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Abstract. We construct solutions to the CKP (cylindrical Kadomtsev-Petviashvili)) equation
in terms of Fredholm determinants. We deduce solutions written as a quotient of wronskians of
order 2N . These solutions are called solutions of order N ; they depend on 2N − 1 parameters.
They can be written as a quotient of 2 polynomials of degree 2N(N +1) in x, t and 4N(N +1)
in y depending on 2N − 2 parameters.
We explicitly construct the expressions up to order 5 and we study the patterns of their modulus
in plane (x, y) and their evolution according to time and parameters.
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1. Introduction

We consider the CKP equation which can be written in the form

(ut + 6uux + uxxx +
u

2t
)x − 3

uyy

t2
= 0, (1)

subscripts x, y and t denoting partial derivatives.
Johnson [1] first proposed this equation in 1980. That equation is considered to describe wave
surfaces in shallow incompressible fluids [2, 3]. This equation was later derived for internal waves
in a stratified medium [4]. The CKP equation is a dissipative equation. There is no soliton-like
solution with a linear front localized along straight lines in the (x, y) plane.
The first solutions were constructed by Johnson in 1980 [1]. Other types of solutions were found
by Golinko, Dryuma, and Stepanyants in 1984 [5]. This equation was solved with a new ap-
proach in 1986 [6] by giving a connection between solutions of the Kadomtsev-Petviashvili (KP)
[7] and solutions of the CKP equation. The Darboux transformation [8] gave another types of
solutions. In 2013, the extension to the elliptic case was considered [9].

In the following, we give the results of the author about the representations of solutions to
the CKP equation. We have expressed the solutions in terms of Fredholm determinants of order



2N depending on 2N − 1 parameters. We have also given another representation in terms of
wronskians of order 2N with 2N − 1 parameters. These representations allow to obtain an
infinite hierarchy of solutions to the CKP equation, depending on 2N − 1 real parameters.
We have used these results to build rational solutions to the CKP equation, when a parameter
tends to 0.
Rational solutions of order N depending on 2N − 2 parameters without the presence of a limit
have been constructed. These families depending on 2N − 2 parameters for the N -th order
can be written as a ratio of two polynomials of degree 2N(N + 1) in x, t and 4N(N + 1) in y
depending on 2N − 2 parameters.
That provides an effective method to build an infinite hierarchy of rational solutions of order N
depending on 2N − 2 real parameters. We present here the representations of their modulus in
the plane of the coordinates (x, y) and their evolution according to time and the 2N − 2 real
parameters ai and bi and time t for N an integer such that 1 ≤ N ≤ 5.

2. Solutions to the CKP equation expressed in terms of Fredholm determinants

We need to give some notation in the following. We define first real numbers λj such that
−1 < λν < 1, ν = 1, . . . , 2N ; they depend on a parameter ǫ and can be written as

λj = 1− 2ǫ2j2, λN+j = −λj , 1 ≤ j ≤ N, (2)

Then, we define κν , δν , γν and xr,ν ; they are functions of λν , 1 ≤ ν ≤ 2N and are defined by the
following formulas :

κj = 2
√

1− λ2j , δj = κjλj , γj =

√

1− λj

1 + λj
,;

xr,j = (r − 1) ln
γj − i

γj + i
, r = 1, 3, τj = −12iλ2j

√

1− λ2j − 4i(1− λ2j )
√

1− λ2j ,

κN+j = κj , δN+j = −δj , γN+j = γ−1
j ,

xr,N+j = −xr,j , , τN+j = τj j = 1, . . . , N.

(3)

eν 1 ≤ ν ≤ 2N are defined by :

ej = 2i
(

∑1/2M−1
k=1 ak(je)

2 k+1 − i
∑1/2M−1

k=1 bK(je)2 k+1
)

,

eN+j = 2i
(

∑1/2M−1
k=1 ak(je)

2 k+1 + i
∑1/2M−1

k=1 bk(je)
2 k+1

)

, 1 ≤ j ≤ N,

ak, bk ∈ R, 1 ≤ k ≤ N.

(4)

ǫν , 1 ≤ ν ≤ 2N are defined by :

ǫj = 1, ǫN+j = 0 1 ≤ j ≤ N. (5)

As usual I is the unit matrix and Dr = (djk)1≤j,k≤2N the matrix defined by :

dνµ = (−1)ǫν
∏

η 6=µ

(

γη + γν

γη − γµ

)

exp(κνx+ (
κνy

12
− 2δν)yt+ 4iτνt+ xr,ν + eν). (6)

Then we get :

Theorem 2.1 The function v defined by

v(x, y, t) = −2
|n(x, y, t)|2

d(x, y, t)2
(7)



where

n(x, y, t) = det(I +D3(x, y, t)), (8)

d(x, y, t) = det(I +D1(x, y, t)), (9)

and Dr = (djk)1≤j,k≤2N the matrix

dνµ = (−1)ǫν
∏

η 6=µ

(

γη + γν

γη − γµ

)

exp(κνx+ (
κνy

12
− 2δν)yt+ 4iτνt+ xr,ν + eν). (10)

is a solution to (1), depending on 2N − 1 parameters ak, bk, 1 ≤ k ≤ N − 1 and ǫ.

A proof of this result is a consequence of previous works of the author [18, 20, 36, 43].

3. Wronskian representation of the solutions to the CKP equation

We define here the following notations :

φr,ν = sinΘr,ν , 1 ≤ ν ≤ N, φr,ν = cosΘr,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3, (11)

with

Θr,ν =
−iκνx

2
+ i(

−κνy

24
+ δν)yt− i

xr,ν

2
+ 2τνt+ γνw − i

eν

2
, 1 ≤ ν ≤ 2N. (12)

Wr(w) is the wronskian of the functions φr,1, . . . , φr,2N defined by

Wr(w) = det[(∂µ−1
w φr,ν)ν, µ∈[1,...,2N ]]. (13)

We consider the matrix Dr = (dνµ)ν, µ∈[1,...,2N ] defined in (10).
Then we have the following result

Theorem 3.1

det(I +Dr) = kr(0)×Wr(φr,1, . . . , φr,2N )(0), (14)

where

kr(y) =
22N exp(i

∑2N
ν=1Θr,ν)

∏2N
ν=2

∏ν−1
µ=1(γν − γµ)

.

It is also a consequence of previous works of the author [18, 20, 36, 43].

4. Rational solutions to the CKP equation

From those two preceding results, we can construct rational solutions to the CKP equation as a
quotient of two determinants.
We use the following notations :

Xν =
−iκνx

2
+ i(

−κνy

24
+ δν)yt− i

x3,ν

2
+ 2τνt+ γνw − i

eν

2
,

Yν =
−iκνx

2
+ i(

−κνy

24
+ δν)yt− i

x1,ν

2
+ 2τνt+ γνw − i

eν

2
,



for 1 ≤ ν ≤ 2N , with κν , δν , xr,ν defined in (3) and parameters eν defined by (4).
We define the following functions :

ϕ4j+1,k = γ
4j−1
k sinXk, ϕ4j+2,k = γ

4j
k cosXk,

ϕ4j+3,k = −γ4j+1
k sinXk, ϕ4j+4,k = −γ4j+2

k cosXk,
(15)

for 1 ≤ k ≤ N , and

ϕ4j+1,N+k = γ
2N−4j−2
k cosXN+k, ϕ4j+2,N+k = −γ2N−4j−3

k sinXN+k,

ϕ4j+3,N+k = −γ2N−4j−4
k cosXN+k, ϕ4j+4,N+k = γ

2N−4j−5
k sinXN+k,

(16)

for 1 ≤ k ≤ N .
We define the functions ψj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, the term Xk is only
replaced by Yk.

ψ4j+1,k = γ
4j−1
k sinYk, ψ4j+2,k = γ

4j
k cosYk,

ψ4j+3,k = −γ4j+1
k sinYk, ψ4j+4,k = −γ4j+2

k cosYk,
(17)

for 1 ≤ k ≤ N , and

ψ4j+1,N+k = γ
2N−4j−2
k cosYN+k, ψ4j+2,N+k = −γ2N−4j−3

k sinYN+k,

ψ4j+3,N+k = −γ2N−4j−4
k cosYN+k, ψ4j+4,N+k = γ

2N−4j−5
k sinYN+k,

(18)

for 1 ≤ k ≤ N .
The following ratio

q(x, t) :=
W3(0)

W1(0)

can be written as

q(x, t) =
∆3

∆1
=

det(ϕj,k)j, k∈[1,2N ]

det(ψj,k)j, k∈[1,2N ]
. (19)

The terms λj depending on ǫ are defined by λj = 1− 2jǫ2. All the functions ϕj,k and ψj,k and
their derivatives depend on ǫ. They can all be prolonged by continuity when ǫ = 0.
We use the following expansions

ϕj,k(x, y, t, ǫ) =
N−1
∑

l=0

1

(2l)!
ϕj,1[l]k

2lǫ2l +O(ǫ2N ), ϕj,1[l] =
∂2lϕj,1

∂ǫ2l
(x, y, t, 0),

ϕj,1[0] = ϕj,1(x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N − 1,

ϕj,N+k(x, y, t, ǫ) =
N−1
∑

l=0

1

(2l)!
ϕj,N+1[l]k

2lǫ2l +O(ǫ2N ), ϕj,N+1[l] =
∂2lϕj,N+1

∂ǫ2l
(x, y, t, 0),

ϕj,N+1[0] = ϕj,N+1(x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N − 1.

We have the same expansions for the functions ψj,k.

ψj,k(x, y, t, ǫ) =
N−1
∑

l=0

1

(2l)!
ψj,1[l]k

2lǫ2l +O(ǫ2N ), ψj,1[l] =
∂2lψj,1

∂ǫ2l
(x, y, t, 0),



ψj,1[0] = ψj,1(x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N − 1,

ψj,N+k(x, t, ǫ) =
N−1
∑

l=0

1

(2l)!
ψj,N+1[l]k

2lǫ2l +O(ǫ2N ), ψj,N+1[l] =
∂2lψj,N+1

∂ǫ2l
(x, y, t, 0),

ψj,N+1[0] = ψj,N+1(x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, N + 1 ≤ k ≤ 2N..

Then we get the following result :

Theorem 4.1 The function v defined by

v(x, y, t) = −2
| det((njk)j,k∈[1,2N ]

)|2

det((djk)j,k∈[1,2N ]
)2

(20)

is a rational solution to the CKP equation (1), where

nj1 = ϕj,1(x, y, t, 0), 1 ≤ j ≤ 2N njk =
∂2k−2ϕj,1

∂ǫ2k−2
(x, y, t, 0),

njN+1 = ϕj,N+1(x, y, t, 0), 1 ≤ j ≤ 2N njN+k =
∂2k−2ϕj,N+1

∂ǫ2k−2
(x, y, t, 0),

dj1 = ψj,1(x, y, t, 0), 1 ≤ j ≤ 2N djk =
∂2k−2ψj,1

∂ǫ2k−2
(x, y, t, 0),

djN+1 = ψj,N+1(x, y, t, 0), 1 ≤ j ≤ 2N djN+k =
∂2k−2ψj,N+1

∂ǫ2k−2
(x, y, t, 0),

2 ≤ k ≤ N, 1 ≤ j ≤ 2N

(21)

The functions ϕ and ψ are defined in (15),(16), (17), (18).

5. Study of the patterns of the modulus of the rational solutions to the CKP

equation in function of parameters and time

We have explicitly constructed rational solutions to the CKP equation of order N depending on
2N − 2 parameters for 1 ≤ N ≤ 5.
In the following, we only give patterns of the modulus of the solutions in the plane (x, y) of
coordinates in function of the parameters ai, and bi, for 1 ≤ i ≤ N − 1 for 2 ≤ N ≤ 5, and time
t.

5.1. Case N = 1

Figure 1. Solution of order 1 to (1), on the left for t = 0; in the center for t = 0, 0; on the
right for t = 1.



5.2. Case N = 2

Figure 2. Solution of order 2 to (1) for t = 0, on the left a1 = 0, b1 = 0, ; in the center
a1 = 100, b1 = 0, ; on the right a1 = 0, b1 = 100.

Figure 3. Solution of order 2 to (1) for t = 0, 01, on the left a1 = 0, b1 = 0; in the center
a1 = 10, b1 = 0; on the right a1 = 102, b1 = 0.

Figure 4. Solution of order 2 to (1) for t = 0, 1; on the left a1 = 0, b1 = 0; in the center
a1 = 103, b1 = 0; on the right a1 = 103, b1 = 103.



Figure 5. Solution of order 2 to (1) for t = 1; on the left a1 = 10, b1 = 0; in the center
a1 = 105, b1 = 0; on the right a1 = 105, b1 = 105.

Figure 6. Solution of order 2 to (1); on the left for t = 10, a1 = 102, b1 = 0; in the center for
t = 100, a1 = 103, b1 = 0; on the right for t = 100, a1 = 103, b1 = 103.

5.3. Case N = 3

Figure 7. Solution of order 3 to (1), on the left for t = 0, a1 = 0, b1 = 0, a2 = 0, b2 = 0, ; in
the center for t = 0, a1 = 1, b1 = 0, a2 = 0, b2 = 0; on the right for for t = 0, a1 = 10, b1 = 0,

a2 = 0, b2 = 0.



Figure 8. Solution of order 3 to (1), on the left for t = 0, a1 = 102, b1 = 0, a2 = 0, b2 = 0, ; in
the center for t = 0, a1 = 103, b1 = 0, a2 = 0, b2 = 0; on the right for for t = 0, a1 = 105,

b1 = 0, a2 = 0, b2 = 0.

Figure 9. Solution of order 3 to (1), on the left for t = 0, 01, a1 = 103, b1 = 0, a2 = 0, b2 = 0,
; in the center for t = 0, 01, a1 = 0, b1 = 103, a2 = 0, b2 = 0; on the right for for t = 0, 01,

a1 = 0, b1 = 0, a2 = 108, b2 = 0.

Figure 10. Solution of order 3 to (1), on the left for t = 0, 1, a1 = 0, b1 = 0, a2 = 106, b2 = 0,
; in the center for t = 1, a1 = 0, b1 = 0, a2 = 106, b2 = 0; on the right for for t = 10, a1 = 103,

b1 = 0, a2 = 0, b2 = 0.



Figure 11. Solution of order 3 to (1), on the left for t = 10, a1 = 0, b1 = 0, a2 = 106, b2 = 0, ;
in the center for t = 100, a1 = 106, b1 = 0, a2 = 0, b2 = 0; on the right for for t = 103,

a1 = 105, b1 = 103, a2 = 0, b2 = 0.

The variation of the configuration of the modulus of the solutions is very fast according to time
t. When time t grows from 0 to 0, 01, one passes from a rectilinear structure with a height of 98
to a horseshoe structure with a maximum height equal to 4. The role played by the parameters
ai and bi is the same one for same index i.

5.4. Case N = 4

Figure 12. Solution of order 4 to (1), on the left for t = 0, a1 = 10; in the center for t = 0,
a2 = 104; on the right for t = 0, a1 = 10; all other parameters not mentioned equal to 0.

Figure 13. Solution of order 4 to (1), on the left for t = 0, 01, a1 = 103; in the center for
t = 0, 01, a1 = 105; on the right for t = 0, 01, a2 = 103; all other parameters not mentioned

equal to 0.



In these constructions, we note that the initial rectilinear structure becomes deformed very
quickly as time t increases. The heights of the peaks also decrease very quickly according to
time t and this for all the various parameters. Because of the structure of the polynomials, one
notices that the modulus of these solutions tend towards value 2 when time t and variables x
and y tend towards the infinite.

5.5. Case N = 5
Not to lengthen the text, in the case of order 5, we do not give the figures of the modulus of the
solutions.
Meanwhile, the study of these configurations makes it possible to give the following conclusions.
The variation of the configuration of the module of the solutions is very fast according to time
t. When time t grows from 0 to 0, 01, one passes from a rectilinear structure with a height of
242 to a horseshoe structure with a maximum height equal to 4. The role played by parameters
ai and bi is the same one for same index i. Because of the structure of the polynomials, one
notices that the modulus of these solutions tend towards value 2 when time t and variables x
and y tend towards the infinite.

6. Conclusion

From the previous representations of the solutions to the KPI equation given by the author, we
succeed to give solutions to the CKP equation in terms of Fredholm determinants of order 2N
depending on 2N − 1 real parameters and in terms of wronskians of order 2N depending on
2N − 1 real parameters. We finally obtain rational solutions to the CKP equation depending on
2N −2 real parameters. These solutions can be expressed in terms of a ratio of two polynomials
of degree 2N(N + 1) in x, t and 4N(N + 1) in y depending on 2N − 2 parameters. That gives
a new approach to find explicit solutions for higher orders and try to describe the structure of
those rational solutions.
In the (x, y) plane of coordinates, different structures appear. But, unlike rational solutions of
NLS or KP equations, there is none well defined structure which appears according to parame-
ters ai or bi. So, we cannot make a classification of these solutions here, according to parameters
by means of their modulus in the (x, y) plane. It would be important to better understand these
last structures.
It will be relevant to go on this study for higher orders.

[1] R.E. Johnson, Water waves and Korteweg de Vries equation, 1980 J. Fluid Mech., V. 97, N. 4, 701
[2] R.E. Johnson, 1997 A Modern Introduction to the Mathematical Theory of Water Waves, (Cambridge:

Cambridge University Press)
[3] M.J. Ablowitz, 2011 Nonlinear Dispersive Waves : Asymptotic Analysis and Solitons, (Cambridge:

Cambridge University Press)
[4] V.D. Lipovskii, On the nonlinear internal wave theory in fluid of finite depth, 1985 Izv. Akad. Nauka. V.

21 N. 8 864
[5] V.I. Golinko, V.S. Dryuma, Y.A. Stepanyants, On the stability of solitary wavesin weakly dispersing media,

1984 in Proc. 2nd Int. Workshop on Nonlinear and Turbulent Processes in Physics, (Kiev, Harwood Acad.:
Gordon and Breach) 1353

[6] V.D. Lipovskii, V.B. Matveev, A.O. Smirnov,between the KP equation and the Johnson equation,
Connection 1986 Zap. Nau. Sem. V. 150 70

[7] B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media, 1970 Sov.
Phys. Dokl., V. 15 N. 6 539

[8] C. Klein, V.B. Matveev, A.O. Smirnov Cylindrical Kadomsev Petviashvili equation: old and new results,
2007 Theor. Math. Phys. V. 152 N. 2 1132

[9] K.R. Khusnutdinova, C. Klein, V.B. Matveev, A.O. Smirnov, On the integrable elliptic cylindrical K P
equation, 2013 Chaos, V. 23 013126

[10] P. Gaillard, Families of quasi-rational solutions of the NLS equation and multi-rogue waves, J. Phys. A :
Meth. Theor., V. 44, 1-15, 2010



[11] P. Gaillard, Degenerate determinant representation of solution of the NLS equation, higher Peregrine
breathers and multi-rogue waves, Jour. Of Math. Phys., V. 54, 2013, 013504-1-32

[12] P. Gaillard, V.B. Matveev, Wronskian addition formula and its applications, Max-Planck-Institut für
Mathematik, MPI 02-31, V. 161, 2002

[13] P. Gaillard, A new family of deformations of Darboux-Pöschl-Teller potentials, Lett. Math. Phys., V. 68,
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potentials and their difference extensions, RIMS Kyoto, N. 1653, 1-19, 2009

[16] P. Gaillard, V.B. Matveev, Wronskian and Casorai determinant representations for Darboux-Pöschl-Teller
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