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We calculate the Regge poles of the scattering matrix for a gravitating compact body, for scalar fields and
for gravitational waves in the axial sector. For a neutron-starlike body, the spectrum exhibits two distinct
branches of poles, labeled surface waves and broad resonances; for ultracompact objects, the spectrum also
includes a finite number of narrow resonances. We show, via a WKB analysis, that the discontinuity of the
effective potential at the body’s surface determines the imaginary component of the broad-resonance poles.
Next, we examine the role of Regge poles in the time-independent scattering of monochromatic planar
waves. We apply complex angular momentum techniques to re-sum the partial wave series for the
scattering amplitude, expressing it as a residue series evaluated at poles in the first quadrant, accompanied
by a background integral. We compute the scattering cross section at several frequencies, and show precise
agreement with the partial-wave calculations. Finally, we show that compact bodies naturally give rise to
orbiting, glory, and rainbow-scattering interference effects.

DOI: 10.1103/PhysRevD.101.104035

I. INTRODUCTION

The time-independent scattering of planar waves in the
gravitational field of a compact body has been studied in
some detail since the 1960s [1–3]. A substantial literature
has accumulated on black hole scattering, focusing on the
canonical scenario of a planar wave of circular frequency
ω and spin s [4] impinging upon a black hole of mass
M in vacuum [1–3,5–19]. A dimensionless parameter
Mω ¼ πrg=λ encapsulates the ratio of the gravitational
radius rg ¼ 2GM=c2 to the wavelength λ; herein we adopt
geometric units such that G ¼ c ¼ 1. The long-wavelength
(Mω ≪ 1), short-wavelength (Mω ≫ 1) and intermediate
regimes have been studied with a combination of pertur-
bative [15,20–22], semiclassical [10,23] and numerical
methods. The s ¼ 0 (scalar) [2,7,12,13,24], s ¼ 1=2 (fer-
mion) [14,18], s ¼ 1 (electromagnetic) [6,17,25] and s ¼ 2
(gravitational) cases [8,9,16] have all been addressed.
Time-independent scattering by a compact body of

radius R with a regular center, such as a neutron star or
white dwarf, has received less attention, by comparison. In
such a scenario, an electromagnetic wave will not penetrate
far inside the compact body; but on the other hand, a
gravitational wave will pass through the body without

impediment from the matter distribution. A neutron star is
also expected to be effectively transparent to neutrinos.
Even in such cases where the coupling to matter is
negligible, the incident wave will nevertheless be scattered
by the spacetime curvature. Thus, the resulting scattering
pattern depends not just on Mω, but also on the internal
structure of the body, and on its inverse compactness or
tenuity, R=M. Typical values of the tenuity are: R=M ∼ 6

for neutron stars, ∼1.4–9.4 × 103 for white dwarfs, 4.7 ×
105 for the Sun, and 1.4 × 109 for Earth. More specula-
tively, we shall also consider here the case of (hypothetical)
ultracompact objects (UCOs), whose tenuity is bounded
from below by the Buchdahl bound of R=M ¼ 9=4.
Studies of black hole scattering typically involve the

calculation of scattering amplitude(s) via partial-wave
expansions. A powerful approach for resumming these
partial-wave expansions is provided by so-called complex
angular momentum (CAM) techniques. In the CAM
approach, the sum over partial waves is replaced by an
integral, and the contour of integration is deformed into the
complex-angular-momentum plane such that one collects a
sum of residues of simple poles: these are the so-called
Regge poles.
The CAM theory was originally developed to deal

theoretically with the propagation and diffraction of radio
waves around the Earth, by Watson [26] (see also the work
of Sommerfeld [27]). It has since been extensively used in
several domains of physics involving resonant scattering
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theory (see, e.g., Refs. [26–37] as well as references
therein for various applications in quantum mechanics,
nuclear physics, electromagnetism, optics, seismology and
high energy physics). Since the pioneering work in 1994
by Andersson and Thylwe [38,39] the CAM theory has
been successfully applied to black hole scattering scenar-
ios. They described the scattering of scalar waves by a
Schwarzschild black hole using CAM techniques, and
showed that, in this case, the Regge poles are associated
with “surface waves” localized near the unstable light ring
at r ¼ 3M (i.e., the so-called photon sphere). Later,
Decanini, Folacci and Jensen showed that the complex
frequencies of weakly damped quasinormal modes
(QNMs) are Breit-Wigner resonances generated by the
surface waves previously mentioned and, using the con-
cept of Regge trajectories, they were able to construct
semiclassically the spectrum of the QNM complex
frequencies [40]. Recently, Folacci and Ould El Hadj have
shown that CAM machinery can be used for precise
numerical calculations of scattering cross sections of scalar
fields, electromagnetic fields [41] and gravitational waves
[42] on a Schwarzschild space-time. Moreover, using the
third WKB approximation to obtain the asymptotic expres-
sions for the lowest Regge poles [43] and associated
residues, they have been able to provide an analytical
approximation describing accurately both the “glory” and
a large part of the “orbiting” oscillations in black hole
scattering cross sections in the short-wavelength regime.
An accurate approximation for the black hole absorption
cross section has also been derived via an analysis of
Regge poles [44,45]. In addition, an alternative description
of gravitational radiation from black holes based on CAM
theory was developed in Ref. [46].
CAM techniques are yet to be fully applied to compact-

body scattering, it appears, with one notable exception: in
1991, Chandrasekhar and Ferrari [47] examined the Regge
pole spectra for relativistic stellar models. Their study
focussed on resonant modes (poles with small imaginary
parts corresponding to trapped w-modes or fluid modes),
and it employed CAM theory to calculate the flow of
gravitational energy through a star.
There is a close relationship between Regge poles and

QNM frequencies; both are sets of poles of the scattering
matrix, with the latter lying in the complex-frequency
plane. The excitation of black hole QNMs leads to
distinctive signatures in time-dependent scattering scenar-
ios. For example, in the immediate aftermath of a black
hole merger, the perturbed black hole returns to a quiescent
state via a “ringdown phase” in which its gravitational-
wave signal is well described as a sum of quasinormal
modes [48]. The QNM spectrum of compact bodies have
been well studied by several authors [49–55], and are
reviewed in Ref. [56].
Time-independent scattering by compact bodies gener-

ates (in principle) a rainbow scattering phenomenon in the

short wavelength regime (Mω ≫ 1) [57,58]. The rainbow
scattering phenomenon is linked to the formation of a cusp
caustic in the incident wavefront (see Fig. 1 in Ref. [58]),
and to the stationary point in the geodesic deflection
function associated with a ray (that is, a null geodesic)
that passes somewhat inside the body. For less-dense
bodies, such as stars and white dwarfs, the cusp caustic
forms at a distance d ∼ R2=ð4MÞ downstream of the body,
and the rainbow angle is θr ∼ 4M=R (e.g., for the Sun,
d ≈ 550 a:u: and θr ≈ 1.8 arcsec) [59]. For compact bodies
such as neutron stars, however, the cusp caustic forms near
the surface of the body, and the rainbow angle is large
(θr ≳ 59.6° for R=M ¼ 6; see Table I in Ref. [58]). In this
case, the rainbow angle is—in principle at least—a diag-
nostic of the matter distribution within the body and thus its
nuclear equation of state.
Other recent works on the theme of scattering by a

compact body include studies of: scattering by compact
objects with an absorbing surface [60]; time-domain
simulations with finite-element-method methods [61];
gravitationally-induced interference patterns in flavor oscil-
lations in neutrino astronomy [62]; and the use of con-
tinuous sources of gravitational waves to probe stellar
structure [63].
The remainder of this paper is organized as follows.

Section II reviews the theory of scalar waves on a spheri-
cally symmetric spacetime of a compact object. Here we
describe our model spacetime (II A), the effective potentials
for wave scattering (II B) and the physical boundary
conditions that define the S-matrix (II C). Section III
focuses on the Regge pole spectrum. Here we outline
the link between Regge poles and QNMs (III A), we
describe the numerical method (III B), and we present
new numerical results for the spectrum (III C) which
exhibits three distinct branches of Regge poles (see e.g.,
Fig. 3). In Sec. III D we apply the WKB method to obtain
an approximate formula for the “broad resonance” branch.
Section IV concerns the application of CAM techniques to
the calculation of the scattering cross section. Here we
review the standard partial-wave expansion of the scatter-
ing amplitude (IVA), we apply CAM techniques to write
this as the sum of a residue series and a background integral
(IV B), and we present a selection of numerical results for
dσ=dΩ (IV D). We conclude with a discussion in Sec. V. In
an Appendix, we show which quadrants of the complex
λ-plan contain Regge poles of the S-matrix.

II. WAVES ON A COMPACT-BODY
SPACETIME

A. The model

The gravitating source is assumed to be spherically-
symmetric, such that in a coordinate system ft; r; θ;φg,
the object is described by a diagonal metric gμν and the
line element
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ds2 ¼ gμνdxμdxν ¼ −fðrÞdt2 þ hðrÞ−1dr2 þ r2dσ22 ð1Þ

where dσ22 ¼ dθ2 þ sin2 θdφ2 denotes the metric on the
unit 2-sphere S2. In the vacuum exterior of the star (r > R),
the radial functions fðrÞ and hðrÞ depend only on M, the
total mass of body: fðrÞ ¼ hðrÞ ¼ 1–2M=r by Birkhoff’s
theorem [64]. In the interior, fðrÞ and hðrÞ depend on the
matter distribution and equation of state (EoS).
A widely-studied model is that of a polytropic star,

with an EoS pðρÞ ¼ κρ1þ1=n̂, where n̂ is the polytropic
index (see e.g., [58]). Here we shall consider a special
case: an incompressible perfect fluid ball of uniform
density described by Schwarzschild’s interior solution
for an incompressible fluid [65], with

ρ ¼ M
4
3
πR3

; ð2aÞ

p ¼ ρ
βðRÞ − βðrÞ
βðrÞ − 3βðRÞ ; ð2bÞ

βðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 8πρx2

q
; ð2cÞ

and metric functions

fðrÞ ¼ 1

4

�
1 −

2Mr2

R3

�
þ 9

4

�
1 −

2M
R

�

−
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2M
R

��
1 −

2Mr2

R3

�s
; ð3aÞ

hðrÞ ¼ 1 −
2Mr2

R3
: ð3bÞ

The constant-density model can be thought of as
representing the n̂ → 0 limit of the family of polytropes.
The radial function hðrÞ is C0 at the surface of the star
r ¼ R (i.e., continuous but not differentiable), and the
radial function fðrÞ is C1 there (i.e., once-differentiable).
For a general polytrope with n̂ > 0 and m the smallest
integer such that m ≥ n̂, hðrÞ is Cm and fðrÞ is Cmþ1 at the
surface. As we shall see, the breakdown of smoothness
leads to consequences for the Regge pole spectrum.
We shall consider a scalar wave ΦðxÞ propagating on the

compact body spacetime, governed by the Klein-Gordon
equation

□Φ≡ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0 ð4Þ

where gμν is the inverse metric and g is the metric
determinant. Performing a standard separation of variables,

Φ ¼ 1

r

X
ωlm

ϕωlðrÞYlmðθ;ϕÞe−iωt; ð5Þ

leads to a radial equation of the form

�
d2

dr2�
þ ω2 − VlðrÞ

�
ϕωl ¼ 0; ð6Þ

where VlðrÞ is the effective potential, and r� denotes the
tortoise coordinate defined by

dr
dr�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞ

p
: ð7Þ

B. Effective potentials

The effective potential for the scalar field in Eq. (6) is

VlðrÞ ¼ Vðs¼0Þ
l ðrÞ, where we define

VðsÞ
l ðrÞ≡ fðrÞ

�
lðlþ 1Þ

r2
þ βshðrÞ

2r

�
f0ðrÞ
fðrÞ þ

h0ðrÞ
hðrÞ

��
; ð8Þ

where βs ≡ 1 − s2. Remarkably, the radial equation for
axial gravitational perturbations is identical to Eq. (6) but
with an effective potential Vax

l ðrÞ where [66]

Vax
l ðrÞ ¼ Vðs¼2Þ

l þ 8πfðrÞðp − ρÞ: ð9Þ

Outside the star in the vacuum region (r > R), the effective
potentials reduce to the Regge-Wheeler potential,

VðsÞ
l ðrÞ ¼

�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2Mβs

r3

�
ð10Þ

with s ¼ 0 in the scalar-field case, and s ¼ 2 in the axial
gravitational-wave case. In the exterior, the tortoise coor-
dinate r� reduces to r� ¼ rþ2M ln½r=ð2MÞ−1�þk, where
k is a constant that is chosen such that r�ðr¼0Þ¼0 and
r�ðrÞ is a continuous function.
Effective potentials for the incompressible model are

shown in Fig. 1, for two cases: (i) a neutron-star model with
R ¼ 6M, and (ii) a ultracompact object (UCO [67]) with
R ¼ 2.26M. In both cases we observe a discontinuity in
VlðrÞ across the star’s surface, due to the discontinuity in
the density ρ [which implies the C0 property of hðrÞ]. The
jump in the potential takes opposite signs in the scalar-field
and gravitational-wave cases, with

ΔVðs¼0Þ
l ¼ þ 3MfðRÞ

R3
; ð11aÞ

ΔVax
l ¼ −

3MfðRÞ
R3

; ð11bÞ

where
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ΔVl ≡ lim
ϵ→0

fVlðRþ ϵÞ − VlðR − ϵÞg: ð12Þ

In the UCO case (R < 3M), the effective potential has a
maximum near the light-ring at r ¼ 3M, and there is a
trapping region, as shown in Fig. 1.

C. Boundary conditions and scattering

The modes ϕωl in Eq. (5) should have a regular behavior
at the center of the object (r ¼ 0), and inspection of the
radial equation (6) shows that

ϕωlðrÞ ∼
r→0

rlþ1: ð13Þ

At the boundary of the compact object, the potential
is C0 and thus the mode is C2. The asymptotic behavior
of the modes far from the body (r → þ∞, or equivalently
r� → þ∞) is

ϕωlðrÞ ∼
r�→þ∞

Að−Þ
l ðωÞe−iωr� þ AðþÞ

l ðωÞeþiωr� : ð14Þ

With the complex coefficients Að�Þ
l ðωÞ we then define the

S-matrix elements,

SlðωÞ ¼ eiðlþ1Þπ A
ðþÞ
l ðωÞ

Að−Þ
l ðωÞ

: ð15Þ

We now consider the poles of SlðωÞ in the complex plane.

III. THE REGGE POLE SPECTRUM

A. Quasinormal modes and Regge poles

Mathematically, there is a close relationship between
quasinormal modes and Regge poles; they are both sets of
poles of the scattering matrix. Physically, quasinormal
modes are most relevant to time-dependent scattering
scenarios, and Regge poles to time-independent scattering
scenarios.
The quasinormal mode spectrum is the set of frequencies

fωlng in the complex-ω plane at which the scattering
matrix SlðωÞ has a simple pole for an integer value of l (so
l ∈ N and ωln ∈ C).
The Regge pole spectrum is the set of angular momenta

λnðωÞ≡ lnðωÞ þ 1=2 in the complex-λ plane at which the
scattering matrix has a simple pole for a real value of ω (so
ω ∈ R and λnðωÞ ∈ C). Here n is an index for enumerating
the discrete spectrum of poles. In all cases considered in
this work, the simple poles of SlðωÞ arise as simple zeros

of Að−Þ
l ðωÞ.

The quasinormal mode spectrum of spherically sym-
metric compact objects has been studied in some detail in
Refs. [50,52,53,56,68]. Newly formed neutron stars, the
remnants of supernovae collapse, are predicted to pulsate
with a large initial energy, and fluid pulsations will generate
gravitational waves. In 1967, Thorne and Campolattaro
[69] classified the fluid modes of a relativistic compact
body by analogy with the fluid modes of a Newtonian body,
with the addition of a damping time due to the emission of
GWs. Two decades later, the subject was examined again
[49,50], and Kokkotas and Schutz [52] showed the exist-
ence of an additional family of modes, dubbed w-modes.
These modes are characterized by a negligible excitation of
fluid motion, and in the axial sector, by no fluid motion at
all. They are highly damped and correspond to excitations
of the dynamical perturbed space-time. For a review of
(gravitational) quasinormal modes in relativistic stars and
black holes, see Ref. [56].
The w-modes (quasinormal modes) may be divided into

three branches:
(1) Curvature modes, the standard w-modes extant

for all relativistic stars. The less compact the star
the more rapid the damping (Imfωg increases
with R=M).

FIG. 1. The effective potential Vl for a quadrupole (l ¼ 2)
perturbation of a compact body of constant density and tenuity
R=M ¼ 6 (upper) and R=M ¼ 2.26 (lower). The scalar field
potential—Eq. (8)—and axial gravitational-wave potential—
Eq. (9)—are indicated as solid/black lines and dotted/red lines,
respectively. The horizontal axis is the tortoise coordinate
r�=ð2MÞ defined in Eq. (7).
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(2) Interface modes (ωII-modes [53]), characterized by
very rapid damping (i.e., large negative imaginary
part of ωln). This branch of modes is somewhat
similar to modes for acoustic waves scattered by a
hard sphere.

(3) Trapped modes [51]: These modes may exist when
the effective radial potential has a cavity region,
which is the case for UCOs (R=M < 3). The number
of trapped modes increases with the depth of the
potential well, and the damping rate decreases.

We nowmove on to consider the Regge poles of compact
bodies, which have received comparatively less atten-
tion [47].

B. Numerical method

Leins, Nollert and Soffel [53] have developed a method
for calculating the polar QNM frequencies of spherically
symmetric spacetimes. Benhar, Berti and Ferarri (BBF)
have extended this method to the axial sector. Here we shall
present a generalization of the BBF method for axial and
scalar QNM frequencies (s ¼ 2 and s ¼ 0 respectively).
The method is equally valid, mutatis mutandis, for finding
Regge poles fλnðωÞ ¼ ln þ 1=2g of SlðωÞ. The solution
of the Regge-Wheeler equation is written in a power-series
form as follows:

ϕωl
ðrÞ ¼

�
r
2M

− 1

�
i2Mω

eiωr
Xþ∞

n¼0

an

�
1 −

b
r

�
n
;

¼ eiωr�ðrÞ
Xþ∞

n¼0

an

�
1 −

b
r

�
n
: ð16Þ

where r ¼ b is some point outside the star. By substituting
(16) in the Regge-Wheeler equation, it can be shown that
the coefficients an satisfy a four-term recurrence relation of
the form:

αnanþ1þβnanþ γnan−1þδnan−2 ¼ 0; ∀n≥ 2; ð17Þ

where

αn ¼ nðnþ 1Þ
�
1 −

2M
b

�
; ð18aÞ

βn ¼ 2iωbnþ 3

�
2M
b

�
n2 − 2n2; ð18bÞ

γn ¼
�
1 −

6M
b

�
nðn − 1Þ − 2Mβs

b
− lðlþ 1Þ; ð18cÞ

δn ¼
�
2M
b

�
ðnðn − 2Þ þ βsÞ: ð18dÞ

To determine the initial conditions a0 and a1, we impose
the continuity of ϕωl

ðrÞ and its derivative in r ¼ b,
according to Eq (16), to obtain:

a0 ¼ eiωr�ðbÞϕωl
ðbÞ; ð19Þ

a1 ¼ be−iωr�ðbÞ
�

−iωb
b − 2M

ϕωl
ðbÞ þ d

dr
ϕωl

ðrÞjr¼b

�
: ð20Þ

Here, to obtain ϕωl
ðbÞ and its derivative in r ¼ b, we need

to solve Eq. (6) numerically inside the star, and then to
extend the solution outside, up to r ¼ b, by solving the
Regge-Wheeler equation numerically.
It is important to note that, the continued fraction method

applies to three-term recurrence relations. Leins et al. and
BBF use the method introduced by Leaver in the case of
Reissner-Nordstöm black holes [70] to reduce four-term
recurrence relations [as in (17)] to three-term recurrence
relations by using a Gaussian elimination step.
We do not use the Gaussian elimination step. Instead we

find solutions of (17) by adapting the Hill determinant
approach employed by Majumdar and Panchapakesan [71]
to solve the black hole recurrence formula of Leaver [72].
The nontrivial solutions of (17) exist when the Hill
determinant vanishes:

D ¼

����������������������

β0 α0 0 0 0 … … …

γ1 β1 α1 0 0 … … …

δ2 γ2 β2 α2 0 … … …

..

. . .
. . .

. . .
. . .

. . .
.

… …

..

. ..
.

δn−1 γn−1 βn−1 αn−1
. .
.

…

..

. ..
. ..

.
δn γn βn αn

. .
.

..

. ..
. ..

. ..
. . .

. . .
. . .

. . .
.

����������������������

¼ 0:

ð21Þ

Letting Dn be the determinant of the n × n submatrix of D
(with diagonal fβ0; β1;…:βng), by (17)

Dn ¼ βnDn−1 − γnαn−1Dn−2 þ δnαn−1αn−2Dn−3; ð22Þ

with the initial conditions

D0 ¼ β0;

D1 ¼ β1β0 − γ1α0;

D2 ¼ β0ðβ1β2 − α1γ2Þ − α0ðα1δ2 − γ1β2Þ: ð23Þ

Equivalently,
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Dn ¼
�Ynþ1

k¼1

k2
�
Pnþ1;

¼ 1 × 22…ðn − 2Þ2ðn − 1Þ2n2ðnþ 1Þ2Pnþ1; ð24Þ

where

Pn ¼
�
βn−1
n2

�
Pn−1 −

�
γn−1
n2

��
αn−2

ðn − 1Þ2
�
Pn−2

þ
�
δn−1
n2

��
αn−2

ðn − 1Þ2
��

αn−3
ðn − 2Þ2

�
Pn−3; ð25Þ

with the initial conditions

P1 ¼ β0;

P2 ¼
β0β1 − γ1α0

4
;

P3 ¼
β0ðβ1β2 − α1γ2Þ − α0ðα1δ2 − γ1β2Þ

36
: ð26Þ

Regge poles (QNM frequencies) are found by fixing
ω (λ) and numerically finding roots λn (ωn) of Dn, i.e.,
Dnðλn;ωÞ ¼ 0 (Dnðλ;ωnÞ ¼ 0).

C. Numerical results: The spectrum

In this section we show numerical results for the Regge
pole spectrum of a compact body, in two particular cases:
(i) a neutron-starlike body with tenuity R=M ¼ 6, and (ii) a
UCO with tenuity R=M ¼ 2.26, close to the Buchdahl
bound. Results for the frequenciesMω ¼ 3=2 andMω ¼ 8
are compared, for the scalar-field (s ¼ 0) and axial GW
(s ¼ 2) cases.
Figure 2 shows the Regge pole spectrum for a neutron-

starlike body (R=M ¼ 6).We see that there are two branches
of Regge poles in the first quadrant, which meet near
ReðλnðωÞÞ ∼ ωb0, where b0 is the impact parameter for
the null ray which grazes the surface of the compact body.
The axial GW s ¼ 2 modes (filled markers) are typically
close to their scalar-field s ¼ 0 counterparts (unfilled mark-
ers), as might be anticipated from the similarities in the
effective potentials for the two cases (see Fig. 1).
In Appendix we present an argument for why no Regge

poles are expected to be located in the fourth quadrant of
the complex-λ plane for ω > 0. As a consistency check,
we have scanned the fourth quadrant with the numerical
method above, and have found no evidence for Regge
poles.
Exploring the second and third quadrants, where

Re½λ� < 0, requires a choice to be made on the form of
the boundary condition imposed at r ¼ 0. A natural choice
is to impose regularity, i.e., ϕωl ∼ r−λþ1=2 as r → 0 for
Re½λ� < 0. An advantage of this choice is that it leads to the
same symmetry as in the black hole case for the S-matrix
elements (see Refs. [38,41]), viz.,

S−λ−1=2ðωÞ ¼ e−2iπλSλ−1=2ðωÞ ð27Þ

Furthermore, since the wave equation is invariant under
the transformation λ → −λ, it follows that the distribution
of poles in the left-half of the complex plane follows by
reflection through the origin. Thus, for ω > 0, the 4th and
2nd quadrants are devoid of poles, and the 3rd quadrant has
the same structure as shown in Figs. 2 and 3. Conversely,
for ω < 0, and due to the symmetry relation (A11), we may
use λnð−ωÞ ¼ λnðωÞ� to establish that there are poles in the
2nd and 4th quadrants only.
Figure 3 shows the spectrum for a UCO with

R=M ¼ 2.26. These plots show evidence for an additional
branch of modes that emerges from the point where the first
two branches meet. The number of modes in this branch
increases as the radius of the body approaches the Buchdahl
limit R → 9

4
M.

The Regge pole spectrum for a compact body is
qualitatively similar to the Regge pole spectrum found in
Mie scattering of electromagnetic waves by a transparent
sphere of refractive index ñ. This has been studied since the
1960s; see for example Fig. 9.2 in Ref. [30]. Henceforth we
shall adopt the terminology of Nussenzveig [30], in which
the three branches are labeled as:
(1) Broad resonances: approximately uniformly spaced

poles above the real axis with approximately

FIG. 2. The Regge poles λnðωÞ for the scalar field (unfilled
markers) and for the axial gravitational waves (filled markers).
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constant imaginary part; somewhat sensitive to
internal structure (r < R);

(2) Surface waves: highly damped modes that are
relatively insensitive to the internal structure and
which depend chiefly on the surface geometry.

(3) Narrow resonances: modes approaching the real
axis corresponding to trapped modes which only
appear in the UCO case (R < 3M).

In Figs. 2 and 3 the broad resonances, surface waves and
narrow resonances are indicated by red squares, blue circles
and purple triangles, respectively; and black diamonds
indicate the black hole Regge poles. Whereas there exists
an infinite number of poles of the surface-wave branch, in
principle, there are no narrow-resonance poles at all in the
R=M ¼ 6 case, and just ≤ 4 narrow-resonance poles in the
R=M ¼ 2.26 case. The narrow-resonance branch is
observed to end close to the start of the black hole branch.
Data for Regge poles λnðωÞ is listed in Table I (scalar

field, R=M ¼ 6), Table II (scalar field, R=M ¼ 2.26),
Table III (axial s ¼ 2, R=M ¼ 6) and Table IV (axial
s ¼ 2, R=M ¼ 2.26). The values are labeled by branch
(broad; surface; narrow). For the scalar field, the associated
residues [see Eq. (48)] are also presented in Tables I and II.

D. The WKB approximation

To investigate the relationship between the qualitative
features of the effective potential (Fig. 1) and the three
branches of Regge poles revealed in Sec. III C, we now

TABLE I. The lowest Regge poles λnðωÞ for the scalar field and the associated residues rnðωÞ. The radius of the compact
bodies is R ¼ 6M.

n 2Mω λðS-WÞ
n

a ðωÞ λðB-RÞn
b ðωÞ rðS-WÞ

n ðωÞ rðB-RÞn ðωÞ
1 3 9.64850þ 2.76784i 1.56219þ 2.33072i −12.41483 − 0.10424i −0.184457þ 0.480330i

16 56.00945þ 5.71038i 0.62529þ 3.27098i −447.5395þ 25.2912i −0.322061 − 0.088002i
2 3 10.71986þ 5.16209i 3.81484þ 2.48159i 13.8486þ 24.3824i 0.290952þ 1.043116i

16 58.442656þ 9.18793i 2.64868þ 3.31439i 5188.750 − 859.909i −0.381581 − 0.077583i
3 3 11.62296þ 7.17454i 6.35675þ 2.64104i 39.4189 − 12.3554i 2.83038 − 0.28686i

16 60.20374þ 12.14965i 4.70011þ 3.35821i −29331.71 − 18578.38i −0.456423 − 0.021249i
4 3 12.4297þ 8.9960i / 13.2301 − 50.8802i /

16 61.67700þ 14.84728i 6.78093þ 3.40257i −15868.9þ 161199.9i −0.528929þ 0.106794i
5 3 13.1734þ 10.6929i = −33.7366 − 51.7404i /

16 62.98626þ 17.37165i 8.89270þ 3.44762i 589920.5 − 79507.8i −0.550038þ 0.330275i
6 3 13.8709þ 12.2989i / −66.4436 − 20.7767i /

16 64.18605þ 19.76911i 11.03720þ 3.49356i −360464: − 1.797518 × 106i −0.426365þ 0.639191i
7 3 14.5322þ 13.8342i / −73.0825þ 21.9088i /

16 65.30640þ 22.06743i 13.21653þ 3.54058i −4.880638 × 106 þ 646112:i −0.038292þ 0.926498i
8 3 15.1640þ 15.3122i / −56.3641þ 59.6187i /

16 66.36581þ 24.28491i 15.43310þ 3.5889i −479098:þ 1.1836070 × 107i 0.652285þ 0.920876i
9 3 15.7709þ 16.7425i / −25.0183þ 83.3731i /

16 67.37659þ 26.43447i 17.6898þ 3.6390i 2.487209 × 107 þ 7.72797 × 106i 1.363464þ 0.248276i
10 3 16.3565þ 18.1321i / 11.7631þ 90.6815i /

16 68.34738þ 28.52564i 19.9900þ 3.6910i 3.163822 × 107 − 4.265475 × 107i 1.29469 − 1.13096i
aS-W: Surface waves
bB-R: Broad resonances

FIG. 3. The Regge poles λnðωÞ for the scalar field (unfilled
markers) and for the axial gravitational waves (filled markers).
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TABLE III. The lowest Regge poles λnðωÞ for the axial gravitational waves. The radius of the compact bodies is
R ¼ 6M.

n 2Mω λðS-WÞ
n

a ðωÞ λðB-RÞn
b ðωÞ

1 3 10.004639þ 2.935907i 0.461101þ 2.2269826i
16 56.179459þ 5.874240i 1.624880þ 3.2909174i

2 3 11.205047þ 5.343083i 2.551455þ 2.401243i
16 58.717121þ 9.365689i 3.659398þ 3.336427i

3 3 12.166772þ 7.344219i 4.790413þ 2.635624i
16 60.528800þ 12.332399i 5.722341þ 3.384112i

4 3 13.009174þ 9.155489i 7.164229þ 2.930135i
16 62.040466þ 15.032415i 7.815081þ 3.434319i

5 3 13.777754þ 10.843971i /
16 63.379530þ 17.557778i 9.939189þ 3.487474i

6 3 14.494020þ 12.442853i /
16 64.603684þ 19.955393i 12.096463þ 3.544109i

7 3 15.170211þ 13.972029i /
16 65.744593þ 22.253317i 14.288975þ 3.604892i

8 3 15.814162þ 15.444717i /
16 66.821746þ 24.470040i 16.519109þ 3.670678i

9 3 16.431296þ 16.870298i /
16 67.848089þ 26.618578i 18.789625þ 3.742581i

10 3 17.025584þ 18.255740i /
16 68.832711þ 28.708547i 21.103712þ 3.822080i

aS-W: Surface waves
bB-R: Broad resonances

TABLE IV. The lowest Regge poles λnðωÞ for the axial gravitational waves. The radius of the compact bodies is
R ¼ 2.26M.

n 2Mω λðS-WÞ
n

a ðωÞ λðB-RÞn
b ðωÞ λðN-RÞn

c ðωÞ
1 3 5.884755þ 2.047850i 0.840822þ 1.728755i 8.0740924þ 0.022432i

6 12.796673þ 2.200987i 0.959779þ 2.193488i 14.247709þ 0.699340i
2 3 5.960332þ 3.632211i 2.633309þ 1.559084i 7.386249þ 0.264972i

6 12.640961þ 3.871470i 2.842316þ 2.075844i 14.969378þ 0.297175i
3 3 6.153107þ 5.055691i 4.262509þ 1.419601i 6.662827þ 0.729518i

6 12.628734þ 5.440977i 4.629152þ 1.973668i 13.496329þ 1.146922i
4 3 6.403231þ 6.358703i 5.746584þ 1.200761i /

6 12.711478þ 6.932783i 6.330877þ 1.883529i 15.612017þ 0.049364i
5 3 6.678538þ 7.572564i / /

6 12.859039þ 8.354930i 7.954922þ 1.803188i /
6 3 6.964301þ 8.719285i / /

6 13.050962þ 9.715667i 9.505808þ 1.730884i /
7 3 7.253473þ 9.813908i / /

6 13.273382þ 11.022841i 10.985288þ 1.664216i /
8 3 7.542524þ 10.866909i / /

6 13.516855þ 12.283449i 12.423672þ 1.572865i /
9 3 7.829631þ 11.885800i / /

6 13.774891þ 13.503511i / /
10 3 8.113848þ 12.876130i / /

6 14.042970þ 14.688113i / /
aS-W: Surface waves
bB-R: Broad resonances
cN-R: Narrow resonances
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employ the WKB method, with a view to obtaining an
approximation that is valid at high frequencies (Mω → ∞).
Here we follow the approach of Zhang, Wu and Leung

[73], who applied the WKB method to determine the axial
w-modes of a variety of stellar models (see also [74]). We
adapt their method to obtain analytical approximations for
the “broad resonances” for massless waves on a stellar
background. The starting point is the radial equation (6)
with either the effective potential for the scalar field (8), or
for axial gravitational perturbations (9). It is valid only for
models with R=M > 3.
Regge poles and quasinormal modes for relativistic

stellar models (of which w-modes are a subcategory for
gravitational perturbations) both satisfy the same wave
equation and the same boundary conditions, but with
different interpretations for the angular momentum index
and the frequency. Both types of pole satisfy the regularity
condition at the origin (13) and the condition of a purely
outgoing wave in the far field

ϕout
ω;λ−1=2ðrÞ ∼

r�→þ∞
AðþÞ
λ−1=2ðωÞeþiωr� : ð28Þ

Thus, the Regge poles are solutions of Eq. (6) for
which the Wronskian of ϕω;λ−1=2 and ϕout

ω;λ−1=2 vanishes

(i.e., Að−Þ
λnðωÞ−1=2ðωÞ ¼ 0), viz.,

W½ϕω;λ−1=2;ϕout
ω;λ−1=2� ¼ 0: ð29Þ

It has been shown [73] that asymptotic expressions of
ϕω;λ−1=2 and ϕout

ω;λ−1=2 can be derived in asymptotic regions,
by using a WKB approximation.
In the interior of the star, the radial function fðrÞ is

fðrÞ ¼ f0

�
1þO

�
Mr2

R3

��
; ð30Þ

where f0 is a constant, and hðrÞ ¼ 1–2Mr2=R3. In the
vicinity of r ¼ 0, we may solve Eq. (7) to obtain the
tortoise coordinate r�ðrÞ, or inversely,

r ¼
ffiffiffiffiffi
f0

p
r�

�
1þO

�
Mr2�
R3

��
: ð31Þ

Now let us consider the radial equation (6) in the high-
frequency regime with l ≫ 1, such that we may neglect all
but the angular momentum terms in the effective potential
(8). Inserting (31) and neglecting the quadratic corrections
leads to a comparison equation

�
d2

dr2�
þ ω2 −

lðlþ 1Þ
r2�

�
ϕωl ¼ 0; ð32Þ

with the regular interior solution

ϕω;λ−1=2 ¼
ω→∞

ωr�jλ−1=2ðωr�Þ; ð33Þ

where jλ−1=2ð·Þ is the spherical Bessel function of the
first kind.
Near the surface of the body, and in the exterior region,

we use the asymptotic forms [73]

ϕout
ω;λ−1=2 ¼

ω→∞

(
eiωðr�−R�Þ þRe−iωðr�−R�Þ 1=ω≤ r�<R�;

ð1þRÞeiωðr�−R�Þ R� ≤ r� <∞:

ð34Þ

Here R� is the tortoise coordinate at the surface of the body,
andR is a reflection coefficient with the definition given in
Ref. [75]. Because the potential has a direct discontinuity at
the surface of the compact body (see. Refs. [73,75] for
more details), we have for our model

R ¼ αω−2 ð35Þ

with

α ¼ 1

4
ΔVðRÞ ¼ � 3MðR − 2MÞ

4R4
; ð36Þ

where ΔV is the discontinuity in the effective potential at
the surface, defined in Eq. (12), and the þ (−) sign denotes
the scalar (axial gravitational wave) case.
Inserting the high-frequency approximation for

jλ−1=2ðωr�Þ into Eq. (33) we obtain [76],

ϕω;λ−1=2 ≈
ω→∞

− sin

�ðλ − 1=2Þπ
2

− ωr�

�
: ð37Þ

Substituting Eqs. (34) and (37) into condition (29) leads to

eiπðλ−1=2Þ−2iωR� ¼ −R: ð38Þ

We then solve Eq. (38) to obtain the approximate Regge
pole solution

λn ≈
2ωR�
π

−
�
2n� 1

2

�
þ 2i

π
ln

�
2R2ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3MðR − 2MÞp �
: ð39Þ

This corresponds to a series of Regge poles with spacing
jΔλnj ≈ 2 and an almost-constant imaginary part; these are
the broad resonances shown in Figs. 2 and 3. The formula
also correctly accounts for the alternating sequence of the
scalar-field and axial-GW modes.
The overtones are labeled by n ¼ 1; 2;… and the

condition Re λn > 0 leads to an upper limit for n of

n ≤
�
ωR�
π

∓ 1

4

	
: ð40Þ
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In other words, there are a finite number of the broad
resonances in the first quadrant.
As M=R → 0 (a large dilute star), the poles move closer

to the real axis. WhenM=R ¼ 0 (i.e., no star), the potential
is C∞ and the branch does not exist.
For any stellar model (such as a polytropic fluid

sphere), the potential may in general be CN at the surface
(and C∞ elsewhere). In this case, R and thus the broad
resonance branch depends on the discontinuity in the Nth
derivative of the potential at r ¼ R. It can be shown that
the imaginary part of the poles is proportional to (N þ 1)
(see Eq. (4.5) of Ref. [73]), so in the large-N limit the
associated modes have large imaginary parts and little
physical consequence.
Recall that the above analysis is not appropriate for

compact bodies with R=M < 3 and black holes (since the
effective potential has a qualitatively different structure,
and the ansatz Eq. (34) is not valid).
Table V compares the numerically-determined Regge

poles with the WKB approximation in Eq. (39), for the
scalar-field case. The data shows that, while the leading-
order WKB approximation captures the essential features
of the broad resonance branch, it is not particularly
accurate. Higher-order extensions are possible in principle,
but not pursued here.

IV. SCATTERING AND CAM THEORY

In this section we calculate the scattering cross section
dσ=dΩ by means of the CAM method, and we compare

with results obtained in the standard way from a partial-
wave series [57].

A. The partial wave expansion

For a scalar field, the differential scattering cross section
is given by

dσ
dΩ

¼ jf̂ðω; θÞj2 ð41Þ

where

f̂ðω; θÞ ¼ 1

2iω

X∞
l¼0

ð2lþ 1Þ½SlðωÞ − 1�Plðcos θÞ ð42Þ

is the scattering amplitude (for details see e.g., [57] and
references therein). In Eq. (42), the functions Plðcos θÞ are
the Legendre polynomials [77], and the S-matrix elements
SlðωÞ appearing in Eq. (42) were defined in Eq. (15).

B. CAM representation of the scattering amplitude

To construct the CAM representation of f̂ðθÞ, we
follow the steps in Sec. II of Ref. [41] and recall the main
results below.
The Sommerfeld-Watson transformation [26,27,29] per-

mits us to replace a sum with an integral, viz.,

Xþ∞

l¼0

ð−1ÞlFðlÞ ¼ i
2

Z
C
dλ

Fðλ − 1=2Þ
cosðπλÞ ; ð43Þ

where Fð·Þ is any function without singularities on the real
λ axis. Applying this to Eq. (42) allows us to replace
the discrete sum over the ordinary angular momentum l
with a contour integral in the complex λ plane (that is, in
the complex l plane with λ ¼ lþ 1=2). By noting that
Plðcos θÞ ¼ ð−1ÞlPlð− cos θÞ, we obtain

f̂ðω; θÞ ¼ 1

2ω

Z
C
dλ

λ

cosðπλÞ
× ½Sλ−1=2ðωÞ − 1�Pλ−1=2ð− cos θÞ: ð44Þ

In Eqs. (43) and (44), the integration contour encircles
counterclockwise the positive real axis of the complex λ
plane, i.e., we take C ¼� þ∞þ iϵ;þiϵ� ∪ ½þiϵ;−iϵ� ∪
½−iϵ;þ∞− iϵ½ with ϵ → 0þ (see Fig. 1 in Ref [41]).
The Legendre function of the first kind Pλ−1=2ðzÞ denotes

the analytic extension of the Legendre polynomials PlðzÞ.
It is defined in terms of hypergeometric functions by [77]

Pλ−1=2ðzÞ ¼ F½1=2 − λ; 1=2þ λ; 1; ð1 − zÞ=2�: ð45Þ

In Eq. (44), Sλ−1=2ðωÞ denotes “the” analytic extension of
SlðωÞ. It is given by [see Eq. (15)]

TABLE V. The lowest Regge poles λnðωÞ for the scalar field
versus WKB results given by Eq. (39). The radius of the compact
bodies is R ¼ 6M.

n 2Mω λðB-RÞn ðωÞ λðB-R;WKBÞ
n ðωÞ

1 3 1.56219þ 2.33072i 1.592793þ 2.189767i
16 0.62529þ 3.27098i 0.661564þ 3.255453i

2 3 3.81484þ 2.48159i 3.592793þ 2.189767i
16 2.64868þ 3.31439i 2.661564þ 3.255453i

3 3 6.35675þ 2.64104i 5.592793þ 2.189767i
16 4.70011þ 3.35821i 4.661564þ 3.255453i

4 3 / /
16 6.78093þ 3.40257i 6.661564þ 3.255453i

5 3 / /
16 8.89270þ 3.44762i 8.661564þ 3.255453i

6 3 / /
16 11.03720þ 3.49356i 10.661564þ 3.255453i

7 3 / /
16 13.21653þ 3.54058i 12.661564þ 3.255453i

8 3 / /
16 15.4331þ 3.5889i 14.661564þ 3.255453i

9 3 / /
16 17.6898þ 3.6390i 16.661564þ 3.384517i

10 3 / /
16 19.9900þ 3.6910i 18.661564þ 3.255453i
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Sλ−1=2ðωÞ ¼ eiðλþ1=2Þπ A
ðþÞ
λ−1=2ðωÞ

Að−Þ
λ−1=2ðωÞ

ð46Þ

where the complex amplitudes Að−Þ
λ−1=2ðωÞ and AðþÞ

λ−1=2ðωÞ are
defined from the analytic extension of the modes ϕωl, i.e.,
from the function ϕω;λ−1=2.
It is also important to recall that the poles of Sλ−1=2ðωÞ in

the complex λ plan (i.e., the Regge poles) and which are
lying in the first and third quadrants, symmetrically
distributed with respect to the origin O, are defined as

the zeros of the coefficient Að−Þ
λ−1=2ðωÞ [see Eq. (46)], i.e., the

values λnðωÞ such that

Að−Þ
λnðωÞ−1=2ðωÞ ¼ 0; ð47Þ

with n ¼ 1; 2; 3;….
The residue of the matrix Sλ−1=2ðωÞ at the pole λ ¼

λnðωÞ is defined by [see Eq. (46)]

rnðωÞ ¼ eiπ½λnðωÞþ1=2�
� AðþÞ

λ−1=2ðωÞ
d
dλA

ð−Þ
λ−1=2ðωÞ

�
λ¼λnðωÞ

: ð48Þ

These residues play a central role in the complex angular
momentum paradigm.
Now, we “deform” the contour C in Eq. (44) in order to

collect, by using Cauchy’s theorem, the Regge poles
contributions. This is achieved by following, mutatis
mutandis, the approach developed in Ref. [41] (see more
particularly Sec. IIB 3 and Fig. 1). We obtain

f̂ðω; θÞ ¼ f̂Bðω; θÞ þ f̂RPðω; θÞ ð49Þ

where

f̂Bðω; θÞ ¼ f̂B;Reðω; θÞ þ f̂B;Imðω; θÞ ð50aÞ

is a background integral contribution with

f̂B;Reðω;θÞ¼ 1

πω

Z
C−

dλλSλ−1=2ðωÞQλ−1=2ðcosθþi0Þ ð50bÞ

and

f̂B;Imðω;θÞ¼ 1

2ω

�Z
0

þi∞
dλ½Sλ−1=2ðωÞPλ−1=2ð−cosθÞ

−S−λ−1=2ðωÞeiπðλþ1=2ÞPλ−1=2ðcosθÞ�
λ

cosðπλÞ
�
:

ð50cÞ

The second term in Eq. (49),

f̂RPðω;θÞ¼−
iπ
ω

Xþ∞

n¼1

λnðωÞrnðωÞ
cos½πλnðωÞ�

PλnðωÞ−1=2ð−cosθÞ; ð51Þ

is a sum over the Regge poles lying in the first quadrant of
the CAM plane. Of course, Eqs. (49)–(51) provide an exact
representation of the scattering amplitude f̂ðω; θÞ for the
scalar field, equivalent to the initial partial wave expansion
(42). From this CAM representation, we can extract the
contribution f̂RPðω; θÞ given by (51) which, as a sum over
Regge poles, is only an approximation of f̂ðω; θÞ, and
which provides us with a corresponding approximation of
the differential scattering cross section via (41).

C. Computational methods

To construct the scattering amplitude (42), the back-
ground integrals (50b) and (50c), and the Regge pole
amplitude (51), we use, mutatis mutandis, the computa-
tional methods of Refs. [41,42]. In these works the authors
calculated the CAM representation of scattering amplitudes
for scalar, electromagnetic and gravitational waves by
Schwarzschild black hole (see also Ref. [57]).
Due to the long rang nature of the field propagating on

the Schwarzschild black hole (outside the compact body),
the scattering amplitude (42) and the background integral
(50b) both suffer a lack of convergence. To overcome this
problem, i.e., to accelerate the convergence of this sum and
integral, we have used the method described in the
Appendix of Ref [41]. We have performed all the numerical
calculations by using Mathematica.

D. Numerical results: Scattering cross sections

Figures 4–9 show a selection of results for the scattering
cross section dσ=dΩ computed with the CAM method, and
compared with results from the standard partial-wave
method. As in Sec. III C, we focus on two cases: a
neutron-starlike object with R=M ¼ 6, and an ultracompact
object with R=M ¼ 2.26.
Figure 4 demonstrates that the CAM cross section

approaches the partial-wave cross section as (i) successively
more Regge poles are included in the sum (51), and (ii) the
background-integral contributions (50) are included. The
first plot shows that, at a “low” frequency ofMω ¼ 3=2 for
the neutron star model (R=M ¼ 6), taking a sum over just
two Regge poles in Eq. (51) captures the crude features of
the cross section. The final plot shows that a cross section
calculated from a sum of 15 Regge poles and the back-
ground integral is indistinguishable (on the plot) from the
partial-wave sum.
Figure 5 shows the neutron star model (R=M ¼ 6) at the

higher frequency of Mω ¼ 8. The first plot shows that, in
this case, including just two Regge poles is yields a poor
approximation. With 20 Regge poles, the primary peak of
the rainbow, the first supernumerary, and the shadow region
are well captured, but at smaller angles (θ ≲ 40°) there is no
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FIG. 5. The scalar cross section of a compact bodies for 2Mω ¼ 16 and R ¼ 6M, its Regge pole approximation and the background
integral contribution. The plots show the effect of including successively more Regge poles (plots 1–3). In the final plot, the background
integral is added, giving a cross section which agrees well with the (regularized) partial-wave sum.

FIG. 4. The scalar cross section of a compact bodies for 2Mω ¼ 3 and R ¼ 6M, its Regge pole approximation and the background
integral contribution. The plots show the effect of including successively more Regge poles (plots 1–3). In the final plot, the background
integral is added, giving a cross section which agrees well with the (regularized) partial-wave sum.

SCATTERING FROM COMPACT OBJECTS: REGGE POLES AND … PHYS. REV. D 101, 104035 (2020)

104035-13



FIG. 6. The scalar cross section of an UCOs for 2Mω ¼ 3 and R ¼ 2.26M and its Regge pole approximation. The plots show the
effect of including successively more Regge poles (plots 1–3). In the final plot, the sum over Regge poles gives a cross section which
agrees well with the (regularized) partial-wave sum for intermediate and large values of the scattering angle.

FIG. 7. The scalar cross section of an UCOs for 2Mω ¼ 6 and R ¼ 2.26M and its Regge pole approximation. The plots show the
effect of including successively more Regge poles (plots 1–3). In the final plot, the sum over Regge poles gives a cross section which
agrees well with the (regularized) partial-wave sum for intermediate and large values of the scattering angle.
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agreement. With 42 Regge poles, but no background
integral, the agreement is excellent for θ ≳ 30°. Finally,
with 81 Regge poles and the background integral included,
the CAM result is again indistinguishable from the partial-
wave result on the plot.
Figure 6 shows the cross section for an ultracompact

object with R=M ¼ 2.26 at the “low” frequency of
Mω ¼ 3=2. In this case, the rainbow angle exceeds
180°, and there is both a light-ring and a trapping region
(see Fig. 1). The cross section exhibits regular orbiting
oscillations with angle θ. The angular width is consistent
with generation by the light-ring (i.e., the peak in the
potential barrier). The second plot shows that including just
3 modes from each of the three branches leads to a good
description of scattering at large angles θ ≳ 100°. As there
is no shadow region in this case, the cross section at large
angles in non-negligible. For R=M ¼ 2.26, the cross
section at the antipodal point (θ ¼ 180°) is a factor of
> 106 larger than in the R=M ¼ 6 case. The final plot
shows that excellent agreement with the partial-wave
results is obtained, for θ ≳ 20°, by summing over 27 poles.
Figure 7 shows the cross section for an UCO at the

higher frequency ofMω ¼ 8. In this case, the cross section
is non-negligible at all angles, and there is evidence for
interference between oscillations of comparable amplitudes
and widths. Summing 31 Regge poles leads to good
agreement for the cross section for angles θ ≳ 35°. As
before, it is necessary to include the background integral as
well to obtain agreement at smaller angles.
Figures 8 and 9 show the relative magnitudes of the

contributions from the different branches of Regge poles.
For R=M ¼ 6 (Fig. 8) the surface-wave and broad-
resonance amplitudes are similar in magnitude, and similar
in magnitude to their sum. There is a difference in phase
between these amplitudes which generates the peaks and
troughs of the rainbow-scattering pattern.
For R=M ¼ 2.26 (Fig. 9), however, the amplitudes from

the three branches are comparable in magnitude, but their

sum is several orders-of-magnitude smaller. In other words,
there is some delicate cancellation occurring between the
contributions from the branches, suggesting that the CAM
approach used here is not an efficient method for comput-
ing the cross section in this case.

V. DISCUSSION AND CONCLUSIONS

In this work, we have: (1) calculated the full spectrum of
Regge poles for a compact body spacetime for the first
time; (2) applied CAM theory to obtain an expression for
the scattering amplitude as a residue series accompanied by
a background integral, Eqs. (49)–(51); and (3) utilized the
CAM formulas to calculate scattering cross sections
numerically, demonstrating precise agreement with the
numerical results of the partial-wave expansion, first
computed in Ref. [57].
The spectrum of Regge poles exhibits two distinct

branches of poles in the neutron star case R=M ¼ 6 (see
Fig. 2), which we have labeled “broad resonances” and
“surface waves.” Ultracompact objects have, in addition, a
third branch of “narrow resonances” (see Fig. 3), linked to
the existence of an effective cavity between the light-ring
and the object’s surface. Similar branches of poles arise in
scattering by a transparent sphere, and so it is natural to
adopt the terminology used to describe these branches in
Mie scattering [30].
By applying a WKB method at lowest order, we have

obtained a better understanding of the spectrum of the
broad resonances, finding that the magnitude of the
imaginary part is linked to the magnitude of the disconti-
nuity in the effective potential at the surface of the body
(see Eqs. (36), (39) and Fig. 1). Extending the WKB
method to higher orders would improve the accuracy of this
approximation, and further work is needed to obtain
asymptotic approximations for the surface-wave branch,
and the narrow-resonance branch.
We can be confident that there are no additional branches

of Regge poles in the first quadrant, for two reasons. First,

FIG. 8. Rainbow scattering for compact bodies for 2Mω ¼ 16
and R ¼ 6M, its Regge pole approximation and different con-
tributions of the sum over Regge poles.

FIG. 9. Rainbow scattering for UCOs for 2Mω ¼ 16 and
R ¼ 2.26M, its Regge pole approximation and different contri-
butions of the sum over Regge poles.
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we have scanned across the complex-λ domains shown in
Figs. 2 and 3, as detailed in Sec. III B. Second, in our
calculation of dσ=dΩ, we find a precise numerical agree-
ment between the CAM calculation and the partial-wave
calculation; this would not be the case if poles in this
domain had been missed.
The CAM toolkit was applied here to gain a comple-

mentary method for calculating scattering amplitudes. In
summary, we have shown that, for the intermediate and
high angles, these scattering amplitudes can be recon-
structed in terms of Regge poles with great precision in the
intermediate and high frequency regimes. For compact
objects (R=M ∼ 6), we observed that it is necessary to take
into account the background integral contributions to
describe the glory, and this is true regardless of the
frequency. Conversely, this is not the case for UCOs
(R=M < 3), where the sum over the Regge poles is
sufficient to accurately describe the glory. Moreover, the
sum over the Regge poles permitted us to overcome the
difficulties linked to the lack of convergence from which
the scattering amplitude suffers (i.e., partial wave expan-
sions) due to the long-range of the field propagating on the
Schwarzschild spacetime outside the compact body.
However, the existence of the broad resonance branch
close to the real axis with an approximately uniform
spacing, Δλ ∼ 2, requires the calculation of a large number
of poles. In the black hole case, by contrast, there is only a
single branch of surface-wave-type modes (see Fig. 2), and
in the high-frequency limit, a few poles (< 5) capture both
the orbiting and glory phenomena [41,42].
Here we have numerically determined if a background

integral, and how many Regge-poles and residues, need to
be calculated to accurately reproduce a scattering cross
section in an angular region. Loosely speaking, for scatter-
ing at higher frequencies, more poles must be included
since there are more broad resonances. Also the back-
ground integral is negligible except for weak glory scatter-
ing. This is an interesting result in itself (as noted in
[41,42]) since in most CAM scattering studies the back-
ground integral is significant in geometrically illuminated
regions [30]. An asymptotic analysis is an important next
step toward understanding the role of the background
integral and higher Regge-pole overtones, both computa-
tionally and, in a semiclassical interpretation, physically.
In the case of Mie scattering, a powerful extension of the

CAM approach is to define the so-called Regge-Debye
poles using the Debye expansion (see the chapter 9 of the
monograph of Nussenzveig [30]), thereby eliminating
the broad resonance branch entirely, and accelerating the
convergence. This is another possible direction for a future
investigation.
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APPENDIX: LOCATION OF THE REGGE POLES
IN COMPLEX λ-PLAN

In this Appendix, we establish which quadrants of the
complex λ-plane may contain Regge poles, for scalar and
axial metric perturbations on a stellar background. In other
words, we will constrain the possible locations of the zeros

of the coefficient Að−Þ
λ−1=2ðωÞ [see Eq. (46)],

Að−Þ
λ−1=2ðωÞ

���
λ¼λn

¼ 0; ðA1Þ

for ω real.
To do this, it is convenient to write the boundary

conditions (13) and (14) defining a solution that is regular
at the origin in the following form:

ϕω;λ−1
2
ðrÞ ∼

8>>><
>>>:

rλþ
1
2; r → 0;

Að−Þ
λ−1=2ðωÞe−iωr�

þAðþÞ
λ−1=2ðωÞeþiωr� ; r� → þ∞:

ðA2Þ

We next consider the radial equation (6) for the regular
solution

d2

dr2�
ϕω;λ−1=2ðrÞ þ ðω2 − Vλ−1=2Þϕω;λ−1=2ðrÞ ¼ 0; ðA3Þ

and its complex conjugate,

d2

dr2�
ϕ�
ω;λ−1=2ðrÞ þ ðω2 − Vλ�−1=2Þϕ�

ω;λ−1=2ðrÞ ¼ 0: ðA4Þ

Multiplying (A3) by ϕ�
ω;λ−1=2ðrÞ and (A4) by ϕω;λ−1=2ðrÞ

and taking the difference, it follows that

ϕ�
ω;λ−1=2ðrÞ

d2

dr2�
ϕω;λ−1=2ðrÞ − ϕω;λ−1=2ðrÞ

d2

dr2�
ϕ�
ω;λ−1=2ðrÞ

¼ 2ijϕλ−1=2ðωÞj2f½r�
Im½λ2�
r2

: ðA5Þ

The LHS of Eq. (A5) is the derivative of W, the
Wronskian of the two solutions with respect to r�. The
Wronskian is a constant (i.e., d=dr�W½ϕ�;ϕ� ¼ 0) if λ
either real or purely imaginary. According to Eq. (A5), we
can write
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d
dr�

W½ϕ�;ϕ� ¼ 2ijϕλ−1=2ðωÞj2f½r�
2Re½λ�Im½λ�

r2
: ðA6Þ

Integration of (A6) gives

lim
r�→∞

W½ϕ�;ϕ� ¼ 4iIm½λ�Re½λ�
Z þ∞

0

jϕλ−1=2ðωÞj2
r2

dr; ðA7Þ

where we have used dr
dr�

¼ fðrÞ to transform the integration
variable. On the other hand, by evaluating the Wronskian
from the boundary condition (A2), we obtain

lim
r�→∞

W½ϕ�;ϕ� ¼ −2iωðjAð−Þ
λ−1=2j2 − jAðþÞ

λ−1=2j2Þ; ðA8Þ

hence we get [cf. (A7) and (A8)]

jAð−Þ
λ−1=2j2− jAðþÞ

λ−1=2j2¼−
2

ω
Re½λ�Im½λ�

Z þ∞

0

jϕλ−1=2ðωÞj2
r2

dr:

ðA9Þ

Since the integral is positive and ω is real, Að−Þ
λ−1=2 can

vanish in the right-half complex λ-plan (i.e., Re½λ� > 0)
only for

(
ω > 0

Im½λ� > 0
or

(
ω < 0

Im½λ� < 0
ðA10Þ

Thus, in the right-half complex λ-plan, the Regge poles
lie only in the first quadrant for ω > 0, and only in the
fourth quadrant for ω < 0.
It is important to note that under the transformation

ω → −ω, the coefficient Að−Þ
λ−1=2ðωÞ defined by (6)–(13)–

(14) satisfies the symmetry relation

Að−Þ
λ−1=2ð−ωÞ ¼ ½Að−Þ

λ�−1=2ðωÞ��; ðA11Þ
and thus

λnð−ωÞ ¼ λnðωÞ�: ðA12Þ

As discussed in Sec. III C, a good analytic extension of
the S-matrix into the left-half complex λ-plane leads to the
symmetry (27). Then, it follows that the Regge poles with
Re½λ� < 0 may be found for [cf. (A9) and (A12)]


ω > 0

Im½λ� < 0
or



ω < 0

Im½λ� > 0
: ðA13Þ

The results established here agree with the situation in
nonrelativistic wave and atom/particle scattering (see e.g.,
[29,78] and references therein), and also with the results of
Schwarzschild black hole scattering [38,43].
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