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We construct solutions to the CKP (cylindrical Kadomtsev-Petviashvili)) equation in terms of Fredholm determinants. We deduce solutions written as a quotient of wronskians of order 2N . These solutions are called solutions of order N ; they depend on 2N -1 parameters. They can be written as a quotient of 2 polynomials of degree 2N (N + 1) in x, t and 4N (N + 1) in y depending on 2N -2 parameters. We explicitly construct the expressions up to order 5 and we study the patterns of their modulus in plane (x, y) and their evolution according to time and parameters.

Families of solutions to the CKP equation with multi-parameters

Introduction

We consider the CKP equation which can be written in the form

(u t + 6uu x + u xxx + u 2t ) x -3 u yy t 2 = 0, (1) 
subscripts x, y and t denoting partial derivatives.

Johnson [START_REF] Johnson | Water waves and Korteweg de Vries equation[END_REF] first proposed this equation in 1980. That equation is considered to describe wave surfaces in shallow incompressible fluids [START_REF] Johnson | A Modern Introduction to the Mathematical Theory of Water Waves[END_REF][START_REF] Ablowitz | Nonlinear Dispersive Waves : Asymptotic Analysis and Solitons[END_REF]. This equation was later derived for internal waves in a stratified medium [START_REF] Lipovskii | On the nonlinear internal wave theory in fluid of finite depth[END_REF]. The CKP equation is a dissipative equation. There is no soliton-like solution with a linear front localized along straight lines in the (x, y) plane. The first solutions were constructed by Johnson in 1980 [START_REF] Johnson | Water waves and Korteweg de Vries equation[END_REF]. Other types of solutions were found by Golinko, Dryuma, and Stepanyants in 1984 [START_REF] Golinko | On the stability of solitary wavesin weakly dispersing media[END_REF]. This equation was solved with a new approach in 1986 [START_REF] Lipovskii | between the KP equation and the Johnson equation[END_REF] by giving a connection between solutions of the Kadomtsev-Petviashvili (KP) [START_REF] Kadomtsev | On the stability of solitary waves in weakly dispersing media[END_REF] and solutions of the CKP equation. The Darboux transformation [START_REF] Klein | Cylindrical Kadomsev Petviashvili equation: old and new results[END_REF] gave another types of solutions. In 2013, the extension to the elliptic case was considered [START_REF] Khusnutdinova | On the integrable elliptic cylindrical K P equation[END_REF].

In the following, we give the results of the author about the representations of solutions to the CKP equation. We have expressed the solutions in terms of Fredholm determinants of order 2N depending on 2N -1 parameters. We have also given another representation in terms of wronskians of order 2N with 2N -1 parameters. These representations allow to obtain an infinite hierarchy of solutions to the CKP equation, depending on 2N -1 real parameters. We have used these results to build rational solutions to the CKP equation, when a parameter tends to 0. Rational solutions of order N depending on 2N -2 parameters without the presence of a limit have been constructed. These families depending on 2N -2 parameters for the N -th order can be written as a ratio of two polynomials of degree 2N (N + 1) in x, t and 4N (N + 1) in y depending on 2N -2 parameters. That provides an effective method to build an infinite hierarchy of rational solutions of order N depending on 2N -2 real parameters. We present here the representations of their modulus in the plane of the coordinates (x, y) and their evolution according to time and the 2N -2 real parameters a i and b i and time t for N an integer such that 1 ≤ N ≤ 5.

Solutions to the CKP equation expressed in terms of Fredholm determinants

We need to give some notation in the following. We define first real numbers λ j such that -1 < λ ν < 1, ν = 1, . . . , 2N ; they depend on a parameter ǫ and can be written as

λ j = 1 -2ǫ 2 j 2 , λ N +j = -λ j , 1 ≤ j ≤ N, (2) 
Then, we define κ ν , δ ν , γ ν and x r,ν ; they are functions of λ ν , 1 ≤ ν ≤ 2N and are defined by the following formulas :

κ j = 2 1 -λ 2 j , δ j = κ j λ j , γ j = 1 -λ j 1 + λ j ,;
x r,j = (r -1) ln

γ j -i γ j + i , r = 1, 3, τ j = -12iλ 2 j 1 -λ 2 j -4i(1 -λ 2 j ) 1 -λ 2 j , κ N +j = κ j , δ N +j = -δ j , γ N +j = γ -1
j , x r,N +j = -x r,j , , τ N +j = τ j j = 1, . . . , N.

(3) e ν 1 ≤ ν ≤ 2N are defined by :

e j = 2i 1/2 M -1 k=1 a k (je) 2 k+1 -i 1/2 M -1 k=1 b K (je) 2 k+1 , e N +j = 2i 1/2 M -1 k=1 a k (je) 2 k+1 + i 1/2 M -1 k=1 b k (je) 2 k+1 , 1 ≤ j ≤ N, a k , b k ∈ R, 1 ≤ k ≤ N. (4) 
ǫ ν , 1 ≤ ν ≤ 2N are defined by :

ǫ j = 1, ǫ N +j = 0 1 ≤ j ≤ N. (5) 
As usual I is the unit matrix and D r = (d jk ) 1≤j,k≤2N the matrix defined by :

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(κ ν x + ( κ ν y 12 -2δ ν )yt + 4iτ ν t + x r,ν + e ν ). (6) 
Then we get :

Theorem 2.1 The function v defined by v(x, y, t) = -2 |n(x, y, t)| 2 d(x, y, t) 2 (7) 
where

n(x, y, t) = det(I + D 3 (x, y, t)), (8) 
d(x, y, t) = det(I + D 1 (x, y, t)), (9) 
and D r = (d jk ) 1≤j,k≤2N the matrix

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(κ ν x + ( κ ν y 12 -2δ ν )yt + 4iτ ν t + x r,ν + e ν ). ( 10 
)
is a solution to (1), depending on 2N -

1 parameters a k , b k , 1 ≤ k ≤ N -1 and ǫ.
A proof of this result is a consequence of previous works of the author [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF][START_REF] Gaillard | Multi-parametric deformations of the Peregrine breather of order N solutions to the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves[END_REF].

Wronskian representation of the solutions to the CKP equation

We define here the following notations :

φ r,ν = sin Θ r,ν , 1 ≤ ν ≤ N, φ r,ν = cos Θ r,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3, (11) with 
Θ r,ν = -iκ ν x 2 + i( -κ ν y 24 + δ ν )yt -i x r,ν 2 + 2τ ν t + γ ν w -i e ν 2 , 1 ≤ ν ≤ 2N. (12) 
W r (w) is the wronskian of the functions φ r,1 , . . . , φ r,2N defined by

W r (w) = det[(∂ µ-1 w φ r,ν ) ν, µ∈[1,...,2N ] ]. ( 13 
)
We consider the matrix D r = (d νµ ) ν, µ∈[1,...,2N ] defined in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF].

Then we have the following result Theorem 3.1

det(I + D r ) = k r (0) × W r (φ r,1 , . . . , φ r,2N )(0), (14) 
where

k r (y) = 2 2N exp(i 2N ν=1 Θ r,ν ) 2N ν=2 ν-1 µ=1 (γ ν -γ µ )
.

It is also a consequence of previous works of the author [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF][START_REF] Gaillard | Multi-parametric deformations of the Peregrine breather of order N solutions to the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves[END_REF].

Rational solutions to the CKP equation

From those two preceding results, we can construct rational solutions to the CKP equation as a quotient of two determinants. We use the following notations :

X ν = -iκ ν x 2 + i( -κ ν y 24 + δ ν )yt -i x 3,ν 2 + 2τ ν t + γ ν w -i e ν 2 , Y ν = -iκ ν x 2 + i( -κ ν y 24 + δ ν )yt -i x 1,ν 2 + 2τ ν t + γ ν w -i e ν 2 ,
for 1 ≤ ν ≤ 2N , with κ ν , δ ν , x r,ν defined in [START_REF] Ablowitz | Nonlinear Dispersive Waves : Asymptotic Analysis and Solitons[END_REF] and parameters e ν defined by (4). We define the following functions :

ϕ 4j+1,k = γ 4j-1 k sin X k , ϕ 4j+2,k = γ 4j k cos X k , ϕ 4j+3,k = -γ 4j+1 k sin X k , ϕ 4j+4,k = -γ 4j+2 k cos X k , (15) 
for 1 ≤ k ≤ N , and

ϕ 4j+1,N +k = γ 2N -4j-2 k cos X N +k , ϕ 4j+2,N +k = -γ 2N -4j-3 k sin X N +k , ϕ 4j+3,N +k = -γ 2N -4j-4 k cos X N +k , ϕ 4j+4,N +k = γ 2N -4j-5 k sin X N +k , (16) 
for 1 ≤ k ≤ N . We define the functions ψ j,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, the term X k is only replaced by Y k .

ψ 4j+1,k = γ 4j-1 k sin Y k , ψ 4j+2,k = γ 4j k cos Y k , ψ 4j+3,k = -γ 4j+1 k sin Y k , ψ 4j+4,k = -γ 4j+2 k cos Y k , (17) 
for 1 ≤ k ≤ N , and

ψ 4j+1,N +k = γ 2N -4j-2 k cos Y N +k , ψ 4j+2,N +k = -γ 2N -4j-3 k sin Y N +k , ψ 4j+3,N +k = -γ 2N -4j-4 k cos Y N +k , ψ 4j+4,N +k = γ 2N -4j-5 k sin Y N +k , (18) 
for 1 ≤ k ≤ N .

The following ratio q(x, t)

:= W 3 (0) W 1 (0)
can be written as

q(x, t) = ∆ 3 ∆ 1 = det(ϕ j,k ) j, k∈[1,2N ] det(ψ j,k ) j, k∈[1,2N ] . (19) 
The terms λ j depending on ǫ are defined by λ j = 1 -2jǫ 2 . All the functions ϕ j,k and ψ j,k and their derivatives depend on ǫ. They can all be prolonged by continuity when ǫ = 0. We use the following expansions

ϕ j,k (x, y, t, ǫ) = N -1 l=0 1 (2l)! ϕ j,1 [l]k 2l ǫ 2l + O(ǫ 2N ), ϕ j,1 [l] = ∂ 2l ϕ j,1 ∂ǫ 2l (x, y, t, 0), ϕ j,1 [0] = ϕ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, ϕ j,N +k (x, y, t, ǫ) = N -1 l=0 1 (2l)! ϕ j,N +1 [l]k 2l ǫ 2l + O(ǫ 2N ), ϕ j,N +1 [l] = ∂ 2l ϕ j,N +1 ∂ǫ 2l (x, y, t, 0), ϕ j,N +1 [0] = ϕ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1.
We have the same expansions for the functions ψ j,k .

ψ j,k (x, y, t, ǫ) = N -1 l=0 1 (2l)! ψ j,1 [l]k 2l ǫ 2l + O(ǫ 2N ), ψ j,1 [l] = ∂ 2l ψ j,1 ∂ǫ 2l (x, y, t, 0), ψ j,1 [0] = ψ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, ψ j,N +k (x, t, ǫ) = N -1 l=0 1 (2l)! ψ j,N +1 [l]k 2l ǫ 2l + O(ǫ 2N ), ψ j,N +1 [l] = ∂ 2l ψ j,N +1 ∂ǫ 2l (x, y, t, 0), ψ j,N +1 [0] = ψ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, N + 1 ≤ k ≤ 2N..
Then we get the following result :

Theorem 4.1 The function v defined by v(x, y, t) = -2 | det((n jk) j,k∈[1,2N ] )| 2 det((d jk) j,k∈[1,2N ] ) 2 (20) 
is a rational solution to the CKP equation ( 1), where

n j1 = ϕ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N n jk = ∂ 2k-2 ϕ j,1 ∂ǫ 2k-2 (x, y, t, 0), n jN +1 = ϕ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N n jN +k = ∂ 2k-2 ϕ j,N +1 ∂ǫ 2k-2 (x, y, t, 0), d j1 = ψ j,1 (x, y, t, 0), 1 ≤ ≤ 2N d jk = ∂ 2k-2 ψ j,1 ∂ǫ 2k-2 (x, y, t, 0), d jN +1 = ψ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N d jN +k = ∂ 2k-2 ψ j,N +1 ∂ǫ 2k-2 (x, y, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N (21)
The functions ϕ and ψ are defined in ( 15),( 16), ( 17), [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF].

Study of the patterns of the modulus of the rational solutions to the equation in function of parameters and time

We have explicitly constructed rational solutions to the CKP equation of order N depending on 2N -2 parameters for 1 ≤ N ≤ 5. In the following, we only give patterns of the modulus of the solutions in the plane (x, y) of in function of the parameters a i , and b i , for 1 ≤ i ≤ N -1 for 2 ≤ N ≤ 5, and time t. In these constructions, we note that the initial rectilinear structure becomes deformed very quickly as time t increases. The heights of the peaks also decrease very quickly according to time t and this for all the various parameters. Because of the structure of the polynomials, one notices that the modulus of these solutions tend towards value 2 when time t and variables x and y tend towards the infinite.

Case N = 5

Not to lengthen the text, in the case of order 5, we do not give the figures of the modulus of the solutions.

Meanwhile, the study of these configurations makes it possible to give the following conclusions. The variation of the configuration of the module of the solutions is very fast according to time t. When time t grows from 0 to 0, 01, one passes from a rectilinear structure with a height of 242 to a horseshoe structure with a maximum height equal to 4. The role played by parameters a i and b i is the same one for same index i. Because of the structure of the polynomials, one notices that the modulus of these solutions tend towards value 2 when time t and variables x and y tend towards the infinite.

Conclusion

From the previous representations of the solutions to the KPI equation given by the author, we succeed to give solutions to the CKP equation in terms of Fredholm determinants of order 2N depending on 2N -1 real parameters and in terms of wronskians of order 2N on 2N -1 real parameters. We finally obtain rational solutions to the CKP equation depending on 2N -2 real parameters. These solutions can be expressed in terms of a ratio of two polynomials of degree 2N (N + 1) in x, t and 4N (N + 1) in y depending on 2N -2 parameters. That gives a new approach to find explicit solutions for higher orders and try to describe the structure of those rational solutions.

In the (x, y) plane of coordinates, different structures appear. But, unlike rational solutions of NLS or KP equations, there is none well defined structure which appears according to parameters a i or b i . So, we cannot make a classification of these solutions here, according to parameters by means of their modulus in the (x, y) plane. It would be important to better understand these last structures.

It will be relevant to go on this study for higher orders.
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 11122 Figure 1. Solution of order 1 to (1), on the left for t = 0; in the center for t = 0, 0; on the right for t = 1.

Figure 3 .

 3 Figure 3. Solution of order 2 to (1) for t = 0, 01, on the left a 1 = 0, b 1 = 0; in the center a 1 = 10, b 1 = 0; on the right a 1 = 10 2 , b 1 = 0.

Figure 4 .

 4 Figure 4. Solution of order 2 to (1) for t = 0, 1; on the left a 1 = 0, b 1 = 0; in the center a 1 = 10 3 , b 1 = 0; on the right a 1 = 10 3 , b 1 = 10 3 .

Figure 5 .

 5 Figure 5. Solution of order 2 to (1) for t = 1; on the left a 1 = 10, b 1 = 0; in the center a 1 = 10 5 , b 1 = 0; on the right a 1 = 10 5 , b 1 = 10 5 .

Figure 6 . 3 Figure 7 .

 637 Figure 6. Solution of order 2 to (1); on the left for t = 10, a 1 = 10 2 , b 1 = 0; in the center for t = 100, a 1 = 10 3 , b 1 = 0; on the right for t = 100, a 1 = 10 3 , b 1 = 10 3 .

Figure 8 .

 8 Figure 8. Solution of order 3 to (1), on the left for t = 0, a 1 = 10 2 , b 1 = 0, a 2 = 0, b 2 = 0, ; in the center for t = 0, a 1 = 10 3 , b 1 = 0, a 2 = 0, b 2 = 0; on the right for for t = 0, a 1 = 10 5 , b 1 = 0, a 2 = 0, b 2 = 0.

Figure 9 .

 9 Figure 9. Solution of order 3 to (1), the left for t = 0, 01, a 1 = 10 3 , b 1 = 0, a 2 = 0, b 2 = 0, ; in the center for t = 0, 01, a 1 = 0, b 1 = 10 3 , a 2 = 0, b 2 = 0; on the right for for t = 0, 01, a 1 = 0, b 1 = 0, a 2 = 10 8 , b 2 = 0.

Figure 10 .

 10 Figure 10. Solution of order 3 to (1), on the left for t = 0, 1, a 1 = 0, b 1 = 0, a 2 = 10 6 , b 2 = 0, ; in the center for t = 1, a 1 = 0, b 1 = 0, a 2 = 10 6 , b 2 = 0; on the right for for t = 10, a 1 = 10 3 , b 1 = 0, a 2 = 0, b 2 = 0.

Figure 11 . 4 Figure 12 .

 11412 Figure 11. Solution of order 3 to (1), on the left for t = 10, a 1 = 0, b 1 = 0, a 2 = 10 6 , b 2 = 0, ; in the center for t = 100, a 1 = 10 6 , b 1 = 0, a 2 = 0, b 2 = 0; on the right for for t = 10 3 , a 1 = 10 5 , b 1 = 10 3 , a 2 = 0, b 2 = 0.The variation of the configuration of the modulus of the solutions is very fast according to time t. When time t grows from 0 to 0, 01, one passes from a rectilinear structure with a height of 98 to a horseshoe structure with a maximum height equal to 4. The role played by the parameters a i and b i the same one for same index i.

Figure 13 .

 13 Figure[START_REF] Gaillard | A new family of deformations of Darboux-Pöschl-Teller potentials[END_REF]. Solution of order 4 to (1), on the left for t = 0, 01, a 1 = 10 3 ; in the center for t = 0, 01, a 1 = 10 5 ; on the right for t = 0, 01, a 2 = 10 3 ; all other parameters not mentioned equal to 0.