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ABSTRACT
We present the first measurement of the gravitational quadrupole moment of the
companion star of a spider pulsar, namely black widows and redbacks, using pulsar
timing data for blackwidow PSR J2051-0827. To this end we have used a new timing
model which is able to account for periastron precession caused by tidal and centrifugal
deformations of the star as well as by general relativity. Simultaneously, the model
allows for a time-varying component of the quadrupole moment, thus self-consistently
accounting for the ill-understood orbital period variations observed in these systems.
Our analysis results in the first unambiguous detection of orbital eccentricity in this
system with e = 4.2 ± 0.1 · 10−5, together with a total precession of −68.6+0.9

−0.5 deg/yr.
We show that the variable quadrupole component is about 100 times smaller than the
sum of the tidal and centrifugal components. We demonstrate how precise optical light
curves of the companion star will allow to derive its apsidal motion constant from our
results.

Key words: keyword1 – keyword2 – keyword3

1 INTRODUCTION

Spider pulsars are binaries composed of a millisecond pulsar
primary and a low-mass non-degenerate secondary orbiting
with a sub-day period that is often as short as a few hours. In
the event that the companion has a very low mass, < 0.1 M�,
the system is called a black widow. Those with heavier com-
panions (0.1–0.4 M�) are called redbacks. These binaries are
named after two spider species which share the characteristic
that the larger female (occasionally) eats the smaller male
after mating. Their astrophysical counterparts rather seem
to proceed in a slow evaporation of the companion star by
the pulsar after the latter mate has been recycled by the for-
mer, i.e. spun up to millisecond period through mass transfer
Alpar et al. (1982). The fate of the companion, although as
yet uncertain, would appear all the more cruel that there is
evidence for the rejuvenation of some spider pulsars to have
been particularly efficient with the two fastest known spin-
ning pulsars being respectively a redback, PSR 1748-2446ad
(Hessels et al. 2006), and a blackwidow, PSR J0952-0607
(Bassa et al. 2017). The observed similarity of the compan-
ion with low-mass X-ray binary secondaries as well as the
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transition of some redback systems (Archibald et al. 2009;
Papitto et al. 2013; Bassa et al. 2014) to and from accret-
ing states certainly supports the idea of these systems be-
ing the missing links in millisecond pulsar evolution, unless
they form a separate and exotic category on their own (Chen
et al. (2013); Benvenuto et al. (2012)). Probing the internal
state of the companion, through a measurement of its grav-
itational quadrupole moment, thus represents an invaluable
constraint for stellar evolution models.

The high potential of spider pulsars Roberts (2012) for
timing is often hindered by their ill-understood orbital pe-
riod variations, which are usually attributed to fluctuations
of their quadrupole momentum caused by stellar magnetic
cycles as proposed in (Applegate 1992) and later refined in
e.g. Lanza & Rodonò (1999); Lanza (2006); Völschow et al.
(2018); Navarrete et al. (2019). If quadrupole changes are
responsible for the observed orbital period variations, then
it is possible to design a dynamical model of the binary that
includes this contribution. Nonetheless, such variations are
only perturbations of a larger quadrupole moment due to the
well-known centrifugal and tidal forces. However, the main
effect that these latter components generate is an orbital
precession which is only detectable if a significant eccen-
tricity is present. This characteristic is made unlikely by the
assumed evolution scenario where strong circularising mech-
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anisms are expected (see Voisin et al. (2019) and references
therein).

We recently showed (Voisin et al. 2019) that a perturbed
orbit cannot be perfectly circular as a direct consequence
of the well-known Bertrand’s theorem which stipulates that
only the harmonic and Newtonian potentials can lead to pe-
riodic motion. We demonstrated that in the case of spider
systems, this property is effectively embodied in an appar-
ent eccentricity and periastron precession. Owing to the es-
timated magnitude of quadrupole deformation, it was shown
that the minimal value of that effective eccentricity may fall
well within a detectable range.

In this letter, we report on the application of our model
to blackwidow PSR J2051-0827. We reanalysed the timing
data published in Shaifullah et al. (2016) using an imple-
mentation of the model of Voisin et al. (2019).

2 THE TIMING MODEL

The timing model presented in Voisin et al. (2019) is an ex-
tension of the relativistic binary model of Damour & Deru-
elle (1985, 1986) to binaries with a companion deformed
by tidal and centrifugal forces in the limit of quasi-circular
orbits i.e. the model is accurate to first order in eccentric-
ity. The model comes with the restriction that the spin of
the companion is assumed to be synchronized with its or-
bital motion such that the axis of the deformation remains
constant. In addition, a time-varying component is allowed
to account for orbital period variations. Thus, binary dy-
namics derives from the companion gravitational potential

Φc = −Gmc
r

(
1 + (Js + Jv(t) + Jt a

3

r3 ) a
2

r2

)
where mc is the mass

of the companion, Js, Jt and Jv(t) are dimensionless param-
eters quantifying the spin, tidal and variable quadrupole
components respectively, G is the gravitational constant,
a the separation between the pulsar and its companion at
a reference time and r the distance between the two ob-
jects (Voisin et al. 2019). The quadrupole parameters are
related to the quadrupole moment along the radial axis Qrr

by 3
2

Qrr

mca2 = Js + Jv(t) + Jt a
3

r3 . Relativistic corrections at the

first post-Newtonian order are included as in, e.g., Damour
& Deruelle (1985), and contribute terms of order ε = GM

ac2
where M = mc + mp is the total mass of the system, mp the
mass of the pulsar, and a is the binary separation.

One can show that the tidal and quadrupole numbers
are connected by the relation Js = (1 + q)Jt/3, where q =
mc/mp is the mass ratio of the system. Using equilibrium
tide theory (Sterne 1939; Kopal 1978), one can relate these
numbers to the apsidal motion constant k2,

Jt = −k2ρ
5
f f 5q−1, (1)

where ρ f = Rf /a, Rf is the volume-averaged Roche-lobe ra-
dius, and f the filling factor of the companion such that
Rc/a = f ρ f . It is convenient to use the formula ρ f =

0.49q2/3/
(
0.6q2/3 + ln

(
1 + q1/3

))
(Eggleton 1983). The ap-

sidal motion constant depends on integration of the stel-
lar structure, and in particular on the equation of state of
the star. The variable component is left as a free param-
eter which is related to the orbital frequency derivatives

f (i)
b
= di fb/dti(Ta) like so,

Jv(t) = −
1

6 fb

∑
i=0

f (i)
b

i!
(t − Ta)i, (2)

where fb = 1/Pb is the orbital frequency at the time of
ascending node Ta. Interestingly, this translates into Jv(t) =
− 1

6
∆Pb
Pb

where ∆Pb is the orbital period variation.
Together with relativistic effects, quadrupole deforma-

tions are responsible for a minimum eccentricity,

emin = −Jt (16 + q) + ε
2

( mcmp

M
+ 3

)
. (3)

The total eccentricity that may be detected in timing ob-
servations is the sum of this minimum component and the
traditional, hereafter Keplerian, component : e = emin + eK .
The Keplerian component is the one that may be nullified by
circularisation processes. On the other hand, emin should be
considered as an effective, as opposed to geometrical, com-
ponent. In any case, if the eccentricity e is large enough to be
detected then one also has to account for orbital precession
at an angular rate of

Ûω = nb (15Jt + 3Js + 3ε) (4)

where nb = 2π fb. The first term of equation (4) gives the
tidal contribution Ûωtid, the second the spin contribution Ûωspin
and the third term is the relativistic contribution Ûωrel.

Since spiders are close binaries, the model only includes
the so-called Rœmer delay, namely the geometrical delay in-
duced by the variation of the distance projected along the
line of sight of the observer as the pulsar circles its orbit.
Relativistic delays such as the effects of time dilation or
light bending may safely be neglected (Voisin et al. 2019).
It follows that the inclination angle of the orbital plane can-
not be measured independently from the pulsar semi-major
axis, but only the projection of the latter along the line of
sight x = ap sin i. Additionally, information on the masses
of the two stars is limited to the so-called mass function
(mc sin i)3/(mp + mc)2 = G−1x3n2

b
.

Although one may neglect the relativistic contributions
in first approximation, one sees that the mass ratio q remains
absolutely necessary to derive the apsidal motion constant
k2 from equations (4) and (1). If relativistic corrections are
to be included, then the knowledge of both masses is neces-
sary (or of one mass and the inclination and using the mass
function). Furthermore, the knowledge of the filling factor
f is certainly the most sensitive parameter needed to derive
the apsidal motion constant, as it comes in equation (1) to
the fifth power. This factor cannot in general be obtained
through the technique of pulsar timing, but can instead be
extracted from modelling of the optical light curve of the
companion (e.g. Breton et al. 2013). The same technique
can inform us on the orbital inclination, and thus partially
lift the degeneracy of the mass function. The mass ratio can
be obtained through optical spectroscopy (e.g. van Kerk-
wijk et al. 2011) by measuring the velocity of the compan-
ion along the line of sight and comparing it to the projected
pulsar velocity derived from timing. If spectroscopic obser-
vations are not available, light-curve modelling can provide
constraints on the masses of the system but usually with
very large uncertainties. As a last resort, one can estimate
the range of allowed mass ratios by assuming peculiar pulsar
masses typically in the range 1.4M� ≤ mp ≤ 2.5M�.
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3 RESULTS AND DISCUSSION

We here re-analyse 21 years of timing data previously pub-
lished in Shaifullah et al. (2016)1 using a version of the ELL1
timing model of the Tempo2 pulsar timing software (Hobbs
et al. 2006; Edwards et al. 2006) modified according to the
prescriptions of Voisin et al. (2019)2. The uncertainties were
estimated using the affine-invariant Markov-Chain-Monte-
Carlo (MCMC) algorithm of Goodman & Weare (2010);
Foreman-Mackey et al. (2013)3.

The mean values of the parameter posterior distribu-
tion functions are given in table 1. Compared to the fit
using Tempo2’s BTX model presented in Shaifullah et al.
(2016), the reduced χ2 is significantly improved (4.06 against
4.2) although our fit uses 3 extra parameters (κc, κs and
Ûω). Some of the parameters common to both fits are sig-
nificantly different, the largest discrepancy occurring in the
spin frequency which is different by ∼ 57 standard devia-
tions, which indicates that when precession and eccentricity
are not accounted for the spin frequency f adjusts to partly
compensate. The orbital parameters x, Ûx,Tasc, fb are consis-
tent within 2σ. The orbital period derivatives show similar
but nonetheless significantly different values between the two
fits (see below). This might be due to the large correlations
between each of these parameters (see corner plot in online
material). The 1σ error bars themselves are quite different
between the BTX fit and the present one, which is partly
the result of the different methods used: Tempo2 returns
an estimate based on its least-square fit while we use here
a MCMC sampling of the posterior distribution function.
Moreover, we note that the large reduced χ2 we obtain is
either due to un-modelled effects or to underestimated un-
certainties on the times of arrival. In the latter case, the
error bars given in table 1 should be multiplied by ∼ 2, par-
ticularly since the marginalised posterior distributions of all
parameters are closely Gaussian (see online material).

The true novelty of the present fit is of course the
unambiguous detection of the orbital eccentricity together
with the detection of a large orbital precession (see table 1).
The value of the measured eccentricity is somewhat larger
that what was hinted at in previous works (Shaifullah et al.
(2016); Lazaridis et al. (2011); Doroshenko et al. (2001);
Stappers et al. (1998)). This is consistent with the idea
raised in Voisin et al. (2019) that an unaccounted large pre-
cession averages out the eccentricity over the time scale of a
precession period (∼ 5 years in the present case), in the sense
that the envelope of a precessing eccentric orbit is a circle.
This idea is reinforced by the finding of Shaifullah et al.
(2016) of an apparently variable eccentricity vector when
fitting independently small subsets of times of arrival. Fur-
ther, our assumption that precession is primarily caused by
a large gravitational quadrupole moment of the companion

1 The data processed here is available as an online additional

material to Shaifullah et al. (2016) at http://www.epta.eu.org/

aom.html.
2 The timing model implementation is available here :

https://bitbucket.org/astro_guillaume_voisin/spider_

timing_model/
3 Our MCMC implementation, with bindings to Tempo2, is avail-
able here : https://bitbucket.org/astro_guillaume_voisin/

mcmc4tempo2/

star is supported by the negative sign of the precession rate.
Indeed, the other source of precession in the model, namely
relativistic precession, can only contribute a positive term
to the total rate (see also table 1).

The knowledge of the mass ratio q and the inclination
of the system sin i is needed to derive the quadrupole pa-
rameters Js and Jt . In the case of PSR J2051-0827 these
parameters were estimated from optical observations of the
companion in Stappers et al. (2001), although with impor-
tant uncertainties (see also below). Fortunately, the facts
that quadrupole-induced precession here dominates over rel-
ativistic precession (16Jt � 3ε) and that the mass ratio is
very small, q � 1, render the derivation of the quadrupole
parameters little dependent on the values and uncertain-
ties of q and sin i. In other words, to first order one has
Jt ' Ûω/(16nb). To go further, we use a conservative estimate
of the pulsar mass range and of the inclination of the system
(Stappers et al. 2001) (see caption of table 1).

In the same manner we determine the minimum eccen-
tricity emin, equation (3), and the Keplerian eccentricity eK .
It is interesting to note that the orbit is not perfectly cir-
cularised since eK accounts for nearly half of the total ec-
centricity. This can be used to derive an eccentricity age
(Voisin et al. 2019), τe = τc log10(1/eK ), where τc is the cir-
cularisation time-scale (see Hurley et al. (2002) or Voisin
et al. (2019)) depending on the component masses and the
companion surface temperature. The eccentricity age gives
an upper bound on the time needed for the orbit to circu-
larise assuming only tidal forces are at work and an initial
eccentricity of 1. For PSR J2051-0827 we calculate the range
τe = 1.6−4.1 ·108 years where the uncertainty comes primar-
ily from the masses as well as from the night-side tempera-
ture of the companion which we take to be Tc = 2600−3200K
(Stappers et al. 2001). Unless another effect pumps up ec-
centricity in this system, one should therefore conclude that
the system has been in the black-widow state for at most a
few hundred million years, and likely much less than that.

Of particular interest is the estimate of the apsidal mo-
tion constant k2 since it can be directly related to the inter-
nal structure using stellar models. Unfortunately, our knowl-
edge of the filling factor of the companion star, to which k2
is extremely sensitive, is very poor since it essentially ranges
from 0.2 to 1. Indeed, Stappers et al. (2001) found that due
to the asymmetry of the light curve two solutions were pos-
sible: one fitting well when only one-half of the light curve
was considered (reduced χ2 = 0.96) yielding a filling factor
f = 0.43+0.23

−0.16, and another fitting the full light curve albeit

poorly (reduced χ2 = 5.6) with a filling factor f = 0.95+0.05
−0.02.

Therefore, we show on figure 1 the value taken by k2 as a
function of the filling factor. We find that a broad range of
stellar structures are possible, since 10−3 ≤ k2 ≤ 0.3. As a
reference, the Sun has an intermediate k2 ' 0.03. The record
low is held, to our knowledge, by cataclysmic-variable com-
panions (Warner 1978) with k2 ∼ 10−3 although these may
be more similar to redback companions in terms of mass and
evolution. The record high is held by hot Jupiters which have
been theoretically shown (Ogilvie 2014; Kramm et al. 2012)
to reach k2 ∼ 0.2 4 and are arguably closer to black-widow
companions in terms of mass and night-side temperature.

4 There is a factor of 2 compared with the value given in Kramm
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Figure 1. Apsidal motion constant as a function of the filling
factor based on the timing results and equation (1). The thickness

of the line includes mass ratios from q = 0.016 to q = 0.022 and
is much larger than uncertainties due to parameters derived from

timing. The right vertical axis shows the mean density, which

curve is identical to that of k2 with this axis scaling. The horizon-
tal dashed line shows the apsidal motion constant J2051 would

have, ∼ 0.34, had it the same mean density of 54g/cm3 as the

densest known black-widow companion, PSR J0636+5128 (Ka-
plan et al. 2018). The vertical dashed line shows the correspond-

ing filling factor which is ∼ 0.29.

The latter case would require a small filling factor, typically
f . 0.5, compatible with one of the aforementioned light-
curve solutions, while a Roche-lobe filling solution, common
for spider companions and compatible with the other so-
lution mentioned above, would correspond to a particularly
small apsidal motion constant. By comparing the mean den-
sity of the companion of PSR J2051-0827 as a function of its
filling factor to the mean density of the densest black-widow
companion PSR J0636+5128 (Kaplan et al. 2018) we obtain
an upper limit k2 ∼ 0.34 for a filling factor f ∼ 0.29 (see fig-
ure 1). However, Kaplan et al. (2018) (their figure 4) show
a broad scattering of the mean densities from ∼ 1g/cm3 to
∼ 54g/cm3, preventing any more accurate estimate with this
criterion.

We show on figure 2 the evolution of the variable
quadrupole component according to equation (2) and com-
pare it to the the curve obtained using the BTX fit of
Shaifullah et al. (2016). Although broadly consistent, the
two versions show significant differences which cannot be
straightforwardly explained by the inclusion of new param-
eters since no correlations are expected between eccentric-
ity, orbital precession and orbital period derivatives (Voisin
et al. 2019). This is confirmed by our MCMC fit (see on-
line material). The amplitude of the variations, defined as
‖Jv ‖ = max(Jv) − min(Jv), are ‖Jv ‖ ' 4.8 · 10−8 and down
to ‖Jv ‖ ' 3.4 · 10−8 if one neglects the edges of the time
domain which might be subject to boundary effects. As a
consequence, the variable quadrupole component is nearly
100 times smaller than the tidally induced component.

et al. (2012) due to a different definition of the apsidal motion

constant. See also Voisin et al. (2019).

Figure 2. Upper panel : Variable quadrupole parameter Jv (t)
calculated using equation (2). The mean solution corresponding
to table 1 is shown in solid orange, while 1000 lines drawn from

the MCMC sample are shown in shades of black. For comparison,

the solution of Shaifullah et al. (2016) is shown in dashed blue.
Lower panel : difference between the previously mentioned curves

and the mean solution, with the same colour code.

4 CONCLUSIONS

We have applied a new timing model accounting for the
effects of centrifugally and tidally induced quadrupole de-
formations of the companion star to the black-widow pulsar
PSR J2051-0827, re-analysing the data published in (Shai-
fullah et al. 2016). This allowed us to make the first unam-
biguous detection of orbital eccentricity in this system, asso-
ciated with a large orbital precession due to the quadrupole
moment. In addition, the model accounts for orbital period
variations by including a time-dependent quadrupole contri-
bution. We could then deduce that this variable component
is about 100 times smaller than the combination of tidal and
centrifugal deformations. We show that, in principle, these
results could be used to derive the apsidal motion constant of
the companion star (figure 1) and thus open a new window
on the internal structure of these exotic objects. However
that will require high-quality optical light curves in order
to determine the filling factor of the companion within a
few-percent uncertainty, which is not out of reach of current
instruments.
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Parameter Value

MJD range 49989.9-56779.3

NToA 11391

Red. χ2 4.06
RAJ (rad) 5.459064089(37)+22

−21
DECJ (rad) −0.147663345(83)+71

−79
µα (mas/yr) 5.6(24)+14

−12
µδ (mas/yr) 3.5(29)+42

−48
f (s−1) 2.21796283653060(66)+22

−17 · 102

Ûf (s−2) −6.2649(75)+11
−12 · 10−16

fb (s−1) 1.167797941(44)+28
−25 · 10−4

f
(1)
b

(s−2) 8.(92)+18
−15 · 10−20

f
(2)
b

(s−3) −7.(836)+85
−100 · 10−27

f
(3)
b

(s−4) −1.0(84)+66
−78 · 10−34

f
(4)
b

(s−5) 5.(68)+35
−29 · 10−42

f
(5)
b

(s−6) 3.(77)+30
−25 · 10−49

f
(6)
b

(s−7) (7.1)+9.9
−12 · 10−58

f
(7)
b

(s−8) −1.(359)+91
−110 · 10−63

f
(8)
b

(s−9) −2.(79)+38
−32 · 10−71

f
(9)
b

(s−10) 4.(25)+34
−28 · 10−78

f
(10)
b

(s−11) 1.(37)+10
−12 · 10−85

f
(11)
b

(s−12) −1.0(59)+73
−88 · 10−92

f
(12)
b

(s−13) −4.(91)+36
−33 · 10−100

f
(13)
b

(s−14) 1.(73)+15
−12 · 10−107

f
(14)
b

(s−15) 1.2(48)+91
−79 · 10−114

f
(15)
b

(s−16) −5(.8)+1.1
−1.1 · 10−123

f
(16)
b

(s−17) −1.(69)+10
−12 · 10−129

f
(17)
b

(s−18) −3.(19)+20
−23 · 10−137

x (lt-s) 4.50705(42)+86
−89 · 10−2

Ûx (lt-s/s) 1.0(75)+50
−55 · 10−14

Ûω (deg/yr) −68.(56)+91
−49

Tasc (MJD) 5.40910343493(32)+68
−58 · 104

κs (e sinω) −8(.2)+1.9
−2.4 · 10−6

κc (e cosω) 4.(07)+11
−13 · 10−5

Derived quantities

e 4.(17)+11
−11 · 10−5

emin 2.2(03)+14
−14 · 10−5

eK 1.(96)+11
−11 · 10−5

Jt −3.9(08)+94
−88 · 10−6

Js −1.3(26)+22
−21 · 10−6

ε 3.(52)+35
−37 · 10−6

Ûωrel (deg/yr) 14.3+1.9
−2.0

Ûωspin (deg/yr) −5.28+0.12
−0.11

Ûωtid (deg/yr) −77.78+1.9
−1.8

Table 1. Results of the MCMC fit of the timing data: mean
values of the posterior distribution function are given together

with their 68% confidence regions. These error bars apply to the
digits between parenthesis and to the full number otherwise. The

derived quantities other than the eccentricity e have been sampled
assuming a uniform distribution of pulsar masses between 1.3M�
and 2.4M� and a cos i distribution uniform between 0.4 and 0.8
corresponding to a mean inclination angle i ' 52 deg compatible
with Stappers et al. (2001). Thus, error bars on derived quantities

are conservative.
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