz model parameters.

Mo 33 000 N.mm

k∞ 1.6� 107 N.mm.rad�1

uref 3.5� 10�4 Rad
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Finally, one can evaluate kv from the case Fy≠ 0 and
Fx=Mz=0 and using the displacement vB coming from the
finite element simulation. Stiffness kuz appears in the
relation so it must be evaluated previously:

kv ¼ 1

vB
Fy

� hd2

E1xI1z
þ d3

3E2xI2z
þ d

G2xyS2
þ d2

kg

� � : ð14Þ

Numerical applications clearly show that elongational
stiffnesses ku and kv have high values and that their
influence in the displacement components can be
neglected in regard of the influence of kuZ. Consequently,
the 0D spring element is reduced to one in-plane angular
rigidity kuZ and two out-of-plane angular rigidities kuX and
kuY.
2.3 A non-linear model for rotational stiffness

Varying the force FY, the previous procedure gives
different values of the spring stiffness kuz: high value for
low force and a decreasing evolution of the stiffness to an
asymptotic value when the load increases. A constant value
of kuz would lead to a too smooth structure. Consequently,
the junction behavior has to be non-linear and one must
compute the behavior law between the bendingmomentMz
across the junction and the relative rotation urz between the
two wooden parts.

Moment Mz is obtained from the load values FY by
multiplying with the beam length d. Thanks to the relation
Mz= kuzurz one can obtain the relative rotation urz for each
value of FY:

urz ¼ Mz

kuz
¼ dFY

kuz
: ð15Þ
This leads to the nearly linear plot of Figure 3 that we
chose to model with a decreasing exponential function
asymptotic to a linear one as in equation 16:

Mz ¼ M0 þ k∞urzð Þ 1� exp � jurzj
uref

� �� �
: ð16Þ

k∞ is the slope of the linear part, M0 is the moment value
when the linear part crosses the vertical line at the origin of
the graph and uref is an angular value that characterizes the
length of non-linear zone. In Figure 3, the line is the best fit
of these parameters to represent the spots coming from the
multi-scale approach. The best fit leads to values
summarized in Table 2.

The same identification procedure is carried out for the
two other rotational stiffnesses kux and kuy and, after
transformation into a moment versus relative rotation
graphs, it leads to the evolution shown on Figure 4. The
evolution of momentum are quasi linear so the identifica-
tion will be simple.

Apparently, the graphs of Figure 4 indicate a quasi-
linear behavior of the connection for both kuy and kux
but with stiffness 10 times higher in torsion (kux) then for
bending around the Y direction (kuy). However, the
relative difference in flexibility between the rigid
and semi-rigid system was found to be of 5.8% for
torque around the X direction implying that the
connection is stiff in torsion, whereas kuy best-fit value
is 1.615� 106 N.mm.rad�1.
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3 Numerical and experimental validations

The non-linear connection model has been implemented in
the Timoshenko’s beam code developed for furniture
applications. Such code should give an identical deformed
shape than a 3D simulation for a given structure. First, to
validate the efficiency of the connectionmodel to reproduce
the junction behavior we carried out a complete 3D
simulation on a plane structure representative of the bunk
bed. Finally, it is also necessary to manage real tests on
corner to validate experimentally the behavior of the
jointing elements and its domain of validity.

3.1 Numerical validation of the approach on simplified
2D examples

At beam element scale, the connection is represented by
fictitious zero length (0D) elastic element inserted at the
intersection point between a beam and a column as used in
[19,20]. For the in-plane configuration, this element can be
modeled by a multi-springs system dividing the connection
into equivalent shear, axial and rotational springs. The
stiffness of each spring (denoted by ku, kv and ku,
respectively) is the ratio of the transmitted force to the
corresponding relative displacement within the connection.
By satisfying the equilibrium requirements, the stiffness of
the connection can be represented in the finite element
beam code by the following stiffness matrix:

Kc½ � ¼

ku 0 0 �ku 0 0
0 kv 0 0 �kv 0
0 0 ku 0 0 �ku

�ku 0 0 ku 0 0
0 �kv 0 0 kv 0
0 0 �ku 0 0 ku

2
6666664

3
7777775: ð17Þ

The global structure stiffness matrix is obtained by
assembling the frame elements matrices, including the
spring’s behavior, according to the conventional direct
stiffness procedure programmed in a Matlab code which is
also adapted to run a Newton–Raphson routine for non-
linear analysis.

A simplified frame of one side of a bunk bed was
modeled at both scales. The semi rigid frame model
includes a beam of sectional area (20� 140mm) and a
varying length d and two columns of sectional area
(57� 57mm) and a varying length h. The modulus of
elasticity and the shear modulus are the same for all frame
elements. The length of the beams is 1 and 2m whereas the
length of the different columns is 0.5, 2 or 3m. These
standard dimensions represent all sub-frames that may be
found in a typical bunk bed. Two flexible connections are
located at the intersection of beam and column and
modeled as non-linear rotational springs which properties
are derived using equation 17.

The 3D model with the real configuration of the
assembly technique was modeled in Solid works environ-
ment using the same solid element, materials properties,
pretention value, mesh density and contact set as in the
corner model. The frame was constrained at the base and
loaded in-plane at mid span with a vertical force of 1000N.
The nodal displacements of the 3D model (blue dots in
Fig. 5) were extracted and implemented in the beam code
to be compared with the deflected neutral axis of frame
elements. The relative error in displacement ranged from
2% to 12% which falls in the expected range of error
previously observed between the two scales.

In the corner case used to manage identification the
maximum bendingmomentum is localized on the corner. In
the case of the example, Figure 5, which is hyper-static, the
momentum value is maximum in the middle of the
horizontal beam: the momentum distribution is really
different from the reference case so the good coincidence
between deformed shape at both scales is a first validation
of the quality of the “beam+connection” modeling. It can
be noticed that for the corner case, considering that
stiffness varies with the applied momentum, the contribu-
tion of the spring in the total displacement goes from 13%



Fig. 5. Comparison between the displacement field of the mean line of the 3D FEA and the “beam+spring” one.
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for small loads to 56% for high loads. In the case shown in
Figure 5, the contribution of the springs at max
displacement is 23%.
3.2 Experimental validation: non-linear behavior and
dispersion

Tests were performed on the corner case using a universal
testing machine DeltaLab500 provided with 5 kN capacity
loading cell. A special fixation system was designed and
attached to themachine. Each specimen was first clamped to
the fixation system via the post (column part). A vertical
increasing static load was uniformly applied along the
complete width of the rail (beam part) through a (20� 10
� 2)mm metallic plate slicked to the rail free edge. Digital
image correlation technique [21]wasalso employedwhere two
digital cameras were installed 70 and 80 cm in front of the
specimen face.The test arrangement is illustrated inFigure 6.

The tests were performed until a major failure occurred
at a constant rate of 2.5mm/min and was programmed to
pause every 30N of load increment in order to take photos.
The primary requirements of the test set-up were the
measurements of:

–
 the applied load Fywhich is captured directly by the load
cell;
–
 the vertical displacement vB at the free edge which is
measured as the movement of the crosshead;
–
 a direct measurement of the relative rotation between the
post and the rail for each load increment using DIC.

The load displacement data was recorded every one
second while the rotation was post-treated at each load
increment which enables to reproduce the Momentum
versus relative rotation curve as presented in the previous
section (see Fig. 7).
One can see that most of experimental curves coincide
with the 3D finite element simulation for low momentum
values (i.e., M< 50� 103N.mm). It is a first interesting
result because simulation managed on complete bunk bed
in normalized loading conditions showed that bending
moment does not exceed 50� 103N.mm in connections.
Consequently, the finite element beam code with non-
linear connections is a perfect tool to manage validation
before manufacturing real furniture.

Nevertheless, if one wants to identify the connection
model from equation 16 it appears that (i) k∞ is much lower
than from the finite element simulation; (ii)Mo highlights a
large dispersion up to 22% and (iii) the initial slope ko that
can be identified to the ratio Mo over uref highlights even
higher dispersion: up to 30%! Where does all these
dispersion come from is the question addressed in the
next section.

3.3 Complementary test and identification of the
dispersion’s origin

When momentum increases the slope of the momentum
versus rotation decreases and reaches a stable value lower
than what the 3D simulation can estimate. More, the
momentum value of the divergence between simulation and
experimental tests is much dispersed: one can wonder why
and answers are to be found in the low value of the limit of
proportionality in radial or tangential direction of the
wood. Since contact is localized between the head of the
screw and the column the pressure can exceed the elastic
limit and lead to non-linear behavior. When the relative
rotation becomes important there is no more contact on
most of the area between the column and the beam: at this
time the pressure is also high on the remaining surface
between these two wooden parts and one must notice that



Fig. 7. Mz versus urz curves compared with the FEA curve� dots
are direct measurement obtained from the displacement of the
testing machine and the line is obtained from 3D finite element
simulation.

Fig. 6. Presentation of the corner test experiment (a) details on the apparatus (b) angle gap urz measurement with DIC.
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the vertical part is compressed in the direction normal to
fiber. Both effects conjugate to obtain this non-linear global
behavior.

25 compression tests have been managed to reproduce
the contact between the head of the screw and the wooden
part. The compression is managed on faces that are normal
to the fiber direction. A hole of 7mm was drilled across the
center of each cube and an M6 bolt was cut to a length of
30mm and was inserted in the hole. The bolt head was
compressed through a metallic pad of the same diameter
attached to the loading cell of the Deltalab machine. The
load was applied with constant rate of 0.25mm/min.

Figure 8 gives an illustration of the test and plots the
different curves obtained. One can observe that initial slope
Kinit highlights dispersion as well as the Fp values (Fp is the
load value obtained from the intersection of the linear part of
the curve with the initial slope). The slope of the linear part
is denotedK∞ and ismore or less the same for all curves. The
dispersion on Fp is the same that the dispersion on the Mo
parameter of the behavior law of the connection, about 20%
dispersion, so this confirms that the origin of dispersion has
been identified. More, if we introduce the supplementary
relative displacement in the behavior of the corner, one can
reproduce the dispersion observed experimentally.
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Fig. 8. Screw compression in wood test and results.

Table 3. Mean value and standard deviation of the
parameters of equation (18) parameters.

Finit (N) uref (mm) Kinit (N/mm) K∞ (N/mm)

Mean value 1.07� 103 0.484 2.29� 103 3.18� 102

Dispersion
(%)

18.97% 17.67% 27.79% 15.46%
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The results of the tests representedas force-displacement
curves in Figure 8 exhibited an elastic-plastic behavior of
wood in compression perpendicular to grain. In the same
manner than for the corner tests,wecanfit a threeparameter
exponential model defined in equation (18) with numerical
values defined in (Tab. 3) for each curve:

F ¼ F init þK∞uð Þ 1� exp � u

uref

� �� �
; ð18Þ

where Finit is the y-intercept, K∞ is the slope in the second
linear phase and uref is the scaling factor of displacement.
Searching the best-fit parameters for each curve yielded the
following average value of the curves characteristics and
dispersions:

Assigning the mean, minimum and maximum values in
equation (18) permits to plot the black dot curves of
Figure 8 which represent the mean curve with two curves
that envelope the test set quite well.

It is well known that mechanical properties of wood
show dispersions related to the density. It is also well
known that radial modulus Er or tangential modulus Et are
significantly lower than the modulus Eℓ in longitudinal
direction but also very different from each other. In this
case one can evaluate the modulus in a given direction in a
cross section of the wooden post from the classical equation
(19):

EðaÞ ¼ saa

eaa
¼ 1

ðcosa4�vtrsina2cosa2Þ
Et

þ ðsina4�vrtsina2cosa2Þ
Er

þ sina2cosa2

Gtr

:

ð19Þ
Figure 9 shows the 25 cross sections of the post where the 25
different ai angles have been measured. On pictures, the
face shown is the normal to fiber face of the cubic specimen.
The horizontal top face is the one being compressed and ai
is the angle between the vertical line (normal to
compression) and the ring orientation.
Mean angle value on all ai is quasi naught but because
of the symmetry. For each angle measured, the positive
value of the apparent Et Young’s modulus is then possible
to calculate from equation (19) considering Poisson’s
ratios, Gtr, Et and Er values obtained from bibliographical
references. Because of the low value of the shear modulus
Gtr in the cross section of the tree, the mean value of Et
appears to be 220MPa which is significantly lower than Et
or Er of bibliographical references. The standard deviation
of these measures is quite high and one obtains a dispersion
of 23% on all specimens used to manage the compression
tests. This geometrical uncertainty due to the orientation
of the wood product coming from wood factory gives
important dispersion that (i) can explain the dispersion
observed on compression test but also on the corners tests
and (ii) clearly indicates that numerical simulations of tests
on wood products must take into account this dispersion to
provide accurate information on the furniture’s behavior.

This dispersion is truly related to the transversally
isotropic behavior that is not a reasonable assumption.
But, considering that it is also not reasonable to measure
exactly the transversal orientation of all beams that are
involved in wood furniture has a bunk bed for example, one
cannot avoid this assumption in simulations. Taking into
account dispersion due to this lack of knowledge on the
orientation seems to be a good compromise.
4 Conclusion: toward virtual test for wood
product validation and non-linear wood
behavior identification

Using a multi-scale approach, a numerical procedure to
identify the connection contribution in the furniture’s
stiffness has been presented. Comparing 3D finite element
calculations with a Timoshenko’s beam calculation on a
corner of two wooden parts, we can identify the specific
behavior of the connection elements (pins, nut, screw… and
local 3D effects) to introduce it as a punctual 0D element in
the beam code. This procedure has been carried out for a
specific connection technology, 1 bolt and 2 pins, and it has
been showed that the low rotational stiffness must be taken
into account in a global calculation. In comparison the
elongational stiffness effects on the displaced shape can be
neglected in regard of the rotational ones. At least one of
the three stiffnesses depends on the bending moment value
and must be modeled by a non-linear law.

The approach has been validated first by a numerical
simulation on a complete structure. The accuracy of the
approach is proved by comparing the result of the beam



Fig. 9. 25 pictures of cube section � influence of the radial and ring orientation on the elastic behavior.
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code where the 0D non-linear element has been imple-
mented with a complete 3D finite element simulation on a
plane structure of wooden furniture.

An experimental validation by a global bending test has
also been carried out. The displacement field has been
measured by using digital image correlation. Both
experimental and numerical results agree for low value
of the bendingmoment passing through the connection (i.e.
M< 50N.m). Considering the low values of momentum in
corners during the normalized tests on bunk beds (about
30N.m) the purely numerical multi-scale gives an accurate
behavior of the real assembly.

When bending moment is higher than 50N.m, diver-
gence appears between the simulation and the experiments
with a severe slope decreasing and high dispersion from one
test to another. This behavior is due to the head of the
screw that generates high pressure on the wood in a
transversal direction that is no more elastic. Dispersion
appears to be due to the fluctuation of the orientation of the
wooden part and the important difference between Et and
Er in spruce properties.

To be able to completely reproduce the experimental
behavior for bending moments higher than 50N.m one
needs to go further in the characterization of the non-linear
behavior of the wood in the direction normal to fiber. Three
point bending tests are carried out actually using DIC to
measure the displacement field and finite element model
upgrade method is managed to identify these properties in
the linear and non-linear domain. This work is actually
going on at MSME and first results have been presented in
Wood GDR recently in Makhlouf et al. [22].
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