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Abstract. In this paper we work on the estimation of a regression function that belongs to a polyno-
mial eigenvalue decay reproducing kernel Hilbert space (RKHS). We describe the spectral filter framework
for our estimator that allows us to deal with several iterative algorithms: gradient descent, Tikhonov reg-
ularization, etc. The main goal of the paper is to propose a new early stopping rule by introducing the
smoothing parameter for the empirical risk of the estimator in order to improve the previous results [1] on
the discrepancy principle. Theoretical justifications as well as simulations experiments for the proposed
rule are provided.
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Résumé. Dans ce travail, nous présentons, dans un cadre général, l’estimation de la fonction de
régression lorsqu’elle appartient à un RKHS. Les propriétés de plusieurs estimateurs sont analysées à
travers des algorithmes itératifs comme la descente de gradient et la régularisation de type Tikhonov.
L’objectif principal de notre analyse est de proposer une nouvelle règle d’arrêt prématuré des algorithmes
basée sur l’introduction d’un paramètre de lissage dans la définition du risque empirique. Nous illustrons
l’efficacité de notre approche et présentons les résultats d’une étude de simulation.
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1 Introduction

In supervised learning, given a sample of pairs of inputs and outputs, the goal is to estimate a regression
function in the framework of empirical risk minimization or Tikhonov regularization. Usually properties
of the regression function is not known, therefore one can apply different nonparametric techniques to
relax this difficulty. Kernel methods [2] are one of the most widely used approaches to learning.

Early stopping rule (ESR) is an algorithmic approach to the regularization of an iterative algorithm
such as (stochastic) gradient descent [3], boosting algorithms [4] or EM algorithm [5]. It is based on the
idea of stopping an iterative process according to a special criterion in order to reach the best statistical
precision. ESR has a fairly long history and was first introduced for artificial neural networks [6].

There have been three principal strategies for designing an ESR for a regression function learning.
The first one is based on expanding the value of the risk error into the Taylor series and optimizing each
term of the series. The second one consists in decomposing the risk error into the bias and variance
parts, and in obtaining their high probability upper bounds. At the end, the stopping rule will be
defined according to a criterion of the intersection of these two bounds. Several results have been derived
regarding this strategy to quantify the ESR performance in the reproducing kernel Hilbert space (RKHS).
For example, [7] derived a stopping rule when the regression function belongs to RKHS H. If one stops
the learning process at this iteration, the minimax optimal rate for the risk error is achieved for a wide
class of functions. The main deficiency of this method is that it requires an accurate upper bound on the
H-norm of the regression function. The third and the recent one strategy consists in designing an ESR
by observing the empirical risk and building a threshold for stopping appropriately an iterative process
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(the so-called discrepancy principle). This approach was developed initially by [1], where the authors
analyzed the behaviour of the discrepancy principle for spectral filter algorithms in the linear regression
model that was further expanded to the kernel framework.

In the present work we keep the same spectral framework as in [1], by considering gradient descent and
kernel ridge regression (or Tikhonov regularization) algorithms. More precisely, we focus on the nonlinear
regression function estimation using the polynomial eigenvalue decay reproducing kernels. We introduce
a smoothing parameter for the empirical risk, modify the previously designed discrepancy principle rule
and prove an optimality result in terms of the L2(PX) out-of-sample error for the regression function
estimator stopped at the new rule.

The organization of the paper is as follows. Section 2 introduces the statistical framework and the
spectral filter estimator. Section 3 describes the main theoretical result achieved. Section 4 shows the
behaviour of the derived ESR in simulations.

2 Statistical framework

Let us assume that we have a sample zi = (xi, Yi) ∼ P, i = 1, ..., n, with xi ∈ X and Yi ∈ R, and we
consider the usual regression model:

Yi = f∗(xi) + σεi, i = 1, ..., n,

where εi are i.i.d. N (0, 1) random variables, σ = const is known. Notice that there is a large body of
work on estimating the noise variance σ2 in the non-parametric regression. In other words,

Y = [Y1, . . . , Yn]> = F ∗ + σε ∈ Rn.

Let us introduce now (µ̂1, . . . , µ̂n) and (û1, . . . , ûn) as the eigenvalues and eigenvectors of the normalized
Gram matrix K = K(xi, xj)/n respectively, where K(·, ·) denotes the reproducing kernel associated with
the reproducing kernel Hilbert space H [8]. Further, assume that

µ̂1 ≥ µ̂2 ≥ . . . ≥ µ̂r > 0 = µ̂r+1 = µ̂r+2 = . . . = µ̂n.

We consider a mild assumption that f∗ ∈ H, and we would like to use an iterative learning algorithm to
solve

inf
f∈H

{
1

n

n∑
i=1

(Yi − f(xi))
2

}
= min
θ∈Rn
‖Y −Kθ‖2n, (1)

by the representer theorem [8]. Then, projecting F t = Kθt, F ∗ , Y and ε onto the space spanned by
(û1, . . . , ûr), the r first eigenvectors of K, gives us

Zi = G∗i + σε̃i, i = 1, . . . , r.

Here, we used the fact that G∗i = 〈F ∗, ui〉 = 0 when i > r, since f∗ ∈ H.
A non-negative function γ(t) ∈ Rn is called a spectral filter if it is a non-decreasing function of t (in

each of its coordinates), γ
(0)
i = 0 and lim

t→∞
γ
(t)
i = 1, i = 1, . . . , r. Several iterative algorithms could be

expressed in terms of spectral filter as

(Gt)i =

{
γ
(t)
i Zi, if i = 1, . . . , r,

0, if i = r + 1, . . . , n.

Two examples that we study in this paper:
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• Gradient descent (GD) with a constant step-size α: γ
(t)
i = 1− (1− αµ̂i)t.

• (Iterative) kernel ridge regression (KRR) with a parameter α: γ
(t)
i = µ̂i

µ̂i+λt
, where λt = 1/(αt) for

the linear parameterization case or λt = 1/(eαt − 1) for the exponential parameterization case.

3 Main results

3.1 Previous stopping rule definition

Considering the risk of the estimator F t, we can define its bias and variance:

Eε||F t − F ∗||2n = ||EεF t − F ∗||2n + Eε||F t − EεFt||2n = B2
t + EεVt,

B2
t =

1

n

n∑
i=1

(1− γ(t)i )2(G∗i )
2, EεVt =

σ2

n

r∑
i=1

(γ
(t)
i )2.

Bias is a non-increasing convex functions converging to zero and variance is a non-decreasing function

converging to rσ2

n . Ideally we would like to be able to minimize the risk as a function of t. Actually, this
is not possible because it depends on the unknown distribution P. To overcome this problem, we define
the empirical risk, a non-increasing convex function converging to zero.

Rt =
1

n
||F t − Y ||22 =

1

n

n∑
i=1

(1− γ(t)i )2Z2
i .

A stopping rule that was designed in [1] consists in properly setting a threshold for the empirical risk:

τ = inf
{
t > 0 : Rt ≤ σ2

}
. (2)

The following theorem describes the performance of τ compared to the optimal performance.

Theorem 3.1 (Oracle-type inequality) For the gradient descent and kernel ridge regression filters,
there exist constants C1 ≥ 2 and C2 > 0:

Eε||F τ − F ∗||2n ≤ C1Eε||F t
∗
− F ∗||2n + C2

√
r

n
,

where t∗ = inf
{
t > 0 : EεRt ≤ σ2

}
.

Here, constants C1 and C2 do not depend on the number of samples n. This theorem shows that, if our

kernel is a finite-rank one, then the remainder term is of the order O(
√
r
n ) and it is converging faster that

the optimal value of the risk error, which is of the order O(r/n) [7]. However, if we assume that the rank
of the kernel depends on the number of samples, e.g. for the Sobolev kernel, then the remainder term of

the oracle-type inequality has a slow convergence rate (for the Sobolev kernel it is of the order O
(

1√
n

)
).

Moreover, it appeared that τ , since it is a random quantity itself, has a large variance. Therefore, we
suggest using a smoothed version of the bias/variance and empirical risk by means of the eigenvalues of
the Gram matrix, and a smoothing parameter θ ∈ [0, 1]:

Bθ,t =
1

n

r∑
i=1

µ̂θi (1− γ
(t)
i )2(G∗i )

2, EεVθ,t =
σ2

n

r∑
i=1

µ̂θi (γ
(t)
i )2,

Rθ,t =
1

n

r∑
i=1

µ̂θi (1− γ
(t)
i )2Z2

i , θ ∈ [0, 1].

3



3.2 Polynomial decay kernels

Let us, at the beginning, derive a result that introduces the minimax optimal rate for a stopping rule that
has a O

(
1
n

)
threshold for the smoothed empirical risk, with the polynomial eigenvalue decay kernels.

Theorem 3.2 (Out-of-sample rate) For any γ > 0 and n ≥ 16, assume that (x1, . . . , xn) ∼ PX , and
let us make the following assumptions:

• sup
x∈X

K(x, x) ≤MK .

• |Yi| ≤M a.s. for any i ∈ {1, . . . , n}.

• Let us define the kernel integral operator

B : L2(PX)→ L2(PX), g 7→
∫

K(·, x)g(x)dPX(x).

There exists w ∈ L2(PX) such that f∗ = Bν−
1
2w , with ‖w‖L2(PX) ≤M−νK ρ and ν ≥ 1

2 .

• Given two parameters s ∈ (0, 1) and D ≥ 1, we consider the polynomial effective dimensionality

N (λ) = Tr(B(B + λI)−1) ≤ D2(M−1K λ)−s.

This notion was first introduced by [9] in a learning context, and used in a number of works since.
This assumption is tightly connected with the decay of the eigenvalues of the kernel integral operator
B: if the eigenvalues of the kernel integral operator has a decay µi � i−

1
s , then the mentioned

condition on the effective dimensionality holds true with the parameter s.

• If we define an ESR t̂o = inf
{
t > 0 : Rθ,t ≤ C(ρ,D,M,MK , ν, θ, γ) n

2ν+θ
2ν+s

}
for the gradient descent

and kernel ridge regression filters, and we take the smoothing parameter θ = s, then

‖f t̂o − f∗‖L2(PX) . n−
ν

2ν+s with probability 1− γ.

The rate achieved for the L2(PX)-error in the theorem is proved to be minimax-optimal (see, e.g. [10])

The theorem shows that, if we choose the smoothing parameter θ = s, our stopping rule strategy t̂o
will be optimal in the minimax sense. Since in practice we do not have an access to the eigenvalues of the
kernel integral operator, we propose using the inverse decay of the eigenvalues of the Gram matrix K as an
estimation of the optimal parameter θ. Since in the definition of t̂o the constant C(ρ,D,M,MK , ν, θ, γ) is
non-computable in practice, we propose considering the following stopping rule t̂, where the threshold for

the smoothed empirical risk is of the order O
(

tr(Kθ)
n

)
= O

(
logn
n

)
. This stopping rule aims at estimating

an iteration of the intersection of the smoothed bias and smoothed variance.

t̂ = inf

{
t > 0 : Rθ,t ≤

σ2

n

r∑
i=1

µ̂θi
[
(γ

(t)
i )2 + (1− γ(t)i )2

]}
. (3)

4 Simulations

We perform simulations experiments on a simple problem: for the regression model yi = f∗(xi)+σεi, i =

1, . . . , n, where εi
i.i.d.∼ N (0, 1) and σ = 0.2, we use a fixed design setting xi = i/n. We have implemented

the gradient descent and kernel ridge regression algorithms with a fixed step-size and fixed parameter
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α. We choose the regression function to be either a smooth function f∗(x) = −0.5 sin
[
3(x− 2)

]
(SF) or

a piecewise linear function f∗(x) = |x − 0.5| − 0.5 (WF), and the polynomial decay first-order Sobolev
kernel K(x1, x2) = min(x1, x2). We would like to compare our stopping rule t̂ to the previous discrepancy
principle stopping rule τ described in (2), to another stopping rule tw [7], that provides state-of-the-
art results for gradient descent and kernel ridge regression algorithms in RKHS, and is based on upper
bounding the bias and variance with high probabilities, as well as to the oracle method that requires the
knowledge of f∗, therefore non-computable in practice.

tor = inf
t>0

[
Eε‖F t − F ∗‖2n

]
. (4)
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Figure 1: We choose the first-order Sobolev kernel, noise level σ = 0.2 and apply GD and KRR (linear
parameterization) filters with α = 0.5, for (SF) and (WF) regression functions. Smoothing parameter θ
is chosen to be equal to the inverse of the decay of the eigenvalues of the Gram matrix. Each curve for
both of two graphs corresponds to the mean-squared error of a spectral filter estimator, stopped at tor,
τ and t̂, and averaged over 100 independent trials.
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Figure 2: We choose the first-order Sobolev kernel, noise level σ = 0.2 and apply KRR (linear parame-
terization) and KRR (exponential parameterization) filters with α = 0.5, for (SF) and (WF) regression
functions. Smoothing parameter θ is chosen to be equal to the inverse of the decay of the eigenvalues of
the Gram matrix. Each curve for both of two graphs corresponds to the mean-squared error of a spectral
filter estimator, stopped at tor, tw, and t̂, and averaged over 100 independent trials.
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Figure 1 compares the resulting mean-squared errors ‖f t−f∗‖2n of our stopping rule (3), the previous
discrepancy principle rule (2) and the oracle stopping rule (4). The new proposed rule exhibits better
performance than (2) for all sample sizes. Figure 2 compares the resulting mean-squared errors of our
stopping rule (3), the state-of-the-art stopping rule tw [7] and the oracle stopping rule (4). The new
proposed rule exhibits better performance than tw for the samples size n < 300 for the KRR (linear
parameterization) filter and for the sample sizes n < 800 for the KRR (exponential parameterization)
filter. Nevertheless, we observe the same asymptotic behaviour of tw and t̂. Since the rule tw is proved to
be minimax optimal in the functional space generated by the first-order Sobolev kernel, we can conclude
that t̂ recovers the same (minimax) rate in the present simulations.

5 Conclusion

In this paper we have described spectral filter algorithms (gradient descent, Tikhonov regularization) for
the non-parametric regression function estimation in RKHS. We proposed a new early stopping rule t̂
for these algorithms. After that, we proved an optimal (in terms of rate) L2(PX) out-of-sample error for
the developed rule. At the end of the paper, we showed the performance of t̂ in simulations. The main
deficiency of our strategy is that the construction of t̂ is based on the assumption that the regression
function belongs to a known RKHS. Besides that, the results were derived only for the polynomial
eigenvalue decay kernels.
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