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Abstract
The Preconditioned Conjugate Gradient method is often employed for the solution of linear systems of equations
arising in numerical simulations of physical phenomena. While being widely used, the solver is also known for its
lack of accuracy while computing the residual. In this article, we propose two algorithmic solutions that originate from
the ExBLAS project to enhance the accuracy of the solver as well as to ensure its reproducibility in a hybrid MPI +
OpenMP tasks programming environment. One is based on ExBLAS and preserves every bit of information until the
final rounding, while the other relies upon floating-point expansions and, hence, expands the intermediate precision.
Instead of converting the entire solver into its ExBLAS-related implementation, we identify those parts that violate
reproducibility/non-associativity, secure them, and combine this with the sequential executions. These algorithmic
strategies are reinforced with programmability suggestions to assure deterministic executions. Finally, we verify these
approaches on two modern HPC systems: both versions deliver reproducible number of iterations, residuals, direct
errors, and vector-solutions for the overhead of less than 37.7 % on 768 cores.
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1 Introduction

Many current scientific and engineering problems involve
the solution of large and sparse linear systems of equations.
Some traditional examples appear, for example, in circuit and
device simulation, quantum physics, large-scale eigenvalue
computations, nonlinear sparse equations, and all sorts
of applications that include the discretization of partial
differential equations (PDEs) Barrett et al. (1994). For many
problems (especially those associated with 3-D models),
the size and complexity of these systems have turned
iterative projection methods, based on Krylov subspaces,
into a highly competitive approach compared with direct
solvers Saad (2003). In particular, the Conjugate Gradient
(CG) method is one of the most efficient Krylov subspace-
based algorithms for the solution of sparse linear systems
when the coefficient matrix is symmetric positive definite
(s.p.d.) Saad (2003). Preconditioning is usually incorporated
in real implementations of the method in order to accelerate
the convergence of the method and improve its numerical
features, yielding the Preconditioned Conjugate Gradient
(PCG) method.

One would expect that the results of different runs of
PCG are identical, for instance, in the number of iterations,
the intermediate and final residuals, as well as the solution-
vector. However, in practice this is not often the case due
to different reduction trees – the Message Passing Interface
(MPI) implementations (libraries) Gropp et al. (2014) offer
up to 14 different implementations for reduction –, OpenMP
tasks scheduling, data alignment, instructions used, etc. Each
of these factors may change the execution order of floating-
point operations, which are commutative but non-associative,

and, hence, result in non-reproducible results. We define
reproducibility as the ability to obtain a bit-wise identical
and accurate result for multiple executions on the same data.

Ensuring the bit-wise reproducibility is often a complex
and expensive task that imposes modifications to the
algorithm and its underlying parts such as the BLAS
(Basic Linear Algebra Subprograms) routines Lawson et al.
(1979); Dongarra et al. (1990). These modifications are
necessary to preserve every bit of information (both result
and error) Collange et al. (2015) or, alternatively, to cut off
some parts of the data and operate on the remaining most-
significant parts Demmel and Nguyen (2015). Furthermore,
the bit-wise reproducibility can become expensive with the
overhead of at least 8 % for parallel reduction Collange
et al. (2015); Demmel and Nguyen (2015), up to 2x-4x
for matrix-vector product Iakymchuk et al. (2019b), and
more than 10x for matrix-matrix multiplication Iakymchuk
et al. (2016). In this paper, we aim to revisit reproducibility
and raise its appeal through reducing its negative impact
on performance and minimizing changes to both the
algorithm and its building blocks. We also raise a question:
Can reproducibility of algorithms be ensured by design
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with both minimal changes to algorithms and almost
negligible overhead? Hence, our idea is to address those
parts of algorithms that violate associativity – such as
parallel reductions, dot products, and possible replacements
by compilers of a ∗ b+ c in favor of fused multiply-
add (fma) operation, etc. – as well as to combine that
with sequential executions of sub-blocks/subroutines. Such
sequential execution of operations is reproducible under
some constraints, for example the same initial conditions on
the input data like data alignment.

We consider to verify this idea (both algorithmic and
programmability) on a typical sparse linear algebra solver
such as PCG and ensure its reproducibility on parallel
distributed-memory systems using a hybrid combination
of the MPI + OpenMP-tasks programming models. On
one hand, the hybridization reduces the communication
burden being more focused on inner node computations and
work balancing, especially on nodes with large core counts
such as those in the MareNostrum4 platform at Barcelona
Supercomputing Center. On the other hand, it introduces a
new challenge in the form of a double-level reduction: an
initial reduction among tasks inside a process/node, followed
by one among processes. Thus, we ensure reproducibility of
the PCG solver by preventing non-deterministic executions
as follows:

• We construct two reproducible solutions: a first one on
the ExBLAS approach Iakymchuk et al. (2017) and an
alternative lightweight version based on floating-point
expansions (FPEs). The ExBLAS-based approach
with its cornerstone Kulisch long accumulator Kulisch
(2013) is robust but expensive since it is designed to
cover severe (ill-conditioned) cases with very broad
dynamic ranges. Motivated by “100 bits suffice for
many HPC applications” as noted by David Bailey
at ARITH-21 Bailey (2013) and a mini accumulator
from the ARM team Lutz and Hinds (2017); Burgess
et al. (2019), we derive a faster but less generic version
using FPEs, which is the other core algorithmic
component in the ExBLAS approach, aiming to adjust
the algorithm to the problem at hand.
• As a consequence, we also address the common

issue of sparse iterative solvers – the accuracy while
computing the residual – and propose to use solutions
that offer reproducibility (and potentially correct-
rounding) only while computing the corresponding dot
products.
• Hence, we derive two hybrid (MPI + OpenMP

tasks), reproducible, and accurate dot products using
ExBLAS and FPEs.
• Finally, we demonstrate applicability and feasibility

of the aforementioned idea with the ExBLAS- and
FPE-based approaches in the hybrid MPI + OpenMP
implementation of PCG on an example of a 3D
Poisson’s equation with 27 stencil points. This extends
our previous results with the pure MPI implementation
of PGC Iakymchuk et al. (2019a) to the more complex
double-level dot products and reductions with dynamic
scheduling of the tasks.

To sum up: the FPE-based (we also call it Opt) solution
is efficient and fast, but it is limited to cases where the

condition number and/or the dynamic range do not exceed
certain thresholds, e.g. the dynamic range is below 1050. (At
this point, we note that the condition of a linear system can
be cheaply estimated with fair accuracy.) In comparison, the
ExBLAS-based solution is reserved for cases where we do
not have any information about the problem at hand.

This article is organized as follows. Section 2 reviews
several aspects of computer arithmetic, in particular floating-
point expansion and long accumulator, as well as the
ExBLAS approach for accurate and reproducible computa-
tions. Section 3 introduces the PCG algorithms and describes
in details its hybrid (MPI+OpenMP) implementation. We
present strategies for ensuring reproducibility of PCG in Sec-
tion 4 and evaluate corresponding implementations in Sec-
tion 5. Finally, Section 6 reviews related work, while Sec-
tion 7 draws conclusions and outlines future directions.

2 Background
At first, we briefly introduce the floating-point arithmetic
that consists in approximating real numbers by numbers that
have a finite, fixed-precision representation. These numbers
are composed of a significand, an exponent, and a sign: x =
±x0.x1 . . . xM−1︸ ︷︷ ︸

mantissa

×be, 0 ≤ xi ≤ b− 1, x0 6= 0, where b is

the basis (2 in our case), M is the precision, and e stands for
the exponent that is bounded (emin ≤ e ≤ emax).

The IEEE 754 standard IEEE Computer Society (2008),
created in 1985 and then revised in 2008, has led to a
considerable enhancement in the reliability of numerical
computations by rigorously specifying the properties of
floating-point arithmetic. This standard is now adopted by
most processors, thus leading to a much better portability
of numerical applications. The standard specifies floating-
point formats, which are often associated with precisions
like binary16, binary32, and binary64, see Table 1. Floating-
point representation allows numbers to cover a wide dynamic
range that is defined as the absolute ratio between the number
with the largest magnitude and the number with the smallest
non-zero magnitude in a set. For instance, binary64
(double-precision) can represent positive numbers from
4.9× 10−324 to 1.8× 10308, so it covers a dynamic range
of 3.7× 10631.

The IEEE 754 standard requires correctly rounded results
for the basic arithmetic operations (+,−,×, /,√ , fma).
It means that the operations are performed as if the result
was first computed with an infinite precision and then
rounded to the floating-point format. The correct rounding
criterion guarantees a unique, well-defined answer, ensuring
bit-wise reproducibility for a single operation. Several
rounding modes are provided. The standard also contains the
reproducibility clause that forwards the reproducibility issue
to language standards. Emerging attention to reproducibility
strives to draw more careful attention to the problem by the
computer arithmetic community. It has led to the inclusion
of error-free transformations (EFTs) for addition and
multiplication – to return the exact outcome as the result and
the error – to assure numerical reproducibility of floating-
point operations, into the revised version of the standard.
These mechanisms, once implemented in hardware, will
simplify our reproducible algorithms – like the ones used in
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Table 1. Parameters for three IEEE arithmetic precisions; quadruple (128 bits) is omitted.

Type Size Significand Exponent Rounding unit Range
half 16 bits 11 bits 5 bits u = 2−11 ≈ 4.88× 10−4 ≈ 10±5

single 32 bits 24 bits 8 bits u = 2−24 ≈ 5.96× 10−8 ≈ 10±38

double 64 bits 53 bits 11 bits u = 2−53 ≈ 1.11× 10−16 ≈ 10±308

the ExBLAS Collange et al. (2015), ReproBLAS Demmel
and Nguyen (2015), OzBLAS Mukunoki et al. (2019)
libraries – and boost their performance.

There are two approaches that enable the addition of
floating-point numbers without incurring round-off errors
or with reducing their impact. The main idea is to keep
track of both the result and the errors during the course
of computations. The first approach uses EFT to compute
both the result and the rounding error and stores them in a
floating-point expansion (FPE), which is an unevaluated sum
of p floating-point numbers, whose components are ordered
in magnitude with minimal overlap to cover the whole range
of exponents. Typically, FPE relies upon the use of the
traditional EFT for addition that is twosum Knuth (1969)
(Algorithm 1) and for multiplication that is twoprod
EFT Ogita et al. (2005) (Algorithm 2). The second approach
projects the finite range of exponents of floating-point
numbers into a long vector so called a long (fixed-point)
accumulator and stores every bit there. For instance,
Kulisch Kulisch and Snyder (2011) proposed to use a
4288-bit long accumulator for the exact dot product of two
vectors composed of binary64 numbers; such a large long
accumulator is designed to cover all the severe cases without
overflows in its highest digit.

Algorithm 1: Error-free transformation for the summa-
tion of two floating-point numbers.

Input: a, b are two floating-point numbers.
Output: r, s are the result and the error, resp.
Function [r, s] = twosum (a, b)

r := a+ b
z := r − a
s := (a− (r − z)) + (b− z)

Algorithm 2: Error-free transformation for the product of
two floating-point numbers.
Input: a, b are two floating-point numbers.
Output: r, s are the result and the error, resp.
Function [r, s] = twoprod (a, b)

r := a ∗ b
s := fma(a, b,−r)

2.1 ExBLAS – Exact BLAS
The ExBLAS project Iakymchuk et al. (2015) is an effort
to derive fast, accurate, and reproducible BLAS library by
constructing a multi-level approach for these operations
that are tailored for various modern architectures with their
complex multi-level memory structures. On one side, this
approach aims to ensure similar performance compared
with the non-deterministic parallel counterparts. On the
other side, the approach preserves every bit of information
before the final rounding to the desired format to assure
correct-rounding and, therefore, reproducibility. Hence,
ExBLAS combines together long accumulator and FPE

into algorithmic solutions. In addition, it efficiently tunes
and implements them on various architectures, including
conventional CPUs, NVIDIA and AMD GPUs, and Intel
Xeon Phi co-processors (for details we refer to Collange
et al. (2015)). Thus, ExBLAS assures reproducibility through
assuring correct-rounding.

The cornerstone of ExBLAS is the reproducible parallel
reduction, which is at the core of many BLAS routines.
The ExBLAS parallel reduction relies upon FPEs with the
twosum EFT Knuth (1969) and long accumulators, so it
is correctly rounded and reproducible. In practice, the latter
is invoked only once per overall summation which results
in the little overhead (less than 8%) on accumulating large
vectors. Our interest in this article is the dot product of
two vectors, which is another crucial fundamental BLAS
operation. The EXDOT algorithm is based on the previous
EXSUM algorithm and the twoprod EFT Ogita et al.
(2005) (see Algorithm 2): the algorithm accumulates the
result and the error of twoprod to same FPEs and then
follows the EXSUM scheme. These and the other routines –
such as matrix-vector product, triangular solve, and matrix-
matrix multiplication – are distributed in the ExBLAS library
(https://github.com/riakymch/exblas). In this
paper, we derive a hybrid MPI + OpenMP tasks EXDOT,
where a long accumulator is shared among OpenMP tasks
within one process and each OpenMP thread owns two FPEs
underneath (one for the result and the other for the error) that
are merged at the end of computations .

3 Algorithm(s)
In this section we review the PCG algorithm and its task-
parallel implementation using MPI and OpenMP tasks. The
goal of the following analysis is twofold: to offer a complete
description of the parallelization approach and, even more
important, to identify key inter-node (i.e., between MPI
ranks) and intra-node (i.e., between threads executing tasks)
communications, in particular reductions, which pose a
challenge to ensuring reproducibility.

3.1 Preconditioned Conjugate Gradient Solver
We consider the linear system Ax = b, where the coefficient
matrix A ∈ Rn×n is sparse and symmetric positive definite
(s.p.d.), with nz nonzero entries; b ∈ Rn is the right-
hand side vector; and x ∈ Rn is the sought-after solution
vector. Figure 1 presents the algorithmic description of the
classical iterative PCG. In the body loop of the algorithm,
the following operations are executed: a sparse matrix-
vector product (SPMV) (S1), three DOT products (S2,S6,
and S8), three AXPY (-like) operations (S3, S4, and
S7), the preconditioner application (S5), and a few scalar
operations Barrett et al. (1994). In particular, in the proposed
implementation of the PCG method, we incorporate a
Jacobi preconditioner Saad (2003), which is composed of
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Compute preconditioner for A→M

Set starting guess x(0)

Initialize z(0), d(0), β(0), τ (0), l := 0 (iteration count)

r(0) := b−Ax(0)
τ0 :=< r(0), r(0) >

while (τ (l) > τmax)

Step Operation Kernel
S1 : w(l) := Ad(l) SPMV
S2 : ρ(l) := β(l)/< d(l), w(l) > DOT product
S3 : x(l+1) := x(l) + ρ(l)d(l) AXPY

S4 : r(l+1) := r(l) − ρ(l)w(l) AXPY

S5 : z(l+1) :=M−1r(l+1) Apply precond.
S6 : β(l+1) := < z(l+1), r(l+1) > DOT product
S7 : d(l+1) := (β(l+1)/β(l))d(l) + z(l+1) AXPY-like
S8 : τ (l+1) := < r(l+1), r(l+1) > DOT product

l := l + 1
end while

Figure 1. Formulation of the PCG solver annotated with
computational kernels. The threshold τmax is an upper bound on
the relative residual for the computed approximation to the
solution. In the notation, < ·, · > computes the DOT (inner)
product of its vector arguments.

Compute preconditioner for A→M
Set starting guess x
Initialize z, d, β, τ, l := 0

r := b−Ax
τ :=< r, r >
while (τ > τmax)

Step Operation Communication
β′ := β –

S1 :
S1 .1 : d → e Allgatherv
S1 .2 : w := Ae –
S2 : ρ := β/< d,w > Allreduce
S3 : x := x+ ρd –
S4 : r := r − ρw –
S5 : z :=M−1r –
S6 : β := < z, r > Allreduce
S8 : τ := < r, r > Allreduce
S7 : d := (β/β′)d+ z –

l := l + 1
end while

Figure 2. Message-passing formulation of the PCG
solver annotated with communication.

the elements in the diagonal of the matrix (M := D =
diag(A)). Therefore, the application of the preconditioner
is carried out on a vector and involves an element-wise
multiplication of two vectors.

3.2 Message-passing PCG
In this subsection we analyse the communication patterns
of a message-passing implementation of the PCG solver
that operates in a distributed-memory platform. For clarity,
hereafter we will drop the superindices that denote the
iteration count in the variable names. The following
considerations are taken into account in the analysis of the
communications:

• The parallel platform comprises K processes (or MPI
ranks), denoted as P1, P2, . . . , PK .
• The coefficient matrix A is partitioned into K blocks

of rows (A1, A2, . . ., Ak), with the k-th distribution
block Ak ∈ Rpk×n stored in Pk, and n =

∑K
k=1 pk.

• Vectors are partitioned and allocated conformally with
the block-row distribution of A. For example, the
residual vector r is partitioned as r1, r2, . . ., rK , where
Pk stores rk.
• The scalars α, β, ρ, τ are replicated on allK processes.

Considering these previous aspects, we next examine how
they affect the different computational kernels (S1–S8) that
are executed in a single PCG iteration in Figure 1.

Sparse matrix-vector product (S1): The input operands are
the coefficient matrix A, which is distributed by blocks of
rows, and the vector d, which is partitioned and distributed
according to A. A communication stage is required before
executing this kernel in order to assemble the distributed
parts of vector d into a single vector e, which is replicated
in all processes. We denote this communication as d→ e,
which can be performed in MPI via an MPI Allgatherv.
Note that vector e is the only array that is replicated in all

processes. After that, the computation can proceed in parallel
and each process calculates its local slice of the output vector
w: Pk : wk := Ak e.

DOT products (S2, S6, S8): In this kernel, each process
can compute concurrently a partial result (in step S2,
Pk calculates ρk :=< dk, wk >). Then, these intermediate
values are reduced into a globally-replicated scalar
(for example, ρ := β/(ρ1 + ρ2 + · · ·+ ρK) in S2). We
implement this reduction in MPI using MPI Allreduce.
Applying this idea to all the DOT products, there are
three process synchronizations because ρ, β, τ are globally-
replicated.

AXPY(-type) vector updates (S3, S4, S7): The AXPY kernel
involves two distributed vectors (x and d in S3) and
a globally-replicated scalar (ρ in S3). This kernel can
be executed concurrently because all processes can
perform their local parts of the computation without any
communication (Pk : xk := xk + ρ dk).

Application of the preconditioner (S5): The kernel in step
S5 consists in applying the Jacobi preconditionerM . In order
to do that, vector r is scaled by the diagonal of the matrix.
Here, each process stores a different group of the diagonal
elements and also a local piece of the vector r, so that, the
computations can be done in parallel, i.e Pk : zk :=M−1

k rk.
The algorithm with communications is summarized

in Figure 2. We can re-arrange the operations to reduce the
the number of synchronizations in the loop body of the PCG
solver, as shown there. Concretely, pushing up step S8 next to
step S6, we can simultaneously execute these two reductions
by merging them into one reduction and, hence, the number
of synchronizations decreases from three to two per iteration
of PCG.

3.3 Task-parallelism in message-passing PCG
In a cluster of multicore processors, a good practice to
increase the performance of the codes is to introduce an
additional level of parallelism. This level is exploited in each
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node of the cluster using, for example, OpenMP. The analysis
in Aliaga et al. (2017); Barreda et al. (2019) exposes that, in
the PCG, a reasonable option is to leverage task-parallelism,
which consists in dividing each kernel into a collection of
finer-grain operations, or tasks. Then, each thread executes a
different task and two consecutive kernels can be executed
concurrently avoiding a thread-synchronization point after
each kernel, as described next.

In the following analysis, for simplicity, we merge the
execution of S3 with that of S4; and S8 with S6. Therefore,
we will only consider kernels S1–S2 and S4–S7 in the loop
body of the PCG solver (see Figure 2). Thus, the operations
in the solver are interlaced by a series of data dependencies
which impose a strict order of execution:

· · ·S7
iteration l−1

d−→ S1
w−→ S2

ρ−→ S4
r−→ S5

z−→ S6
β−→ S7

iteration l

d−→ S1 · · ·
iteration l+1

,

where the variable that generates the dependency is denoted
on top of each dependency arrow.

Exploiting task-parallelism allows that some of these
kernels can be (partially) computed concurrently (denoted
with the symbol “‖”), breaking the strict inter-kernel barriers
due to the dependencies; in particular, we aim to attain a
parallel execution with S1 ‖ S2 and S4 ‖ S5 ‖ S6.

Sparse matrix-vector product S1 ‖ DOT product S2: On
the one hand, the local operands to process Pk of the SPMV
can be divided as wk := Ak e:

w̃1

w̃2

...
w̃I

 :=


Ã1,1 Ã1,2 . . . Ã1,J

Ã2,1 Ã2,2 . . . Ã2,J

...
...

. . .
...

ÃI,1 ÃI,2 . . . ÃI,J



e1

e2
. . .

eJ

 .
Here, we can consider each group of rows as a task, which
computes the corresponding SPMV operation to obtain a
partial result, w̃k. For example, if we consider w̃1, there is
a task calculating w̃1 =

∑J
j=1 Ã1,jej .

On the other hand, the computation local to Pk for the DOT
product S2 can be decomposed into S tasks. These tasks can
be computed concurrently by partitioning the input operands
dk, wk into S pieces, with each task obtaining a partial result
ρ̃s:

ρk := < dk, wk >≡ ρ̃s := < d̃s, w̃s >, s = 1, 2, . . . , S.

These partial results are reduced to generate a unique value
local to the k-th node, ρk :=

∑S
s=1 ρ̃s, and these local values

are thereafter reduced across all K nodes to produce the
globally replicated scalar ρ :=

∑K
k=1 ρk.

Note that the advantage here is that we can eliminate the
dependency S1 → S2, by splitting up these operations into
fine-grain tasks. Hence, the execution of some tasks of the
second kernel can start as soon as the corresponding results
of the previous one are available, resulting in a partially-
parallel execution of these two tasks. However, the global
reduction required at the end of S2 enforces a task/process
synchronization point that is an impediment to extend this
idea further that point.

AXPY vector update S4 ‖ preconditioner application S5
‖ DOT product S6: S4–S6 can be computed in parallel by

applying a similar division of the three kernels into fine-
grain. Nevertheless, again a task/process synchronization is
required right after S6.

AXPY vector update S7 and SPMV S1 (subsequent
iteration): The convergence test and the requirement to
perform the replication d→ e at the beginning of each
iteration, inserts a process synchronization that makes
impossible the concurrent computation of the local tasks
corresponding to these two kernels.

3.4 Implementation using MPI+OpenMP
In this subsection we detail how to exploit the described
two levels of parallelism via a combination of two
parallel programming interfaces: MPI forum (2019) and
OpenMP OpenMP ARB (2019).

We leverage OpenMP tasks to implement task-parallelism.
At execution time, the runtime system underlying OpenMP
detects data dependencies between tasks, with the help of
compiler directives (#pragma omp task) annotated with
clauses that indicate the task operands’ directionality (input
(in), output (out) or both (inout)). Then, a task graph is
generated during the execution, which is used to schedule
the tasks to the cores, exploiting the inherent task-level
parallelism while fullling the dependencies embedded in the
graph.

As an example, the DOT product, which computes α :=
xT y, x, y ∈ Rq , is annotated as

#pragma omp task depend(in:x[0:n], y[0:n])
depend(out:alpha)

ddot (int q, double *x, int incx,
double *y, int incy, double alpha);

For the routine AXPY y := y + αx, the code snippet using
OpenMP tasks is as follows:

#pragma omp task depend(in:alpha, x[0:n])
depend(inout:y[0:n])

daxpy (int q, double alpha, double *x,
int incx, double *y, int incy);

The replication of vector d into e is performed across
the processes using the MPI collective MPI Allgatherv,
as stated previously. To ensure that all the processes have
finalized their computation of d prior to the MPI collective,
we introduce a task barrier, using the directive #pragma
omp taskwait. This creates a task synchronization
point because it enforces that all tasks up to that point
are completed. Furthermore, this syncronization point is
leveraged to perform the convergence test (τ > τmax?) right
after it, which is followed by an implicit MPI syncronization
across processes in the MPI collective primitive.

The MPI Allreduce primitive is used to implement the
global reductions. Similarly to the previous case, we insert
a #pragma omp taskwait on the specific variable
being reduced before invoking the MPI collectives for the
reduction. This ensures that all tasks operating on that
variable have been finalized prior the reduction across
nodes can start. Moreover, atomic updates are employed to
accumulate the results from each reduction task (e.g., β̃n for
S8) into the local result (βk).

The previous description is condensed in Figure 3,
focusing on the operations computed by the process Pk,
during the iteration l.
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Figure 3. Dependencies between kernels in the PCG solver.

4 Reproducibility of PCG

In this section, we present our strategies for ensuring
reproducibility of the PCG solver. The first strategy relies
on the ExBLAS approach, while the second is derived from
it and is based on FPEs. Both strategies are reinforced
with programmability components such as the explicit
use of fma instructions and a careful re-arrangement of
computations. Therefore, the reproducibility of the PCG
solver is guaranteed via reproducibility of its building blocks
on each iteration.

4.1 ExBLAS-based Strategy

Section 2.1 provides an overview of the ExBLAS approach.
Here we exploit the ExBLAS parallel reduction in
conjunction with the twoprod EFT to derive a hybrid
MPI (inter-node, distributed) and OpenMP (intra-node) for
the DOT products appearing in PCG. The intra-node DOT
product is presented here, and its distributed part is described
in Section 4.3 together with the FPE-based alternative.

For accurate and reproducible DOT product within an MPI
process, we rely upon OpenMP tasks following the ExBLAS
approach. We allocate one long accumulator per MPI process
as well as, within the exblas::cpu::exdot, a vector
of FPEs shared among OpenMP threads. Hence, the work
on the process-local DOT products is divided into multiple
task (more than threads) in such a way that the intermediate
results from each task are stored in this large vector of
FPEs. To complete the local DOT products we flush all
FPEs sequentially into the process-owned long accumulator.
Listing 1 outlines the code snippet of this implementation.
Accumulate is presented in Algorithm 4, however here
it also includes a possibility to flush the error to the long
accumulator in case of not enough capacity to store this error.

Listing 1: Process-local DOT product with OpenMP tasks and
ExBLAS.

1 double *fpe = (double *)
calloc(NBFPE*omp_get_num_threads(), sizeof(double));

2 for (int i = 0; i < N_k; i += bm ) {
3 int cs = N_k - i;
4 int c = cs < bm ? cs : bm;
5

6 #pragma omp task depend(in:a[i:i+c-1], b[i:i+c-1])
depend(out:fpe) firstprivate(i,c)

7 for(int j = i; j < (i+c); j++) {
8 double r1;
9 double x = TwoProductFMA(a[j],b[j],r1);

10 Accumulate(&fpe[omp_get_thread_num()*NBFPE], x);
11 Accumulate(&fpe[omp_get_thread_num()*NBFPE], r1);
12 }
13 }
14 #pragma omp taskwait
15 for (int i=0; i < omp_get_num_threads(); i++)
16 Flush(&fpe[i*NBFPE]);

Delivering both correctly rounded and reproducible
results, ExBLAS has two major drawbacks Collange et al.
(2015). The first drawback is related to the required memory
storage, which amounts for nt × p+ accs, where nt is
the thread count, p is the size of floating-point expansion,
and accs is the size of superaccumulator (2,098 bits for
summation). The second drawback is the number of required
operations: For an input vector of size n with dynamic range
d, the cost of accumulation is

n×
⌈

d
52

⌉
× Cfpe

V L + nt × p× V L× Csa, when d < 52p,

n×
(
p× Cfpe

V L + Csa

)
+ nt × p× V L× Csa, otherwise,

where Cfpe = 6 flops, see Algorithm 1, is the cost of the
expansion update, V L is the architecture-dependent vector
length on SIMD architectures (4 with AVX and 1 on GPUs),
and Csa = 16 flops +2 indirect memory accesses is the cost
of the long accumulator update. The right-hand side term
is the cost of flushing expansions to long accumulators at
the end of the summation and gets negligible as n increases.
These two drawbacks can be observed for compute-intensive
kernels, leading to large performance overheads Iakymchuk
et al. (2016). However, these drawbacks are either hardly
visible or relatively small on bandwidth- and memory-
bound operations such as the DOT product (reduction) and
potentially PCG due to the possibility to saturate bandwidth
and hide the cost of extra computations and memory needs.
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4.2 FPE-based Strategy

We introduce a lightweight strategy for reproducibility
using the ExBLAS approach as a starting point. The
ExBLAS drawbacks served us as a motivation to design an
alternative, cheaper strategy for reproducible computations
with accuracy (correct rounding) guarantees. Examining the
PCG method for moderately conditioned but largely sparse
matrices, like the studied Poisson matrices, we come to the
conclusion that the method can successfully accommodate
accurate and reproducible computations, ensuring their
robustness, using eight-floating point numbers, meaning the
FPE of size 8 (FPE8). In fact, the size of FPEs is tunable
and exposed to the end-user. This approach is complemented
with the early-exit technique Collange et al. (2015): we stop
propagating zero-errors in the FPE. From our experience,
the early-exit technique significantly improves performance.
According to Hida et al. (2001), FPE8 is capable to represent
at least 424 = 8 · 53 bits of significant.

Our main motivation for iterative solvers, where next
iteration corrects the previous estimate, is to provide
a good enough associativity-assuring approach since the
properties provided by ExBLAS get demolished by the next
computation/iteration. In fact, we are working on developing
a concept of weak reproducibility – reproducibility under
a certain accuracy guarantee, e.g. defined as the input
tolerance, that is not necessarily correct rounding. However,
we want all computations on a single iteration to be
reproducible. Therefore, the FPEs of size 8 with the early-
exit technique is generic enough to cover a wide range of
problems with various condition numbers and/or dynamic
ranges. We also use two different FPEs underneath (one for
results and another for errors) that are merged at the end of
computations before rounding.

We discuss here the DOT product using OpenMP tasks,
while the distributed DOT product is presented in the section
below. Listing 2 outlines the FPE-based solution: each MPI
process allocates a vector of FPEs for each OpenMP thread
and invokes a local routine to conduct DOT products on their
local copies of vectors of size Nk. This local DOT product
routine subdivides the process-local DOT product into tasks
of size bm; each task calls a sequential DOT product. This
DOT product as in Listing 1 is composed of the call to
twoprod EFT (Algorithm 2) for the exact multiplication
of two floating-point numbers; and, then, the accumulation
of the output result and the error to the thread local FPEs
with the help of Algorithm 4, which relies upon the twosum
EFT (Algorithm 1). Later, the FPEs with the result and
the error are combined into one by invoking Algorithm 3,
which calls Algorithm 4 in a loop over the FPE with errors:
Accumulate(fpe, fperr[i]). To complete the OpenMP DOT
product, we perform the process-local reduction on FPEs by
sequentially executing Algorithm 3. Finally, we round the

FPE-result to the target precision using the NearSum algo-
rithm Rump et al. (2008), which is described in Section 4.3.

Listing 2: Process-local DOT product with OpenMP tasks
and FPEs.

1 void bblas_ddot(int bm, int N_k, double *X, double *Y,
double *results)

2 {
3 for (int i=0; i<m; i+=bm ) {
4 int cs = m - i;
5 int c = cs < bm ? cs : bm;
6 #pragma omp task depend(in:X[i:i+c-1],

Y[i:i+c-1]) depend(out:results)
firstprivate(i,c,m)

7 dot(c, X, Y, i, i, &results[NBFPE *
omp_get_thread_num()]);

8 }
9 #pragma omp taskwait

10 for (int i=1; i < omp_get_num_threads(); i++)
11 fpeSum(&results[0], &results[NBFPE*i], NBFPE);
12 }

Algorithm 3: Aggregation of two FPEs of size p.

Function fpesum(a, b, p)
Input: b is a FPE.
Output: a is a FPE containing the result.
for i = 0→ p− 1 do

Accumulate(a,b[i])
end

Algorithm 4: Adding a floating-point number x to a
floating-point expansion a of size p.

Function Accumulate(a, x)
Input: x is a floating-point number.
Output: a is a FPE containing the result.
for i = 0→ p− 1 do

(a[i], x) := twosum(a[i], x)
end

4.3 Re-installing Reproducibility of PCG
We re-assure reproducibility of parallel PCG by first examin-
ing potential sources of non-deterministic computations and,
in addition, presenting our mitigation strategies for them.
Note that we target a hybrid MPI + OpenMP tasks implemen-
tation of PCG, where each process conducts computations
on its own local slices of the matrix as well as the vectors
(see Section 3.2 and Figure 2).

DOT products (S2, S6, S8): The main issue of non-
determinism emerges from DOT products and, thus, the
parallel reductions such as MPI Allreduce() that are
employed in order to compute the tolerance τ as well as
both β and ρ. Hence, we 1) exploit the ExBLAS approach
to build reproducible and correctly-rounded DOT product;
2) construct DOT product solely based on FPEs; 3) extend
the ExBLAS- and FPE-based DOT products to distributed
memory in order to make them suitable for the PCG
algorithm in Figure 2. While Sections 4.1 and 4.2 present
implementations of DOT product using OpenMP tasks, i.e.
within each MPI process, Listings 3 and 4 provide pseudo-
codes for our implementation of the distributed DOT product
using the ExBLAS and lightweight strategies, respectively.
After carrying out process-local DOT products, via either
ExBLAS- or FPE-based implementations, we realise the
global reduction by splitting them into three stages:
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• MPI Reduce() acting on either long accumulators
or FPEs. For the ExBLAS approach, since the long
accumulator is an array of long integers, we apply
regular reduction. Note that we may need to carry an
extra intermediate normalization after the reduction of
2K−1 long accumulators, whereK = 64− 52 = 12 is
the number of carry-safe bits per each digit of long
accumulator. For the FPE approach, we may need to
renormalize FPEs using the Priest’s renormalization
method Hida et al. (2001); Priest (1991) and define the
MPI operation that is based on the twosum EFT, see
Algorithm 3;
• Rounding to double: for long accumulators, we

use the ExBLAS-native Round() routine. To
guarantee correctly rounded results of the FPE-based
computations, we employ the NearSum algorithm
from Rump et al. (2008) for FPEs of size eight or
variable size; it may require renormalization before.
• MPI Bcast() to distribute the result of DOT product

to the other processes as only master performs
rounding.

Splitting the MPI Allreduce() operation into
MPI Reduce() and MPI Bcast() provides us full
control of the operation and even may lead to better
performance as noted in Hunold and Carpen-Amarie (2016).

Listing 3: Reproducible Allreduce with ExBLAS.
1 std::vector<int64_t> h_superacc(BIN_COUNT);
2 exblas::exdot (..., &h_superacc[0]);
3 exblas::Normalize (&h_superacc[0]);
4 MPI_Reduce ((myId==0)?MPI_IN_PLACE:&h_superacc[0],

&h_superacc[0], BIN_COUNT, MPI_LONG, MPI_SUM, ...);
5 if (myId == 0) {
6 beta = exblas::Round (&h_superacc[0]);
7 }
8 MPI_Bcast (&beta, 1, MPI_DOUBLE, ...);

Listing 4: Reproducible Allreduce with FPEs only.
1 double *fpes = (double *)

calloc(NBFPE*omp_get_num_threads(),
sizeof(double));

2 bblas_ddot (..., &fpes[0]);
3 renormalize(&fpes[0]); // optional
4 MPI_Op Op; // user-defined reduction operation
5 MPI_Op_create (fpesum, 1, &Op);
6 MPI_Reduce ((myId==0)?MPI_IN_PLACE:&fpes[0], &fpes[0],

N, MPI_DOUBLE, Op, ...);
7 if (myId == 0) {
8 beta = Round (&fpes[0]); // NearSum
9 }

10 MPI_Bcast (&beta, 1, MPI_DOUBLE, ...);

Sparse matrix-vector product (S1): The other repro-
ducibility issue is hidden in the computation of the sparse
matrix-vector product. With the current distributed imple-
mentation of this operation, each MPI process computes its
dedicated part wk of the vector w by multiplying a block of
rows Ak by the vector e. These process-local multiplications
are correspondingly divided into tasks, where each task
is responsible for a product of a sub-block of rows by
the vector. Since the computations are carried locally and
sequentially, they are deterministic and, thus, reproducible.
However, some parts of the code like a+ = b ∗ c – present
in the original implementation of PCG – may not always

provide with the same result, depending on the compiler
optimization strategies.

Our approach to solve this issue is to explicitly instruct
compilers to use fma∗. Note that the underlying architecture
should support fma; otherwise, this may lead to the runtime
error. This is possible through the std::fma instruction
added to the C++ 11 language standard. With this option,
we avoid non-determinism in the order of operations, reduce
the number of rounding errors from three to two, and,
therefore, achieve reproducibility for this type of operations.
Consequently, we accomplish reproducibility for the sparse
matrix-vector multiplication.

AXPY(-type) vector updates (S3, S4, S7): For this type
of operations, we rely upon the sequential MKL implemen-
tation of AXPY(-type). Alternatively, we can replace this
call to MKL’s AXPY(-type) by our implementation using
fma to ensure correctly-rounded and, hence, reproducible
results. This will not impact performance since the algorithm
is strictly memory-bound and this type of kernels are not
performance-crucial.

Application of the preconditioner (S5): The application of
the Jacobi preconditioner is rather simple: first, the inverse
of the diagonals are computed and then the application of the
preconditioner only involves element-wise multiplication of
two vectors. Thus, this part is both correctly rounded and
reproducible.

Reproducibility and accuracy of both approaches: It is
evident that the results provided by ExBLAS DOT are both
correctly-rounded and reproducible. With the lightweight
DOT, we search for the minimal size of FPE such that we
still preserve every bit of both the result and the error. For
the studied 3D Poisson’s equation, the sweet spot is the FPE
of size 3, which ensures identical results to ExBLAS and the
reference highly accurate solution. However, we aim also to
be generic and, hence, we provide the implementation that
relies on FPEs of size eight with the early-exit technique.
We add a check for the FPE-based implementation for those
cases where the condition number and/or the dynamic range
are too large and we cannot keep every bit of information.
A warning is then raised, offering also a suggestion to
switch to the ExBLAS-based implementation. Nonetheless,
note that the lightweight implementation is intended for
moderately conditioned problems or with moderate dynamic
range in order to be accurate, reproducible, but also high
performing since the ExBLAS version can be very resource
demanding. To sum up, if the information about the problem
is know in advance, it is good to explore the FPE-based
implementation.

5 Experimental Results

5.1 Setup
The experiments in this section employed IEEE754 double-
precision arithmetic and were carried out in two different
clusters:
• The MareNostrum4 (MN4) supercomputer at

Barcelona Supercomputing Center (BSC): This

∗This and the other case of y = a ∗ x+ b ∗ y are analyzed in more details
in Wiesenberger et al. (2019).
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platform consists of SD530 Compute Racks with
an Intel Omni-Path high performance network
interconnect. Each node comprises two 24-core Intel
Xeon Platinum 8160 processors (2.10 GHz) and
96 Gbytes of DDR4 RAM. The platform runs the
SuSE Linux Enterprise Server operating system. The
codes in this platform were compiled using GCC
v7.2.0, Intel MPI v2018.1, and MKL v2017.4.
• The Tintorrum cluster at Universitat Jaume I: This

is a 8-node cluster, where each node is equipped
with two 8-core Intel Xeon(R) E5-2630v3 processors
(Haswell-EP) (for a total of 128 cores), running at
2.4 GHz, with 20 MBytes of L3 on-chip cache (LLC
or last level of cache), and with 64 GBytes of DDR3
RAM. The operating system running in the cluster is
Linux version 2.6.32-642.4.2.el6.centos.plus.x86 64.
The codes were compiled with GCC v5.3.0, OpenMPI
v1.10.2, and Intel MKL v2017.1.

For the experimental analysis, we leveraged a sparse s.p.d.
coefficient matrix arising from the finite-difference method
of a 3D Poisson’s equation with 27 stencil points. The fact
that the vector involved in the SPMV kernel has to be
replicated in all MPI ranks constrains the size of the largest
problem that can be solved. Given that the theoretical cost of
PCG is tc ≈ 2nnz + 7n floating-point arithmetic operations,
where nnz denotes the number of nonzeros of the original
matrix and its size n, the execution time of the method is
usually dominated by that of the SPMV kernel. Therefore,
in order to analyze the weak scalability of the method, we
maintain the number of non-zero entries per node. For this
purpose, we modified the original matrix, transforming it
into a band matrix, where the lower and upper bandwidths
(bandL and bandU, respectively) depend on the number of
nodes employed in the experiment as follows:

bandL = bandU = 100×#nodes =⇒
nnz = (bandL+ bandU + 1)× n.

With 8 nodes in Tintorrum and 16 in MN4, the bandwidth
ranges between 100 and 800 in the first platform, and
from 100 to 1,600 in the second one. With this approach
we can then maintain the number of rows/columns of the
matrix equal to n=4,000,000, while increasing its bandwidth
and, therefore, the computational workload proportionally
to the hardware resources, as required in a weak scaling
experiment.

The right-hand side vector b in the iterative solvers
was always initialized to the product of A with a vector
containing ones only; and the PCG iteration was started with
the initial guess x0 = 0. The parameter that controls the
convergence of the iterative process was set to 10−8.

5.2 Performance Evaluation
We analyze the performance of two reproducible versions
of the PCG algorithm parallelized with MPI: one that relies
on the ExBLAS approach, and an alternative variant that
is based on floating-point expansions (FPEs) of size eight
with the early-exit technique. Hereafter, we will refer to
them as Exblas and Opt (or FPE8EE), accordingly. Our
experiments evaluate the strong and weak scaling of these
reproducible implementations compared against the regular

(non-deterministic) version of PCG; all three versions are
implemented with MPI + OpenMP tasks.

We next analyze the performance of the three implemen-
tations in the aforementioned clusters. On the one hand, in
order to assess the strong scalability, we fix the matrix size to
n=16,000,000 and the size of the upper and lower bandwidth
to 100, as we increase the number of cores. On the other
hand, in order to analyze the weak scalability, we proceed as
explained earlier, fixing the matrix size to n=4,000,000 and
increasing the bandwidth from 100 to 100×mnodes (with
mnodes=16 in MN4 and mnodes=8 in Tintorrum).

Table 2 reports the total execution time (averaged for
5 different executions) of the different MPI + OpenMP
tasks PCG solvers on both platforms, varying the number
of cores (from 48 to 768 in MN4 and from 16 to 128
in Tintorrum) as we maintain the problem size. We tested
different computations of MPI processes per node and
OpenMP threads per process: the best performing in MN4
is 8 MPI process with 6 OpenMP threads each, and the
optimum combination on Tintorrum is 8 MPI process with
2 OpenMP threads each. The weak scaling experiment offers
notable results, as, when executing the algorithms in more
than one node (up to 48 cores in MN4 and up to 16 cores
on Tintorrum) while increasing proportionally the problem,
the execution time is maintained. The executions on one
node show a different behavior because the communication
is in general faster as it entails no inter-node communication.
Notably, these extra (local) operations of both ExBLAS and
Opt implementations have a positive effect on scalability on
the larger node count due to better ratio of computations
to communication compared with the original version.
The behaviour of the strong scaling experiment could be
expected for a parallel algorithm dealing with a sparse linear
algebra operation. This experiment in particular reports
an important increase of the overhead when the number
of nodes becomes large as the communication cost then
dominates the execution time. But, the overhead of the
reproducible versions decreases due to the favorable ratio
between computations and communication. Unfortunately,
we cannot evaluate a larger problem to increase the weight
of the computational cost, as the problem dimension is
constrained by the node memory capacity.

Figure 4 reports the total execution time (averaged for 5
different executions) of the reproducible MPI PCG solvers
for the two clusters normalized with respect to the execution
time of the regular MPI version, when we vary the number
of cores (from 48 to 768 in MN4 and from 16 to 128 in
Tintorrum). Specifically, in the two top plots we present the
strong scaling evaluation. In these graphs, we can observe
that the difference of both versions with respect to the regular
one is higher on a small number of cores, and it decreases
with the core count. We observe that the overhead of both the
Exblas and Opt implementations compared with the regular
version is smooth and decreasing: from 2.66x and 2.24x
on the single node to 37.7 % and 30.5 % on 16 nodes on
MN4 for Exblas and Opt, respectively; and, on Tintorrum
from 74.9 % and 56.5 % on the single node to 5.6 % and
4.7 % on 8 nodes for Exblas and Opt, accordingly. Moreover,
the overhead between Exblas and Opt versions decreases,
e.g. from 18 % to 6 % in MN4, on the large core count:
this is due to very similar implementations of both since
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Execution time in seconds of the implementations in MN4
Number Weak scaling Strong scaling
of cores Regular Exblas Opt Regular Exblas Opt

48 3.5349E+00 8.8568E+00 7.7153E+00 1.3280E+01 3.5312E+01 2.9730E+01
96 3.1697E+00 5.9492E+00 5.4720E+00 7.6761E+00 1.8550E+01 1.6142E+01

192 2.9610E+00 4.7935E+00 4.5801E+00 5.1802E+00 1.0523E+01 9.3799E+00
384 2.8018E+00 3.9885E+00 3.8810E+00 3.9321E+00 6.5620E+00 6.0571E+00
768 3.5905E+00 4.7965E+00 4.7348E+00 3.6662E+00 5.0488E+00 4.7846E+00

Execution time in seconds of the implementations on Tintorrum
Number Weak scaling Strong scaling
of cores Regular Exblas Opt Regular Exblas Opt

16 8.3203E+00 1.4222E+01 1.3014E+01 3.2747E+01 5.7285E+01 5.1238E+01
32 1.6787E+01 2.2833E+01 2.1898E+01 4.8481E+01 7.0335E+01 6.8607E+01
64 1.8877E+01 2.1114E+01 2.0992E+01 5.8668E+01 7.2928E+01 7.1930E+01

128 1.8322E+01 2.0331E+01 2.0156E+01 6.4591E+01 6.8174E+01 6.7651E+01
Table 2. Timings of different implementations of the Preconditioned Conjugate Gradient method in MN4 and Tintorrum.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

48 96 192 384 768

N
o

rm
a
li

z
e
d

 t
im

e
 v

s 
o

ri
g

in
a
l

Number of cores

Strong Scalability on MareNostrum4

ExBLAS
Opt

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

16 32 64 128

N
o

rm
a
li

z
e
d

 t
im

e
 v

s 
o

ri
g

in
a
l

Number of cores

Strong Scalability on Tintorrum

ExBLAS
Opt

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

48 96 192 384 768

N
o

rm
a
li

z
e
d

 t
im

e
 v

s 
o

ri
g

in
a
l

Number of cores

Weak Scalability on MareNostrum4

ExBLAS
Opt

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

16 32 64 128

N
o

rm
a
li

z
e
d

 t
im

e
 v

s 
o

ri
g

in
a
l

Number of cores

Weak Scalability on Tintorrum

ExBLAS
Opt

Figure 4. Analysis of the strong (top) and weak (bottom) scalability of the two reproducible versions of the MPI + OpenMP tasks
PCG; the time is normalized with respect to the regular non-deterministic MPI version.

Exblas underneath relies upon FPE8EE for the OpenMP DOT
products. Note that such difference is much larger for the
pure MPI implementation Iakymchuk et al. (2019a).

The two bottom graphs in Figure 4 expose the weak
scaling evaluation, where we set the number of non-
zeros of the sparse matrix to be roughly proportional
to the number of cores, increasing the size of the band
of the matrix, as discussed in Section 5.1. These results
show that both versions offer similar performance to the

baseline on the large number of cores. For instance, the
overheads are 33.70 % and 31.75 % for the Exblas and Opt
implementations in MN4, respectively, and only 11 % and
10 % for Exblas and Opt on Tintorrum, accordingly. As
in the strong scaling analysis, the Opt version outperforms
the Exblas implementation. If we compare the results in
both clusters, we can observe that they are more stable in
Tintorrum because the number of cores per node is smaller
in this platform than in MN4.
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Iteration Residual
MPFR Original 1 core Original 48 cores Exblas & FPE8EE

0 0x1.19f179eb7f032p+49 0x1.19f179eb7f033p+49 0x1.19f179eb7f033p+49 0x1.19f179eb7f032p+49
2 0x1.f86089ece9f75p+38 0x1.f86089ece5bd4p+38 0x1.f86089eceaf76p+38 0x1.f86089ece9f75p+38
9 0x1.fc59a29d329ffp+28 0x1.fc59a29d3599ap+28 0x1.fc59a29d32d1bp+28 0x1.fc59a29d329ffp+28

10 0x1.74f5ccc211471p+22 0x1.74f5ccc1d03cbp+22 0x1.74f5ccc201246p+22 0x1.74f5ccc211471p+22
... ... ... ... ...
40 0x1.7031058eb2e3ep-19 0x1.7031058dd6bcfp-19 0x1.7031058eaf4c2p-19 0x1.7031058eb2e3ep-19
42 0x1.4828f76bd68afp-23 0x1.4828f76d1aa3p-23 0x1.4828f76bda71ap-23 0x1.4828f76bd68afp-23
45 0x1.8646260a70678p-26 0x1.8646260a2dae8p-26 0x1.8646260a6da06p-26 0x1.8646260a70678p-26
47 0x1.13fa97e2419c7p-33 0x1.13fa97e1e76bfp-33 0x1.13fa97e240f7cp-33 0x1.13fa97e2419c7p-33

Table 3. Accuracy and reproducibility comparison on the intermediate and final residual against MPFR for a matrix with the
condition number of 1012. The matrix is generated following the procedure from Section 5.1 with n=4,019,679 (1593) and the
bandwidth of size 200.

5.3 Accuracy and Reproducibility Evaluation
In addition to the performance results, we report also the
results of the accuracy and reproducibility evaluation. For
that, we develop a generator of ill-conditioned matrices. This
generator scales the first row and the first column of the
matrix so that the DOT product determines the condition
number of the matrix. Additionally, we derive a sequential
version of the code that relies on the GNU Multiple Precision
Floating-Point Reliably (MPFR) library Fousse et al. (2007)
– a C library for multiple (arbitrary) precision floating-point
computations on CPUs – as a highly accurate reference
implementation. This implementation uses 2,048 bits of
accuracy for computing the DOT product (192 bits for
internal product of two floating-point numbers) and performs
correct rounding of the computed result to double precision.

Table 3 reports the intermediate and final residual on each
iteration of the PCG solver for the matrix with the number of
rows/columns equal to n=4,019,679 (1593), the bandwidth
of size 200, and the condition number of 1012. The results
are exposed with all digits in hexadecimal. For this test,
the tolerance was set to 10−8 and it took 47 iterations for
all four implementations to converge under this accuracy
requirement. We used one node of MN4 with 48 processes
each pinned to one core. We present only few iterations, but
the difference is present in all iterations. The ExBLAS and
Opt implementations deliver both accurate and reproducible
results that are identical with the MPFR library. Note that
these results are identical to the ones from the pure MPI
implementations in Iakymchuk et al. (2019a) and only the
results of the original code differ. The original code shows
the difference from one digit on the initial iteration and up to
five digits on the 45th iteration on 48 cores (8 MPI processes
with 6 OpenMP threads per each). We also add the results
of the original code on one core/process to highlight the
reproducibility issue. To show these results, we merge the
two columns of the ExBLAS and Opt results as they are
identical.

We assume that this discrepancy in accuracy and
reproducibility becomes larger at scale (more nodes) due to
the stronger impact of the topology and reduction trees.

6 Related Work
To enhance reproducibility, Intel proposed the “Conditional
Numerical Reproducibility” (CNR) option in its Math Kernel

Library (MKL). Although CNR guarantees reproducibility,
it does not ensure correct rounding, meaning the accuracy
is arguable. Additionally, the cost of obtaining reproducible
results with CNR is high. For instance, for large arrays the
MKL’s summation with CNR was almost 2x slower than the
regular MKL’s summation on the Mesu cluster hosted at the
Sorbonne University Collange et al. (2015).

Demmel and Nguyen implemented a family of algorithms
– that originate from the works by Rump, Ogita, and
Oishi Rump et al. (2010, 2008) – for reproducible summation
in floating-point arithmetic Demmel and Nguyen (2013,
2015). These algorithms always return the same answer.
They first compute an absolute bound of the sum and
then round all numbers to a fraction of this bound. In
consequence, the addition of the rounded quantities is exact,
however the computed sum using their implementations
with two or three bins is not correctly rounded. Their
results yielded roughly 20% overhead on 1024 processors
(CPUs only) compared to the Intel MKL dasum(), but it
shows 3.4 times slowdown on 32 processors (one node).
Ahrens, Nguyen, and Demmel extended their concept to
few other reproducible BLAS routines, distributed as the
ReproBLAS library (http://bebop.cs.berkeley.
edu/reproblas/), but only with parallel reproducible
reduction. Furthermore, the ReproBLAS effort was extended
to reproducible tall-skinny QR Nguyen and Demmel (2015).

The other approach to ensure reproducibility is called
ExBLAS, which is initially proposed by Collange, Defour,
Graillat, and Iakymchuk in Collange et al. (2015). ExBLAS
is based on combining long accumulators and floating-point
expansions in conjuction with error-free transformations.
This approach is presented in Section 2.1. Collange et al.
showed Collange et al. (2015) that their algorithms for
reproducible and accurate summation have 8% overhead
on 512 cores (32 nodes) and less than 2% overhead on
16 cores (one node). While ExSUM covers wide range
of architectures as well as distributed-memory clusters, the
other routines primarily target GPUs. Exploiting the modular
and hierarchical structure of linear algebra algorithms, the
ExBLAS approach was applied to construct reproducible LU
factorizations with partial pivoting Iakymchuk et al. (2019b).

Recently, Mukunoki and Ogita presented their approach to
implement reproducible BLAS, called OzBLAS Mukunoki
et al. (2019), with tunable accuracy. This approach is
different from both ReproBLAS and ExBLAS as it does
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not require to implement every BLAS routine from scratch
but relies on high-performance (vendor) implementations.
Hence, OzBLAS implements the Ozaki scheme Ozaki et al.
(2012) that follows the fork-join approach: the matrix and
vector are split (each element is sliced) into sub-matrices and
sub-vectors for secure products without overflows; then, the
high-performance BLAS is called on each of these splits;
finally, the results are merged back using, for instance, the
NearSum algorithm. Currently, the OzBLAS library includes
dot product, matrix-vector product (gemv), and matrix-
matrix multiplication (gemm). These algorithmic variants
and their implementations on GPUs and CPUs (only dot)
reassure reproducibility of the BLAS kernels as well as make
the accuracy tunable up-to correctly rounded results.

7 Conclusions and Future Work

In this work, we addressed the reproducibility of iterative
solvers for sparse linear systems using a representative
instance of the Preconditioned Conjugate Gradient method.
We first analyzed the hybrid MPI + OpenMP tasks
implementation of the PCG method and identified two major
sources of non-deterministic behavior, namely the DOT
product and compiler optimizations. The latter may change
the order of operations or replace some of them in favor
of the fused multiply-add (fma) operation. For reproducible
and double-layered distributed DOT product, we leveraged
the ExBLAS-approach as well as proposed an alternative
lightweight variant based solely on FPEs. Both strategies
split the MPI Allreduce routine into the combination of
MPI Reduce and MPI Bcast, and perform the intra-node
DOT product with FPEs. To tackle compiler interference
in computations, we reconstruct computations as well as
explicitly invoke fma instructions. Both approaches deliver
identical results to ensure reproducibility of PCG in the
number of iterations, the intermediate and final residuals,
the direct errors, as well as the vector-solution. On a
single node, the FPE- and ExBLAS-based reproducible
versions of PCG show the maximum overhead of 2.24x
and 2.66x, respectively, due to additional memory allocation
and computations. When the communication starts to
dominate the execution time, both versions show very
low overhead compared with the original non-deterministic
implementation: 37.70 % for ExBLAS and 30.50 % for Opt
on 768 cores of MareNostrum4; 5.6 % for ExBLAS and
4.6 % for Opt on 128 cores of Tintorrum. This is a solid
argument in favor of the reproducible PCG at scale.

Our study promotes the adoption of reproducibility by
design through the proper choice of the underlying libraries
as well as a moderate programmability effort. For instance,
a brief guidance would be 1) for fundamental numerical
computations, to leverage reproducible underlying libraries
such as ExBLAS, ReproBLAS, or OzBLAS; and 2) analyze
the algorithm and make it reproducible through eliminating
any uncertainties that may violate associativity such as
reductions and use/ non-use of fmas. Additionally, we argue
the need for the bit-wise reproducible and correctly-rounded
results for iterative solvers as, nevertheless, they will be
enhanced during subsequent iterations as we do not reach the
desired tolerance and, thus, do not exploit at full the obtained
bit-wise results.

Our future work aims to conduct a deeper analysis of the
lightweight approach to support our experimental results.
One idea is to bind the length of FPEs to the condition
number of the input problem and/or its dynamic range
similarly to Carson and Higham (2018) for the mixed-
precision direct linear solver.
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