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Abstract. A method widely used to obtain IEEE 754 binary floating-
point numbers with a standard uniform distribution involves drawing an
integer uniformly at random and dividing it by another larger integer.
We survey the various instances of the algorithm that are used in actual
software and point out their properties and drawbacks, particularly from
the standpoint of numerical software testing and data anonymization.

Keywords: floating-point number · random number · error analysis.

1 Introduction

In his oft-quoted 1951 paper [18], John von Neumann asserts that “[i]f one
wants to get random real numbers on (0, 1) satisfying a uniform distribution, it
is clearly sufficient to juxtapose enough random binary digits.” That dismissive
opinion seems to have been so largely shared to this day that the implementa-
tion of methods to compute random floating-point numbers (or floats, for short)
almost always feels like an afterthought, even in respected numerical software
and programming languages. Take a look at your favorite software package docu-
mentation: chances are that it will describe the algorithm —or algorithms, since
many provide more than one method— used to draw integers at random; on the
other hand, it will often fail to give any precise information regarding the way it
obtains random floats. Such information will have to be gathered directly from
the source code when it is available. Besides, software offering the most methods
to compute random integers will almost always provide only one means to obtain
random floats, namely through the division of some random integer by another
integer. It is the first method proposed by Knuth in The Art of Computer Pro-
gramming volume 2 [8, sec. 3.2, p. 10]; also the first method in Numerical Recipes
in C [21, chap. 7.1, pp. 275–276] and in many other resources (e.g., [1] and [5,
pp. 200–201]).

Despite its pervasiveness, that method has flaws, some of them well known,
some less so or overlooked. In particular, some implementations may return
values outside of the intended domain, or they may only compute values whose
binary representations all share some undesirable properties. That last flaw is a
baleful one for applications that rely on random number generators (RNGs) to
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obtain differential privacy for numerical data [16], or to ensure a proper coverage
in numerical software testing.

The lack of awareness to these issues may be underpinned by the fact that
the libraries meant to test random number generators do not implement means
to check for them properly: the procedure ugfsr_CreateMT19937_98() based on
the Mersenne Twister [15] MT19937 to generate floats in TestU01 [10] passes the
Small Crush battery of tests without failure, even though all double precision
numbers produced have the 32nd bit of their fractional part always set to “1,”
and their 31st bit has a 75 % chance of being “0”; worse, the Kiss99 [13] generator
umarsa_CreateKISS99() used in TestU01 passes all Small Crush, Crush and Big
Crush batteries while the probability to be “0” of each bit of the fractional part
of the numbers produced increases steadily from 0.5 for the leftmost one to the
32nd, and is then equal to 1 for the remaining rightmost bits.

We briefly present in Section 2 the details of the IEEE 754 standard for
binary floating-point numbers [7] that are relevant to our study. In Section 3,
we will consider various implementations of the RNGs that compute random
floating-point numbers through some division; that section is subdivided into
two parts, depending on the kind of divisor used. The actual implementation
in widely available software is considered in Section 4. Lastly, we summarize
our findings in Section 5, and we assess their significance depending on the
applications targeted; alternative implementations that do not use a division are
also considered.

2 Floating-Point Numbers

The IEEE 754 standard [7] is the ubiquitous reference to implement binary
floating-point numbers and their associated operators on processors. IEEE 754
binary floating-point numbers are of varying formats, depending on the number
of bits used to represent them in memory. A format is completely defined by a
pair (p, emax) of two natural integers. Let Femax

p be the set of floats with format

(p, emax). We will also note yk the kth bit of the binary representation of the
number y (with y0 being the rightmost least significant bit).

A floating-point number x ∈ Femax
p can be viewed as a binary fractional

number (the significand), a sign and a scale factor. There are five classes of
floats: ±0, normal floats with p significant bits, subnormal floats with less than
p significant bits, infinities and Not A Numbers. Only the first three classes are
of any concern to us here. Floats from these classes are represented with three
fields (s, E, f) with the interpretation:

x =

{
(−1)s × 1.fp−2fp−3 · · · f0 × 2E , if x is normal;

(−1)s × 0.fp−2fp−3 · · · f0 × 21−emax , if x is subnormal or zero.
(1)

with s the sign bit, E ∈ [1−emax, emax] the exponent, and f the fractional part.
The IEEE 754 standard defines three binary formats of which we will con-

sider only the two most popular: single precision (aka binary32) F127
24 and double

precision (aka binary64) F1023
53 .
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Fig. 1. The real line with F1
3 finite floating-point numbers. Subnormals are displayed

with shorter purple segments. Reals materialized by light blue dots are rounded to
nearest-even floats according to red arrows.

From Equation (1), one can anticipate the wobbling effect that is illustrated
in Figure 1: starting with λ —the smallest positive normal float— the gap from
a representable number to the next doubles every 2p−1 floating-point numbers,
and the same goes for the negative side.

Reals in-between floating-point numbers have to be rounded to be repre-
sented. Given some floating-point format, let fl(x) be the floating-point number
that is nearest to the real x. When x is at the same distance of two floats, fl(x)
is the float whose rightmost bit b0 of the fractional part is equal to 0. This
is the rounding to nearest-even policy, which is usually the default and which
will be assumed throughout this paper. We will also write fl〈expr〉 to denote
the rounding of an expression (e.g.: fl〈a+ b× c〉 = fl(fl(a) + fl(fl(b)× fl(c))) for
(a, b, c) ∈ R3).

3 Dividing Random Integers

“If you want a random float value between 0.0 and 1.0 you get it by an expression
like x = rand()/(RAND MAX+1.0).” This method, advocated here in Numerical
Recipes in C [21, pp. 275–276], is used in many libraries for various programming
languages to compute random floating-point numbers with a standard uniform
distribution, the variation from one library to the next being the algorithm used
to compute the random integer in the numerator and the value of the fixed
integer as denominator.

For a floating-point set Femax
p , there are emax × 2p−1 floats in the domain

[0, 1), to compare with the (2emax + 1)2p finite floats overall; that is, almost
one fourth of all finite floats are in [0, 1). Dividing a random nonnegative integer
a by an integer b strictly greater than a can only return at most b distinct
floats, less than that if two fractions round to the same float. Let Db be the
set {fl〈x/b〉 | x = 0, 1, . . . , b− 1} with b a strictly positive integer. Two necessary
and sufficient conditions for fl〈x/b〉 to be equal to x/b for any x in {0, 1, . . . , b−1}
are that b be:

1. a power of 2, otherwise some x/b are bound to not be dyadic rationals;
2. smaller or equal to 2p, since not all integers greater than 2p are representable

in Femax
p . Besides, the largest gap between two consecutive floats from [0, 1)

being 2−p, x/b might not be representable for the large values of x otherwise.
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Fig. 2. Drawing 10 000 floats at random from F3
4 by drawing random integers from

[0, 7] and dividing by 8 (top purple bars), or by drawing random integers from [0, 15]
and dividing by 16 (bottom orange bars).

All members of Db = {k/b | k = 0, . . . b− 1}, for any b in {2i | i = 0, . . . , p},
are then representable in Femax

p and uniformly distributed on [0, 1). Figure 2
shows such situations on F3

4: the top purple bars correspond to drawing 10, 000
random integers from [0, 7] and dividing them by 23, while the bottom orange
bars correspond to drawing the same number of integers from [0, 15] and di-
viding them by 2p = 16. Rectangle heights indicate the number of times the
corresponding float was obtained; the width of each rectangle indicates the set
of reals that would all round to that same floating-point value. We see in Figure 2
that the floats obtainable are computed with the same frequency, and that they
split neatly the real line on [0, 1) into eight (resp. sixteen) same-sized segments.

To ensure a uniform spreading on [0, 1), we have to meet the two abovemen-
tioned conditions, the second one of which means that we cannot expect to be
able to draw uniformly more than a fraction 2p/(emax× 2p−1) = 2/emax of all
the floats in [0, 1). To put that in perspective, it means that, for the double preci-
sion format F1023

53 , we can only draw less than 0.2 % (2/1023) of all floating-point
numbers in [0, 1).

If we violate one of the two conditions, the set Db contains floats that are no
longer spread evenly on [0, 1) (see the examples in Figure 3). When b 6 2p, each
float in Db has the same probability of being chosen (since then, no two values
a1/b and a2/b can round to the same float when a1 6= a2). On the other hand,
when b > 2p, several fractions a/b may round to the same float, leading to it
being over-represented. This is the case as soon as the distance 2E21−p between
two consecutive floats is greater than b−1 (See Figure 3 for b = 24).

As previously pointed out, the gap between adjacent floats increases from
0 to 1, with the largest gap being 2−p between 1 and prev (1), its predecessor.
We have seen that a division-based method to compute random floats that are
evenly spread on [0, 1) cannot offer more than a very small proportion of all
the floats in that domain. In particular, if emax is not smaller than p, it is not
possible to draw subnormal floats by division while preserving uniform spreading
of the floats we can draw. Provided we use a procedure that draws integers in
[0, b − 1] uniformly at random —an assumption we will always make in this
paper—, all floats from Db are also drawn uniformly at random for b 6 2p. This
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Fig. 3. Drawing 10 000 floats at random from F3
4 by drawing random integers in [0, 8]

and dividing by 9 (top purple), and by drawing from [0, 23] and dividing by 24 (bottom
orange).

is different from claiming that the division-based procedure draws the floats
from [0, 1) uniformly at random since only one in 2/emax can ever be drawn.
We must also keep in mind that it is also markedly different from claiming
that the floats computed are the rounded results of drawing real values in [0, 1)
uniformly at random: since the space between floats doubles regularly from 0 to
1, the floats in Db should be drawn following a geometric distribution for their
exponent to accurately represent that. Several works [3,4,24] and [17, Chap. 9]
have investigated means to do it, even though some of their authors are not yet
convinced that there are real applications waiting for their method.

After analyzing a set of prominent libraries and programming languages,
we have identified essentially two classes of division-based methods to compute
floating-point numbers with a standard uniform distribution:

1. Division by a power of 2;
2. Division by a Mersenne number.

3.1 Dividing by a Power of 2

Since Lehmer’s work on Linear Congruential Generators [11], many methods
have been devised to compute random integers in [0,m−1] using modular arith-
metic with some modulus m. Initially, it was very convenient to choose m as a
power of 2, preferably matching the size of the integers manipulated —since the
modulo was then essentially free— even though that choice may not offer the
largest period for the RNG [6]. People quickly proceeded to divide by m the in-
tegers obtained to get random numbers in [0, 1) [9], which is also very convenient
when m is a power of 2 as the division then amounts to a simple manipulation
of the float’s exponent.

To this day, many libraries still draw floats by dividing random integers by
a power of 2 to obtain random floats in [0, 1) or (0, 1) in order to get the benefit
of avoiding a costly “real” division.

For example, the canonical method to get random floats in [0, 1) for the ISO
C language is to call the rand() function, which returns a random integer in
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[0, RAND MAX], and to divide it by RAND_MAX+1 (see, e.g., [21] and [23, Q. 13.21]),
even though one of its flaws is well known: according to Section 7.22.2.1 of the
ISO/IEC 9899:2011 standard for C, RAND_MAX is only constrained to be at least
215− 1, and the GNU C library sets it to 231− 1 only [12]. As shown above, the
theoretical maximum value of the denominator to get uniformly spaced double
precision floats in [0, 1) is 253. It is then wasteful to only divide by 215 or even
231, leading to very few possible floating-point numbers.

A property expected from RNGs that compute integers is that each bit of
their binary representation be equally likely a “0” or a “1.” The left graph
in Figure 4 shows the probability computed by drawing 1 000 000 integers in
[0, 231 − 1] using a Mersenne Twister-based RNG. We see that all bits from the
zeroth in the rightmost position to the thirtieth in the leftmost position have a
probability approximately equal to 0.5 to be a “1,” which is expected.

However, when we divide these integers from [0, 231 − 1] by 231 to get floats
in the domain [0, 1), we lose that property. The picture on the right in Figure 4
shows the probability to be “1” of each bit of the fractional part of double
precision floats obtained by such a process: we see that the 22 rightmost bits of
the fractional part have a probability equal to 0 to be a “1.” The probability
then increases steadily until it peeks at around 0.5 for the leftmost bits.
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Bits of the binary representation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
ab

ili
ty

to
b

e
1

rand(0, 231 − 1)

51 42 32 22 12 0

Fractional part bits

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
ab

ili
ty

to
b

e
1

rand(0, 231 − 1)/231

Fig. 4. Probability for each bit to be 1 (left: when drawing an integer in [0, 231 − 1];
right: when drawing a double precision float by dividing an integer in [0, 231 − 1] by
231). Simulation with 1 000 000 draws.

Indeed, if we note P [e] the probability of the event e, we have:

Proposition 1. Given Femax
p a set of floats and k an integer in [1, p], let x =

xk−1xk−2 . . . x1x0 be a strictly positive random integer in [1, 2k − 1] with P [xi =
1] = 1

2 for i = 0, 1, . . . , k − 1. Given y = yp−1.yp−2 · · · y0 the significand of the
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normal float x
2k

, with y ∈ Femax
p , we have:

P [yi = 1] = 0 ∀i ∈ [0, p− k − 1]

P [yi = 1] =

i−p+k∑
j=0

1

2j+2
=

1

2
− 2p−k−i−2 ∀i ∈ [p− k, p− 1]

(2)

Proof. The division by a power of 2 corresponds to a simple shift of the binary
point. Considering a set of floats Femax

p , if we draw a non-null integer x =

xk−1xk−2 . . . x1x0 in the domain [1, 2k − 1] (with k 6 p) and divide it by 2k, we
get:

x

2k
= 0.xk−1xk−2 . . . x1x0

That number needs to be normalized to be stored as an IEEE 754 float, and we
get its significand y:

y = 1.xk−2 . . . x0 0 · · · 0︸ ︷︷ ︸
p−k

if xk−1 = 1

= 1.xk−3 . . . x0 0 · · · 0︸ ︷︷ ︸
p−k+1

if xk−1 = 0 ∧ xk−2 = 1

=
. . .

= 1.xk−(j+1) . . . x0 0 · · · 0︸ ︷︷ ︸
p−k+j−1

if (∀l ∈ [1, j + 1] : xk−l = 0) ∧ xk−j = 1

Obviously, we get P [yi = 1] = 0 for all i ∈ [0, p− k − 1]. In addition:

P [yp−k = 1] = P [xk−1 = 1]× P [x0 = 1]
P [yp−k+1 = 1] = P [xk−1 = 1]× P [x1 = 1]+

P [xk−1 = 0]× P [xk−2 = 1]× P [x0 = 1]
P [yp−k+2 = 1] = P [xk−1 = 1]× P [x2 = 1]+

P [xk−1 = 0]× P [xk−2 = 1]× P [x1 = 1]+

P [xk−1 = 0]× P [xk−2 = 0]× P [xk−3 = 1]× P [x0 = 1]
...

P [yp−k+j = 1] =

j∑
l=0

l∏
i=1

(
P [xk−i = 0]

)
× P [xk−(l+1) = 1]× P [xj−l = 1]

Considering that P [xi = 0] = P [xi = 1] = 1
2 for all x ∈ [1, 2k − 1], the result

ensues. ut
If the value for k is greater than p, some values in Db will need rounding, and

the round-to-nearest-even rule will slightly favor results with a “0” as rightmost
bit of the fractional part, as can be readily seen in Figure 5.

Another problem when k is greater than p is that x/2k may round to 1, even
though we claim to compute floats in [0, 1). This is what happens in software
that divides a 32 bits random integer x by 232 to get a single precision float (see
Section 4): as soon as x/232 is greater or equal to 1− 2−25, the fraction rounds
to 1 when rounding to nearest-even.
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Fig. 5. Drawing 10 000 integers uniformly at random in [0, 26 − 1] and dividing them
by 26 in F3

4. Values i/26 (for i = 0, 1, . . . , 26 − 1) are represented before rounding as
dots on the real line whose color corresponds to the float they round to.

3.2 Dividing by a Mersenne Number

The division of a random integer in [0,m− 1] by m gives a float in [0, 1) (with 1
excluded, provided m is not too large, as seen above). To obtain values in [0, 1]
instead, one can divide by m− 1. Since m is often a power of 2 for the reasons
explained in Section 3.1, the divisor is now a Mersenne number. That algorithm is
proposed in many sources and in particular by Nishimura and Matsumoto —the
authors of the Mersenne Twister— with a contribution by Isaku Wada [19,20].
Due to the popularity of the Mersenne Twister, their work on drawing floats has
been integrated in many numerical software as is, along with Mersenne Twister-
based RNGs for integers.

Nishimura et al. propose two versions of their algorithm to compute double
precision floats in [0, 1]: one that uses the 32 bits version of MT19937 [19] to
compute a 32 bits integer that is divided by 232− 1, and the other that uses the
64 bits version of MT19937 [20] to compute a 53 bits integer that is divided by
253−1. In order to avoid some costly division, both versions replace the division
with a multiplication by the inverse (which is precomputed at compile time).

The problem with both methods is that fl
〈
1/(2k − 1)

〉
has a special structure

that may induce some correlation between bits of the fractional part of the floats
produced and a non-uniform probability of each bit to be “1.” Indeed, we have:

Proposition 2. Given a set of floats Femax
p and an integer k ∈ [2, p]:

fl

〈
1

2k − 1

〉
=


(

1 + 21−p +
∑b pk c−1

i=1 2−ik
)
× 2−k, if p ≡ 0 (mod k),(

1 +
∑b pk c

i=1 2−ik
)
× 2−k, otherwise.

(3)

Proof. We have:
2k − 1 = 11 · · · 1︸ ︷︷ ︸

k

Then:
1

2k−1 = 0. 0 · · · 0︸ ︷︷ ︸
k−1

1 0 · · · 0︸ ︷︷ ︸
k−1

1 · · ·

=
(
1 +

∑∞
i=1 2−ik

)
× 2−k
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If p is a multiple of k, the first bit outside the stream of bits we can represent in
the fractional part is a “1,” which means we have to round upward to represent
fl
〈
1/(2k − 1)

〉
:

1

2k − 1
=

p︷ ︸︸ ︷
1. 0 · · · 0︸ ︷︷ ︸

k−1

1 0 · · · 0︸ ︷︷ ︸
k−1

1 0 · · · 0︸ ︷︷ ︸
k−1

1 · · · × 2−k

Otherwise, we must round downward:

1

2k − 1
=

p︷ ︸︸ ︷
1. 0 · · · 0︸ ︷︷ ︸

k−1

1 0 · · · 0︸ ︷︷ ︸
k−l

0 · · · 0︸ ︷︷ ︸
l

1 0 · · · 0︸ ︷︷ ︸
k−1

1 · · · × 2−k

ut
For k = 32 —the first method by Nishimura et al. [19]—, we get:

fl

〈
1

232 − 1

〉
= 1. 0 · · · 0︸ ︷︷ ︸

31

1× 2−32

When multiplying x = x31 · · ·x0 by fl
〈

1
232−1

〉
, we get the real z:

z = x× fl

〈
1

x32 − 1

〉
= 0.x31 · · ·x0x31 · · ·x0

Normalizing the result, we get:

if x31 = 1: z = 1.

52︷ ︸︸ ︷
x30 · · ·x01x30 · · ·x11 x10 · · ·x0 × 2−1

if x31 = 0 ∧ x30 = 1: z = 1. x29 · · ·x001x29 · · ·x10︸ ︷︷ ︸
52

x9 · · ·x0 × 2−2

· · ·
Notice that:

– Bit 20 of the fractional part of the restriction to double precision of z is
always equal to 1;

– The probability of being “1” of Bits 21 through 51 follows the same law as
in Prop. 1;

– Bits of the fractional part are highly correlated since some bits of x occur
twice (e.g., when x31 = 1, x30 occur as z51 and z19, and so on).

The first two properties can readily be seen in Figure 6.
The second method, which divides integers by 253 − 1 exhibits a different

behavior since then k = p and, according to Proposition 2, the rounded value of
1/(253 − 1) has a different structure, viz.:

fl

〈
1

253 − 1

〉
= 1. 0 · · · 0︸ ︷︷ ︸

51

1× 2−53
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Fig. 6. Computing 1 000 000 random double precision floats in [0, 1] according to the
MT19937-32-based procedure by Nishimura et al. [19].

Note how there are now only k − 2 “0s” in the fractional part instead of k − 1

for fl
〈

1
232−1

〉
. As a consequence, there is some overlap of the bits during the

multiplication by x = x52 · · ·x0, and we get:

z = x× fl

〈
1

253 − 1

〉
= 0.x52 · · ·x1(x0 + x52)x51 · · ·x0

That structure of z seems sufficient to remove the most glaring flaws com-
pared to the first method (See Figure 7 on the right). Unfortunately, we have
not yet been able to explain the slight dip in the probability of bits 2 to 5 to be
“1.”
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Fig. 7. Division by a Mersenne number vs. multiplication by its inverse

Since 1/(253 − 1) needs rounding to double precision, there is a difference
in dividing x by 253 − 1 or multiplying it by fl

〈
1/(253 − 1)

〉
as Nishimura et

al. do. That difference also shows in the probability to be “1” of each bit of
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the fractional part of the resulting floats (compare the left and right graphics
in Figure 7). Since we never encountered implementations that used directly a
division by a Mersenne number, we have not investigated the difference further.

Lastly, note that the division by a Mersenne number, as well as the multipli-
cation by its inverse, involve some rounding of the result. As a consequence, both
methods may introduce some non-uniformity when drawing floats, even when b
is smaller or equal to p.

4 Implementations in Software

We have studied the implementation of floating-point RNGs in some major pro-
gramming languages and libraries. Except when explicitly stated otherwise, we
focus here on the RNGs that compute double precision floats in [0, 1). Due to
the popularity of the Mersenne Twister [15], many software implement one of
the algorithms proposed by Nishimura, Matsumoto and Wada [19,20], of which
we have shown some of the flaws in the preceding sections. Some few software
do not resort to a division by a power of 2 or by a Mersenne number; they are
discussed only in the last section.

We have seen in Section 3.1 that the ISO C language does not offer any
standard function to compute random floats in [0, 1), the accepted algorithm
being to divide the result of rand() by RAND_MAX+1, where RAND_MAX is only
231−1 in the GNU Compiler Collection (GCC) library. This is also the approach
used in the Lua language, whose library is based on C.

The GNU Scientific Library (GSL) [5] strives to be the go-to numerical li-
brary for C in the absence of a true standardized one. Unfortunately, the default
implementation to compute a random float is not much better than using rand()

as it uses a Mersenne Twister to compute a 32 bits random integer and multiply
it by 2−32. The same method is also used by Scilab 6.0.2.

The C++ language has been offering random number generation in its stan-
dard library since the C++11 standard. The generate_canonical() function
is used to draw uniformly at random a floating-point number in [0, 1). Unfortu-
nately, from the C++11 standard up to the latest draft for the C++20 standard
included [22, p. 1156], the algorithm mandated to compute a random float re-
quires to divide a random integer by a value that may be much larger than
2p, with p the size of the significand of the type of floats produced. As a con-
sequence, the value 1.0 may be returned, in violation of the definition of the
function itself. This is a known error that has been addressed formally by the
C++ Library Working Group in 2017 only by proposing to recompute a new
random float whenever the one computed is equal to 1.0. The C++ library for
GCC had already implemented that workaround in its 6.1.0 release in 2015.
Oddly enough, it was changed in 2017 for the 7.1.0 release in favor of return-
ing prev (1) in that case, which breaks the uniformity requirement, even if only
slightly.

The Go language, at least in its most current version as of 2019, generates
a double precision number in [0, 1) by computing a 63 bits random integer and

https://www.lua.org/
https://www.gnu.org/software/gsl/
https://www.scilab.org/
https://golang.org/
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dividing it by 263. As a consequence, the implementation of its Float64() func-
tion is plagued by the same problems as C++ generate_canonical(), and the
current method to avoid returning 1.0 is to loop generating a new number until
getting a value different from 1.0. Since 63 is larger than p = 53, there are also
uniformity problems in drawing floats, as seen in the preceding sections.

In Java, The Random.nextDouble() method to obtain a random double pre-
cision float in [0, 1) is implemented, both in OpenJDK and in the Oracle JDK,
by computing a 53 bits random integer and multiplying it by 2−53. An older
method used to computed a 54 bits integer and multiply it by 2−54; ironically, it
was discarded in favor of the new method because it was discovered that, due to
rounding, it introduced a bias that skewed the probability of the rightmost bit
of the significand to be “0” or “1,” even though the new method presents the
same bias for different reasons, as seen previously. The Rust language does it in
exactly the same way. It is also the method used in both the standard library
for Python, as well as in the Numpy package.

GNU Fortran 9.2.0 introduces a twist in the computation of a random double
precision number in that it uses the xoshiro256** algorithm by Blackman and
Vigna [2] to compute a 64 bits random integer in [0, 264−1], forces the 11 lowest
bits to 0 to get an integer that is a multiple of 211, then divides the result by 264

to get multiples of 2−53. As a result, all values are representable and uniformly
spread in [0, 1). The same effect would be obtained by computing a 53 bits
random integer and dividing it by 253. Consequently, the algorithm suffers from
the flaws shown in Section 3.1.

The default algorithm in MATLAB [14] computes a double precision float
in (0, 1), not [0, 1), by creating a 52 bits random integer, adding 0.5 to it, and
dividing the sum by 252 to obtain a number in [2−53, 1− 2−53]. Evidently, that
algorithm shares the same flaws as the algorithm that directly divides an integer
by 253. GNU Octave, a MATLAB-like software, computes both single precision
and double precision random numbers in (0, 1). Single precision floats are gen-
erated by computing a 32 bits integer, adding 0.5 and dividing the sum by 232.
Since the divisor is greater than 223, the distribution is no longer uniform, due
to rounding. Additionally, the RNG may return exactly 1.0 in violation of its
specification. The implementation of the double precision generator seems also
flawed, at least in the latest version as of 2019 (5.1.0), as it consists in generating
a 53 bits integer, adding 0.4 [sic] (which has to be rounded) and dividing the
result by 253.

5 Conclusion

The motivation for this work stems from our attempt to study empirically the
behavior of some complex arithmetic expression in the Julia language: while
evaluating the expression numerous times with random floats, we discovered
that the number of results needing rounding was much smaller than anticipated.
Only when studying the structure of the floats produced by the rand() Julia
function did we notice that the least significant bit of their fractional part was

https://www.java.com/en/
https://openjdk.java.net/
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html#nextDouble--
https://www.rust-lang.org/
https://www.python.org/
https://numpy.org/
https://gcc.gnu.org/fortran/
https://www.mathworks.com/products/matlab.html
https://www.gnu.org/software/octave/
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consistently fixed to 0 when requiring floats in some domains but not in others.
Investigating the RNGs producing floating-point numbers in other programming
languages and libraries, we found they were almost all lacking in some respect
when used to test numerical code.

Many studies are devoted to the analysis of RNGs producing integers; they
are much fewer to consider RNGs producing floats, and we are not aware of
other works considering the structure of the floats produced at the bit level. In
truth, such a dearth of work on that subject might lead one to wonder whether
the systemic irregularities in the structure of the fractional part produced when
using a division really matter. We have identified two domains when it seems to
be the case:

– When investigating numerical software empirically (see our war story directly
above). In addition, the inability of the division-based methods to generate
subnormals may be redhibitory for some applications;

– When anonymizing numerical data.

That last use case should take on more and more importance in the Big Data
era, and problems with floating-point random number generators have already
been reported [16], particularly when the probabilities to be “1” or “0” of the
bits of the fractional part are skewed.

Some programming languages and libraries do not use a division to compute
random floats. Amusingly enough, it is the case with Julia, the very language
that prompted our investigation, even though its algorithm exhibits other flaws.
After some experimentation, we believe it is also the case of Mathematica, at
least in its version 12 (anecdotally, its default implementation exhibits the same
flaws as Julia’s). We have already started a larger study on the other classes of
algorithms to generate random floating point numbers in the hope of isolating the
better algorithms that offer both good performances, uniformity, and a perfect
regularity of the structure of the fractional part of the floats produced.

Acknowledgments. We would like to thank Dr. Alexandre Goldsztejn for provid-
ing us with the means to test the random engine of Mathematica v. 12.
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