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The calculation of finite temperature electron spin resonance (ESR) spectra for concrete specified crystal
configurations is a very important issue in the study of quantum spin systems. Although direct evaluation of the
Kubo formula by means of numerical diagonalization yields exact results, memory and CPU time restrictions
limit the applicability of this approach to small system sizes. Methods based on the time evolution of a single pure
quantum state can be used to study larger systems. One such method exploits the property that the expectation
value of the autocorrelation function obtained for a few samples of so-called thermal typical states yields a good
estimate of the thermal equilibrium value. In this paper, we propose a new method based on a Wiener-Khinchin-like
theorem for quantum system. By comparison with exact diagonalization results, it is shown that both methods
yield correct results. As the Wiener-Khinchin-based method involves sampling over thermal typical states, we
study the statistical properties of the sampling distribution. Effects due to finite observation time are investigated
and found to differ for the two methods but it is also found that, for both methods, the effects vanish as the system
size increases. We present ESR spectra of the one-dimensional XXZ Heisenberg chain of up to 28 spins and
discuss the dependence of separation of double peaks on the chain length.
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I. INTRODUCTION

Quantum spin systems have attracted interests for decades
because they exhibit various nontrivial behavior due to
quantum-mechanical effects. In particular, in low dimensions,
quantum fluctuations due to noncommutativity of the spin op-
erators and/or competition among the interaction (frustration)
play an important role and various novel concepts, such as the
valence-bond solid, resonating-valence bonds, and magnon
Bose-Einstein condensation, etc., have been developed. One
important topic is the effect of nonmagnetic defects. In a spin
S = 1/2 antiferromagnetic Heisenberg chain, quantum fluctu-
ations prevent the spins from being ordered, even at T = 0 K,
and the ground state is nonmagnetic. However, nonmagnetic
defects break the translational symmetry and polarize the
surrounding spins [1–3]. Then the one-dimensional system
is described by an open-ended spin chain. An example of such
a system is the Pd doped chain Sr2CuO3 [4–6]. As to the
dimerized system, recently correlated defects in an alternate
chain (TMTTF)2PF6 have been observed [7]. While in the
latter system, the electron spin resonance (ESR) spectrum has
been found thanks to its spin structure with defects, in the
former case the system is uniform and the edge effect spreads
widely, and thus only susceptibility has been observed, but
no ESR has been reported yet. In this way, it has attracted
interests that impurity or spatially inhomogeneity induce a
magnetization moment in a nonmagnetic singlet state. To study
properties of ESR of such magnetization, we need to treat a
large-enough lattice which can include a profile of magnetic
moments which are extended over a number of lattice sites.
Thus, it is desirable to develop method to study larger lattices.

*Corresponding author: ikeuchi@spin.phys.s.u-tokyo.ac.jp

ESR is one of the major tools to study the effects of
defects in spin systems. Modeling the ESR spectra of intrinsic
defects in spin chains is an important problem for which data
for finite but rather long chains are necessary. In particular,
the parameter dependence of concrete ESR spectrum for
a specified system is of great interest and the temperature
dependence of the ESR spectrum provides a lot of information
about the spin ordering. To study these aspects theoretically,
the explicit form of interactions and spatial configuration
of magnetic ions in the lattice play an important role and
it is necessary to study microscopic models, that is we
should calculate the ESR spectrum for specific quantum spin
Hamiltonian. The most direct way is to calculate the Kubo
formula [8,9] by making use of the eigenvalues and their
eigenvectors obtained by diagonalization of the Hamiltonian.
The first attempt has been made to study the Nagata-Tazuke
phenomena [10] in a one-dimensional Heisenberg chain of
eight spins with dipole-dipole interactions [11]. In this work,
the dependence of the spectrum on the angle between the
static field and lattice direction was reproduced. Moreover,
antiferromagnetic resonance [12] and also the appearance of a
resonance forbidden by the Dzyaloshinskii-Moriya interaction
[13] were studied. The structure of the ESR spectrum of
a spin ring at high temperatures was investigated up to 16
spins [14]. In complementary work, Oshikawa and Affleck
have developed a field theoretical approach by making use
of the exact autocorrelation of Heisenberg chain and have
successfully analyzed low temperature properties for long
(infinite) chains [15].

Obviously, the application of this method of exact diago-
nalization (ED) is limited to small systems for which we can
obtain all the eigenvalues and their eigenvectors. For a system
of N S = 1/2 spins, we need the memory of order 22N . By
making use of the symmetries of the system we may reduce
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the dimensions of the block diagonalized Hamiltonian. Even
with these efforts, in practice, the system size is still limited to
about 20 spins.

The restriction imposed by the exact diagonalization ap-
proach can be alleviated by computing the autocorrelation
function (AC) from the time evolution of a pure state [16–18].
The ESR spectrum is obtained by Fourier transform of the
autocorrelation function of the transverse magnetization. In
the AC method, a pure state evolves in time according to
the time-evolution operator e−iH t the action of which can
be computed efficiently by means the Chebyshev polyno-
mial expansion [19–22] or the Suzuki-Trotter-product-formula
method [16,23]. As the memory required to store one pure
state or all eigenstates is of the order 2N and 22N , respectively,
the time evolution method allows us to study systems that
are twice the size of those that can be studied by exact
diagonalization. For compute thermal averages we need, in
principle, to take the average over the initial states. However,
it is known that the expectation value of a quantity A for
a single random state |�〉 yields an estimate of the trace of
A, that is 〈�|A|�〉 � TrA, which becomes more accurate
as the size of Hilbert space increases [23]. Because of this
fact, there is no need to compute traces of matrices to obtain
the thermal equilibrium average [17,18,23–25]. This approach
has been used to study the temperature dependence of the
total amplitude of ESR spectrum for the single molecular
magnet V15, consisting of 15 S = 1/2 spins [18]. Although
this method to compute the ESR spectrum has considerable
potential, properties of its applications to large systems have
not yet been scrutinized in sufficient detail.

An important issue, which we address in this paper, is that
because the time-evolution method necessarily yields data for
a finite time interval only, it is important to study how the ESR
spectrum, that is, the Fourier transform of this data, depends
on the size of the time interval.

An early application of the time-domain method to spin-1/2
models reported results for the density of states and, e.g., the
dynamic structure factor of systems up to 26 spins [16]. At
present, it is possible to study, e.g., thermalization/decoherence
[26] and compute time-dependent transport properties [27]
for systems containing 34 and 36 spins, respectively. In the
present paper, we study how we can obtain ESR spectrum by
making use of the time-domain method. Although calculation
of the ESR spectrum amounts to calculating a specific transport
property (see below), the nature of the physics involved puts
some constraints on the system sizes that can be studied.
The main problem here is that to compare with actual ESR
experiments, it is necessary to be able to resolve detailed
structures in the spectra. This requires knowledge of the spin
dynamics over a (very) large time interval (see below), much
larger than in the case of the dynamic structure factor [16] or
spin diffusion [27], for instance. Furthermore, the fact that the
interval is finite causes various artifacts. Thus, at present, the
finite observation time and artifacts due to the finite sampling,
not the number of spins, is the dominant limiting factor in the
calculation of the ESR spectrum.

The effect of finite observation time in AC method is serous
in small systems which were used to test. If we apply usual
gauss window method, then the fine structure of the spectrum
is smeared out, and thus we thought the method is not good

practically, and it has not been used practical calculation in
spin systems.

But in the present paper, we clarified the nature of the effect
of finite observation time. In the AC method, the spectrum
is obtained from the autocorrelation function 〈MxMx(t)〉eq.
In ESR experiments, one measures the time evolution of
the magnetization Mx(t). The relation between the AC and
the spectral density Mx(t) is given by the Wiener-Khinchin
(WK) theorem. This theorem relates the spectral density of
the dynamics of a quantity and the Fourier transform of the
autocorrelation function of the same quantity. In the present
paper, we propose a method to directly compute the ESR
spectrum from the time evolution of Mx(t) by exploiting
the idea of WK theorem. I found that the effect of the finite
observation time is significantly suppressed in the WK method.
In particular, the Gibbs oscillations in the WK method are only
positive, whereas they can be negative in the AC method. The
WK method provides supplemental information about effects
of finiteness of time domain.

In quantum systems, however, the definition of the magneti-
zation dynamics is somewhat tricky, and we therefore develop
a quantum version of Wiener-Khinchin relation, i.e., an explicit
relation between Fourier transform of the autocorrelation
function and the spectrum density in the quantum case.
We call the approach based of this idea the WK method.
Because the thermal average of the magnetization in the
transverse direction 〈Mx(t)〉eq is zero, and the ESR signal is
proportional to the average of square of the Fourier transform
of 〈�|Mx(t)|�〉 over many realizations of the random state
|�〉, the reasoning about the convergence of this average as a
function of the dimension of the Hilbert space does not hold.
Therefore, we present a detailed analysis of the distribution
of the sampled data and show that the distribution converges
with a finite variance, independent of the size of Hilbert space.
Because of the latter property, also for a large system, it is
necessary to perform ensemble averaging of the data which
renders the computational efficiency of the WK method less
than the one of the AC method.

As a fortunate property, we found that the effect of the finite
observation time is suppressed even in the AC method when the
size of the system becomes large. We confirmed this property
in the system of N = 16, for which we can obtain spectra by the
ED, WK, and AC methods, and results of the methods without
any window-smearing technique (e.g., Gauss window) give
the same results. Because the AC method has better statistical
property, i.e., because a single sample of a random state yields
accurate result, once one knows that the effect of the finite
observation time is suppressed in large systems, the AC method
is the most efficient for large systems. We performed the
AC method to the one-dimensional XXZ model which was
studied previously and gives a good reference. We reproduced
the double peak structure in the spectrum which was found
in earlier work [14]. In the paper, whether the double-peak
structure would disappear in longer chains has been discussed
in the viewpoint of relaxation of the autocorrelation function of
the force for the spin dynamics [14]. We present the separation
of the double peak up to N = 28. The separation is the same
for N = 22, 24, and 26, but we find that it decreases again at
N = 28. Overall behavior may show decrease proportionally
to the inverse of chain length, but it may show a tendency to
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saturate, and thus up to the present size we cannot make a
conclusion on this property.

The outline of this paper is as follows. A brief overview on
the methods previously used is given in Sec II. In Sec. III, we
introduce the new method motivated by the Wiener-Khinchin
theorem and study statistical properties of the method in
detail in Sec. III C. In Sec. IV, we show the distribution
of sampled data of the spectrum obtained by the AC and
WK methods. The total amplitude of the spectrum, which
is fundamental information in ESR studies, is discussed in
Sec. V. Section VI presents applications of the methods to
large systems. A summary and discussion of related problems
are given in Sec. VII. Appendix A discusses the effect of the
finite-time interval on the spectrum for both methods. We give
the statistical properties of the thermal typical state and the
detailed calculations of the conservation of total intensity in
the Supplemental Materials in Refs. [28,29], respectively.

II. RECAPITULATION OF EXISTING METHODS

A. Kubo formula and ESR spectrum

The ESR spectrum is given by the Kubo formula [8,9]. The
imaginary part of the dynamical susceptibility χ ′′(ω) reads1

χ ′′(ω) = 1

2
(1 − e−βω)

∫ ∞

−∞
〈Mx(0)Mx(t)〉eqe

−iωtdt, (1)

and the ESR absorption spectrum is given by

I x(ω) = ωλ2
0

2
χ ′′(ω), (2)

where λ0 is the amplitude of the external field, and we adopt

Mx(t) = eiH tMxe−iH t , Mx =
N∑

i=1

Sx
i , (3)

〈·〉eq = Tr[ · e−βH ]/Tr[e−βH ]. (4)

For the numerical calculation of the ESR absorption
spectrum, several methods have been developed. There are
essentially two types of methods: (1) the exact diagonalization
method [11,14] and (2) the time evolution of the autocorrela-
tion function method [17].

B. Exact diagonalization (ED) method

The most direct calculation of the Kubo formula uses the
set of eigenvalues and eigenvectors {En,|n〉}Dn=1 obtained by
solving the eigenvalue problem

H |n〉 = En|n〉 (5)

for the Hamiltonian H , D denoting the dimension of the
Hilbert space. In practice, we solve Eq. (5) by numerical
diagonalization. The autocorrelation function 〈Mx(0)Mx(t)〉eq

is expressed as

〈Mx(0)Mx(t)〉eq =
∑
m,n

|〈m|Mx |n〉|2ei(Em−En)t−βEn/Z, (6)

1Throughout the paper we denote the temperature by β−1 in order
to avoid confusion with the end of the time interval T .

where Z is the partition function

Z =
∑

n

e−βEn . (7)

The Fourier transform of Eq. (6) reads∫ ∞

−∞
〈Mx(0)Mx(t)〉eqe

−iωtdt

=
∑
m,n

|〈m|Mx |n〉|2e−βEn2πδ[ω − (Em − En)]/Z, (8)

where we used the definition

δ[ω − (Em − En)] = 1

2π

∫ ∞

−∞
e−i[ω−(Em−En)]t dt. (9)

The imaginary part of the dynamical susceptibility reads

χ ′′(ω) ≡
∑
m,n

Dm,nδ(ω − ωm,n), (10)

where

Dm,n ≡ π (e−βEn − e−βEm )|〈m|Mx |n〉|2/Z,
(11)

ωm,n ≡ Em − En.

It is sufficient to consider ωm,n > 0 only since we are interested
in the absorption, not the emission. Note that χ ′′(ω) > 0 for
ω > 0.

In the exact diagonalization approach, the spectrum consists
of a finite sum of δ functions. Therefore, to draw the spectrum,
we have to represent each δ function by a regular function
of certain width. For example, we may replace the δ function
by a Gaussian or simply use a histogram representation. The
results of the exact diagonalization are exact, usually close to
machine precision, but we need to know all the eigenvalues
and corresponding eigenstates. Therefore, we need memory of
the order of D2 for a matrix of the size D = 2N for systems
of N S = 1/2 spins. If the system has symmetry, then we may
reduce the size. For example, if the system conserves Mz, then
D is reduced to NCN/2+Mz . Moreover for ESR spectra, only
the uniform mode is relevant and therefore only the fully sym-
metrized states are necessary, which also allows a reduction of
D. However, the memory limitation prevents us from studying
more than N = 20 S = 1/2 spins. As an illustration, we use the
exact diagonalization approach to study the one-dimensional
spin-1/2 XXZ model in a static magnetic field H and compute
the response of the magnetization along the x axis to the AC
field λ(t). The Hamiltonian of the system is given by

Htot =
N∑

i=1

(
JxS

x
i Sx

i+1 + JyS
y

i S
y

i+1 + JzS
z
i S

z
i+1

)
− gμBH

N∑
i=1

Sz
i + λ0cosωt

N∑
i=1

Sx
i , (12)

where we impose the periodic boundary condition
Sα

N+1 = Sα
1 , α = x,y,z unless otherwise mentioned. Hereafter

we adopt Kelvin as the unit of energy and we set gμB = 1.
In Fig. 1, we show an example of spectrum obtained

by exact diagonalization method for an antiferromagnetic
Heisenberg chain with N = 16 with the static field H = 5 K at
the temperature β−1 = 100 K. The notation and the parameters
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FIG. 1. (Color online) Spectrum for a ring of N = 16 spins. The
histogram is obtained by the exact diagonalization method.

of the model are set to be the same as those in the model studied
in the previous study [14] (Jx = Jy = 1 K, Jz = 0.92 K).

The spectrum consisting of an ensemble of the δ peaks
[Eq. (10)] is plotted as a histogram with small bins 
ω. In
the exact diagonalization (ED) method, we are free to choose
any value of 
ω. Anticipating for the comparison with the
two other methods, we take 
ω = 2π/T , where T = dt × nt ,
dt = 0.5, and nt = 16 384 is the number of data points.

C. Autocorrelation function method

According to the Kubo formula [Eq. (1)], the spectrum is
given by Fourier transform of the autocorrelation function.
Because of the symmetry

(〈MxMx(t)〉eq)∗ = 〈MxMx(−t)〉eq, (13)

where ∗ denotes complex conjugate, we have∫ ∞

−∞
〈MxMx(t)〉eqe

−iωtdt = 2Re

[∫ ∞

0
〈MxMx(t)〉eqe

−iωtdt

]
,

(14)

where Re[·] denotes the real part. Therefore, to compute
Eq. (14), it suffices to have AC data for the interval [0,T ].

We obtain the spectrum by discrete Fourier transform (DFT)
of the AC data

f (tm) ≡ 〈MxMx(tm)〉eq, tm = mT

nt

,

(15)
m = 0,1,2, . . . ,nt − 1,

where nt is the number of data items. The DFT of Eq. (14) is
given by

T

nt

nt−1∑
m=−nt

f

(
mT

nt

)
e−iωkmT/nt , ωk ≡ πk

T
,

(16)
k = −nt , − nt + 1, . . . ,0,1,2, . . . ,nt − 1.

Note that the absorption and emission spectrum correspond to
ωk > 0 and ωk < 0, respectively. The maximum angular fre-
quency (2π times Nyquist frequency) that can be represented
by the DFT Eq. (16) is given by πnt/T . For a magnetic field
H = 5 K, the main contribution to the absorption spectrum
peak comes from a narrow peak around ω ≈ 5 K. In our
numerical work we take dt ≡ T/nt = 0.5. Therefore the
largest value of omega (2π times the Nyquist frequency)
is (2π/T ) × (nt/2) = π/dt = 2π ≈ 6.28 > 5, which is large
enough to cover the full spectral range.

In Fig. 2 (left), we show the spectrum for a system of
N = 6 spins at the temperature β−1 = 100 K, obtained by
using a time series of nt = 16 384 items. Clearly, the spectrum
is suffering from fine oscillations with negative values, which
is called the Gibbs oscillation [30]. This oscillation is due to
the fact that the range of the time integral is finite and that
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FIG. 2. (Color online) The spectrum obtained by the exact diagonalization method and the time-evolution method: N = 6, temperature
β−1 = 100 K,H = 5 K, sampling time dt = 0.5, the number of data items nt = 16 384, and the ω mesh π/T = π/(nt × dt) (blue line).
The exact diagonalization result (green line) uses an ω mesh 
ω = 2π/16 384, which corresponds to the frequency π/T used in the
time-evolution method. Left: The spectrum obtained by exact diagonalization (green line) and by use of the time-evolution method without
window functions (blue line). Strong Gibbs oscillation is found. Right: Same as left except that a Gaussian window function with standard
deviation α/T = 7/8192 = 0.000 85 (α = 7) is used. Clearly, the Gibbs oscillation is suppressed.
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there are eigenvalues that do not exactly match one of the
ωk . This artifact can be suppressed by employing a suitable
window function [30], for instance, a Gaussian window (see
Appendix A). As shown in Fig. 2 (right), the Gibbs oscillation
is reduced and the result is consistent with the one derived with
the exact diagonalization method with the resolution of O(α)
[α is an artificial parameter which determines the resolution
of the spectrum. See Eq. (A12).]

1. Thermal typical state method

In theory, the calculation of the thermal equilibrium
expectation value of MxMx(t) involves a trace operation. This
requires of the order D2 = 22N operations, which becomes
prohibitively large if N is of the order of 20 or larger. Fortu-
nately, for larger systems, we can obtain accurate estimates of
thermal equilibrium averages by making use of the so-called
thermal typical state |�β〉 = e−βH /2|�〉 [17,18,23,25], also
called “a Boltzmann-weighted random vector” [17,18] or “a
canonical thermal pure quantum state” [25], where |�〉 denotes
a random state on the D-dimensional hypershere. In essence,
we have [23]

〈X〉eq = Tr Xe−βH

Tr e−βH
� 〈�β |X|�β〉. (17)

We briefly explain the ideas behind this method. Let {|n〉}Dn=1
be an arbitrary set of complete orthonormal states of the
Hilbert space of the system. Using the complex-valued random
variables {ξn}Dn=1, we introduce a random vector:

|�〉 =
D∑

n=1

ξn|n〉. (18)

Note that this construction is independent of the choice of the
basis set {|n〉}Dn=1.

Unlike in A. Hams and H. De Raedt [Phys. Rev. E 62,
4365 (2000)], to simplify the mathematics, we will work with
independent complex-valued Gaussian random variables for
each index n. They have identical Gaussian distributions with
mean zero and variance σ 2 for all real and imaginary parts of
the variables. By E[·], we denote the expectation with respect
to the multivariate Gaussian probability distribution:

P (ξ1, . . . ,ξD)
D∏

a=1

d(Re ξa)d(Im ξa)

=
D∏

a=1

[
1

2πσ 2
e−|ξa |2/2σ 2

]
d(Re ξa)d(Im ξa). (19)

The following relations hold:

E[ξa] = E[ξp] = E[ξaξb] = 0,

E[ξ ∗
a ξp] = 2σ 2δa,p,

E[ξ ∗
a ξ ∗

b ξpξq ] = E[ξ ∗
a ξp]E[ξ ∗

b ξq ] + E[ξ ∗
a ξq ]E[ξ ∗

b ξp]

= 4σ 4(δa,pδb,q + δa,qδb,p), (20)

which are used in the following calculations.

For any matrix X we have

E[〈�|X|�〉] =
D∑

a,p=1

E[ξ ∗
a ξp]〈a|X|p〉

=
D∑
a

E[ξ ∗
a ξa]〈a|X|a〉 = 2σ 2Tr X, (21)

and because 〈�|X†|�〉 = 〈�|X|�〉∗, the corresponding vari-
ance is given by

Var(〈�|X|�〉)
= E[|〈�|X|�〉|2] − |E[〈�|X|�〉]|2

=
D∑

a,p,b,q=1

E[ξ ∗
a ξpξbξ

∗
q ]〈a|X|p〉〈b|X|q〉∗ − 4σ 4|Tr X|2

= 4σ 4
D∑

a,b=1

(〈a|X|a〉〈b|X|b〉∗ + 〈a|X|b〉〈a|X|b〉∗)

− 4σ 4|Tr X|2
= 4σ 4Tr XX†. (22)

The relative standard deviation is defined by

RSD2(〈�|X|�〉) = Var(〈�|X|�〉)
|E[〈�|X|�〉]|2 = Tr XX†

|Tr X|2

= Tr XX†

(Tr X)(Tr X†)
. (23)

Next, we introduce the thermal typical state |�β〉 for the
system at an inverse temperature β:

|�β〉 = e−βH /2|�〉, (24)

where 〈�β |�β〉 = 〈�|e−βH |�〉 is an approximation to the
partition function Zβ . The RSD of 〈�|e−βH |�〉 vanishes with
D as (see the Supplemental Material in Ref. [28])

RSD(〈�β |�β〉) = RSD(〈�|e−βH |�〉) � O(D−1/2). (25)

Thus, hereafter we only estimate the RSD of the numerator
for the thermal average. In our calculations, we take averages
of the dominator and the numerator with respect to the same
samples {|�β〉}:

〈X〉eq �
1
N

∑
|�β 〉〈�β |X|�β〉

1
N

∑
|�β 〉〈�β |�β〉 , (26)

where N is the number of samples. But if we take the average
of the ratios of samples, we obtain the same result in the limit
D → ∞ (see the Supplemental Material in Ref. [28]):

〈X〉eq � 1

N

∑
|�β 〉

〈�β |X|�β〉
〈�β |�β〉 . (27)

The autocorrelation function 〈MxMx(t)〉eq is given by

〈MxMx(t)〉eq = E[〈�β |MxeiH tMxe−iH t |�β〉]
E[〈�β |�β〉] . (28)

The RSD of the autocorrelation function also vanishes with
increasing D (see the Supplemental Material in Ref. [28]).
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Thus, for a sufficiently large system, a few samples suffice
to estimate the autocorrelation function. Here it should be
noted that, strictly speaking, Eq. (13) does not hold for
the quantity 〈�β |MxeiH tMxe−iH t |�β〉, but, for sufficiently
large D, Eq. (28) justifies using Eq. (13).

For the autocorrelation function 〈MxMx(t)〉eq, we need to
construct the states

|A〉 ≡ e−iH t |�β〉, and |B〉 ≡ e−iH tMx |�β〉, (29)

and then obtain the expectation value of the autocorrelation as

〈�β |MxeiH tMxe−iH t |�β〉 = 〈B|Mx |A〉. (30)

To perform the operations e−βH /2 and e−iH t on the states, we
may use the Chebyshev polynomial expansion method or the
Suzuki-Trotter decomposition method. In the present study we
used the Chebyshev method for e−βH /2|�〉 and mostly used
the Suzuki-Trotter decomposition method for e−iH t |�β〉.

III. WIENER-KHINCHIN METHOD

In this section, we propose a new method that makes
use of the Wiener-Khinchin theorem. In the autocorrelation
method (see previous section) the spectrum is estimated from
the autocorrelation function 〈MxMx(t)〉eq. In experiments, the
spectrum is obtained from the record of time evolution of
magnetization Mx(t). The relation between the autocorrelation
and the Fourier transform of time evolution of a quantity X(t)
is given by the Wiener-Khinchin relation, that is, the relation
between the spectrum of the fluctuation in time of a quantity
X(t) and the Fourier transform of the autocorrelation function
〈X(0)X(t)〉.

We explore the possibility of obtaining the spectrum from
the dynamics of the quantity itself, i.e., 〈�β |X(t)|�β〉, from
an initial state |�β〉. In this method, we use the time evolution
of the state as in the previous subsection and therefore we can
study large systems as well.

A. Wiener-Khinchin theorem

First, we briefly review the Wiener-Khinchin theorem. For
a time-dependent quantity X(t), we define the autocorrelation
function R(t) and the spectral density S(ω) as

R(t) ≡ 〈X(0)X(t)〉 ≡ lim
T →∞

1

T

∫ T

0
X(τ )X(t + τ )dτ (31)

and

S(ω) ≡ lim
T →∞

|XT (ω)|2
T

, XT (ω) ≡
∫ T

0
X(t)e−iωtdt, (32)

respectively. The Wiener-Khinchin theorem tells us that the
Fourier transform of the autocorrelation function equals to
spectral density:

G(ω) ≡
∫ ∞

−∞
R(t)e−iωtdt = S(ω). (33)

Note that we assume that the process X(t) is stationary [31].

B. Dynamics of the magnetization

Next, we apply the idea of Wiener-Khinchin relation to the
Kubo formula. By making use of the relation (33) we obtain

G(ω) from the spectral density S(ω). Here it should be noted
that Mx(t) is an operator and the definition of 〈Mx(t)〉 is tricky.
Definitely, 〈Mx(t)〉eq is time independent, in fact, it is zero in
the present case, and therefore we cannot extract S(ω).

In the following, we propose a method to obtain G(ω) from
〈Mx(t)〉 in a quantum-mechanical system. This approach is
motivated by the Wiener-Khinchin theorem but we do not use
the relation (33) directly. In time-domain methods, we use the
notion of the thermal typical state (see above) and we use this
notion here once more to derive a formula to obtain S(ω) from
time evolution of 〈Mx(t)〉 [32].

First we prepare a thermal typical state |�β〉 as an initial
state. The expectation value with this state gives the thermal
average at the inverse temperature β. For Mx(t), 〈Mx(t)〉eq = 0
and the expectation value E[〈�β |Mx(t)|�β〉] is zero, but, in
general, 〈�β |Mx(t)|�β〉 is not zero. When we calculate the
time evolution of the sampled state we can extract information
for the spectral density

M̂T
β (ω) ≡

∫ T

0
〈�β |Mx(t)|�β〉e−iωtdt. (34)

Although E[〈�β |M̂x(t)|�β〉] is zero, the expectation value
of the spectral density E[|M̂T

β (ω)|2] is not zero and, as we
show below, we can obtain the ESR spectrum from the latter
quantity.

Taking the basis to be the eigenstates of the system,
〈�β |Mx(t)|�β〉 is expressed in terms of the random numbers
{ξn} as

〈�β |Mx(t)|�β〉 =
∑
m,n

ξ ∗
mξne

−β(Em+En)/2ei(Em−En)t 〈m|Mx |n〉,

(35)

where |n〉 and En are the eigenvector and its eigenenergy of
the system Hamiltonian H [Eq. (5)]. The Fourier transform
M̂T

β (ω) [Eq. (34)] is expressed as

M̂T
β (ω) =

∑
m,n

ξ ∗
mξne

−β(Em+En)/2e−i[ω−(Em−En)]T/2

× 2πδT [ω − (Em − En)]〈m|Mx |n〉, (36)

where we introduced the function

δT (ω) ≡ sinωT
2

πω

T →∞−−−→ δ(ω). (37)

Note that we cannot extend the range of integration as
in the AC method [Eq. (14)] because for a given |�β〉,
〈�β |Mx(t)|�β〉∗ = 〈�β |Mx(−t)|�β〉 does not hold in gen-
eral. For the same number of time steps, this implies that the
frequency resolution 
ω = 2π/T is twice as large as for the
AC method.

As a next step, we calculate the average over the random
initial states of the quantity∣∣M̂T

β (ω)
∣∣2 =

∑
m,n

∑
m′,n′

ξ ∗
mξnξm′ξ ∗

n′e
−β(Em+En)/2e−β(Em′ +En′ )/2

× e−i(ω−(Em−En))T/2e+i(ω(Em′−En′ ))T/2

× 4π2δT [ω − (Em − En)]δT [ω − (Em′ − En′ )]

×〈m|Mx |n〉〈n′|Mx |m′〉. (38)
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FIG. 3. (Color online) Absorption spectrum obtained by the ED method (green line) and by the WK method (red line): N = 6, β−1 = 100 K,
H = 5 K, and the mesh of the frequency 
ω = 2π/8192. In the ED method (green line), we take the mesh of the frequency 
ω = 2π/8192,
which is the interval of the frequency 2π/T in the WK method. Left: The Wiener-Khinchin spectrum is obtained by calculating Eq. (39)
exactly. Right: The WK spectrum is obtained by averaging 10 000 samples of initial thermal typical states.

Using Eq. (20) and the fact that 〈n|Mx |n〉 = 0, we have

E
[∣∣M̂T

β (ω)
∣∣2] = 2σ 2T e−βω

∑
m,n

e−2βEn2πδT

× [ω − (Em − En)]|〈m|Mx |n〉|2, (39)

where we used the relation

{δT [ω − (Em − En)]}2 ≈ T

2π
δT [ω − (Em − En)]. (40)

The spectral density reads

�β(ω) = lim
T →∞

E
[∣∣M̂T

β (ω)
∣∣2]/

Z2
β

T
, (41)

= 2σ 2e−βω
∑
m,n

e−2βEn2πδ[ω − (Em − En)]

× |〈m|Mx |n〉|2/Z2
β, (42)

where

Zβ = E[〈�β |�β〉]. (43)

The Fourier transform of the autocorrelation function is given
by

Gβ(ω) =
∑
m,n

e−βEn2πδ[ω − (Em − En)]|〈m|Mx |n〉|2/Zβ.

(44)

By comparing (42) and (44), we obtain a Wiener-Khinchin-like
relation for the transverse magnetization:

Gβ(ω) = 2σ 2
Z2

β/2

Zβ

e
βω

2 �β/2(ω). (45)

The imaginary part of the dynamical susceptibility of interest
is given by

χ ′′(ω) = 2σ 2
Z2

β/2

Zβ

sinh

(
βω

2

)
�β/2(ω). (46)

Here it should be noted that we need to calculate the quantities
of β/2 (not β) to obtain the ESR spectrum of β.

In Fig. 3, we show a comparison of the spectrum obtained
by the exact diagonalization method and the WK method.

From Fig. 3 it follows that the spectrum is well reproduced
without any window procedure, in contrast to Fig. 2 (left)
obtained by the AC method. This is attributed to the fact that
the finite-time effect (Gibbs oscillation) in the WK method
gives positive and smaller artificial peaks in the spectrum (see
the Appendix A).

C. Sample distribution of data

In principle, methods that are based on the thermal typical
state require sampling over the random states to obtain data for
equilibrium. However, as mentioned above, the data obtained
by the thermal typical state exponentially converge to the
thermal equilibrium value as the size of system increases. That
is, the deviation decreases proportionally to D−1/2, where D

is the dimension of the Hilbert space. In the AC method, the
data are obtained as expectation values of MxMx(t), and for
large system the convergence to the equilibrium value is so
fast that one initial state suffices to obtain accurate results (see
the Supplemental Material in Ref. [28] for the details). On
the other hand, the WK method extracts information from the
quantity M̂T

β (ω) whose expectation value is zero, and therefore
we have to investigate the fluctuations of the squared variable
|M̂T

β (ω)|2 because it is not obvious that these fluctuations will
decrease rapidly as D increases.

In this section, we study properties of sample distribution of
the data. To characterize the distribution, we study the variance
of |M̂T

β (ω)|2:

Var
(∣∣M̂T

β (ω)
∣∣2) = E

[∣∣M̂T
β (ω)

∣∣4] − E
[∣∣M̂T

β (ω)
∣∣2]2

. (47)

To this end, we introduce

M̃T
β (ω) ≡ 〈�|A(ω)|�〉, (48)

214431-7
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where

A(ω) = e−βH /2Y (ω)e−βH /2 (49)

and

Y (ω) = 1

T

∫ T/2

−T/2
e−iωt eiH tMxe−iH t dt. (50)

which is proportional to Eq. (36), i.e., M̃T
β (ω) = M̂T

β (ω) ×
eiωT/2/T . The reason for shifting the interval from [0,T ] to
[−T/2,T /2] is to assure that Y (ω) = Y †(−ω) and

Aap ≡ A(ω)ap = [A(−ω)pa]∗ = [A†(ω)pa]∗

= sin{[ω − (Ea − Ep)]T/2}
[ω − (Ea − Ep)]T/2

〈a|e−βH /2Mxe−βH /2|p〉,

(51)

where we choose the states |a〉 to be the eigenstates of H . With
this choice, 〈a|Mx |a〉 = 0 and Aaa = 0, which simplifies the
calculations significantly. Using these quantities,∣∣M̃T

β (ω)
∣∣2 =

∑
a,b,p,q

ξ ∗
a ξ ∗

b ξpξqAapA∗
qb. (52)

and, using the identities Eq. (20), the expectation of Eq. (52)
is expressed as

E
[∣∣M̃T

β (ω)
∣∣2] =

∑
a,b

AabA
∗
ab = 4σ 4Tr AA†. (53)

Hereafter, for simplicity of notation but without loss of
generality, we choose 2σ 2 = 1. Note that in Eq. (53), we did
not yet include other terms in Eq. (46), i.e., Zβ . But, as we
mentioned above, the variances of them are small and thus we
only concern the variance Eq. (47).

We calculate the first term in Eq. (47) by making extensive
use of the properties of Gaussian random variables. We have

E
[∣∣M̃T

β (ω)
∣∣4] =

∑
a,b,c,d

∑
p,q,r,s

E[ξ ∗
a ξ ∗

b ξ ∗
c ξ ∗

d ξpξqξrξs]AapA∗
qbAcrA

∗
sd

=
∑

a,b,c,d

∑
p,q,r,s

{E[ξ ∗
a ξp]E[ξ ∗

b ξ ∗
c ξ ∗

d ξqξrξs] + E[ξ ∗
a ξq]E[ξ ∗

b ξ ∗
c ξ ∗

d ξpξrξs]

+E[ξ ∗
a ξr ]E[ξ ∗

b ξ ∗
c ξ ∗

d ξpξqξs] + E[ξ ∗
a ξs]E[ξ ∗

b ξ ∗
c ξ ∗

d ξpξqξr ]}AapA∗
qbAcrA

∗
sd . (54)

The first term in the curly brackets vanishes because
E[ξ ∗

a ξp] = δa,p and Aaa = 0. Interchanging the summation
indices (q,s) and (b,d) in the fourth term, respectively, we
obtain

E
[∣∣M̃T

β (ω)
∣∣4] = 4Tr AAA†A† + |Tr A2|2

+ 2(Tr AA†)2 + 2Tr AA†AA†, (55)

and using Eq. (53) we finally obtain for the variance

Var
(∣∣M̃T

β (ω)
∣∣2) = 4Tr AAA†A† + |Tr A2|2 + (Tr AA†)2

+ 2Tr AA†AA†. (56)

We want to find bounds to the estimate of the variance
Eq. (56). Let us denote the (non-negative) eigenvalues of AA†

(A†A) by x2
k (y2

k = x2
k ), that is, AA†|xk〉 = x2

k |xk〉 (A†A|yk〉 =
y2

k |yk〉). We assume that the eigenvectors of AA† and A†A are
normalized. Then we have

(Tr AA†)2 =
(∑

k

x2
k

)2

�
∑

k

x4
k = Tr AA†AA†, (57)

Tr AA†A†A =
∑
k,l

x2
k y

2
l |〈xk|yl〉|2 �

∑
k,l

x2
k y

2
l

= (Tr AA†)(Tr A†A) = (Tr AA†)2. (58)

As (X,Y ) ≡ Tr X†Y defines a scalar product, by the Schwarz
inequality |(A†,A)|2 = |Tr A2|2 � |Tr AA†|2. Noting that the
last term in Eq. (56) cannot be negative, putting all this together

we find

1 � 1 + 4Tr AAA†A† + |Tr A2|2 + 2Tr AA†AA†

(Tr AA†)2
� 8.

(59)

Thus, we find the variance is bounded as

1 �
Var

(∣∣M̂T
β (ω)

∣∣2)
E

[∣∣M̂T
β (ω)

∣∣2]2 � 8, (60)

indicating that in the WK method, it is necessary to average
over different initial states, also for large systems. This is
in sharp contrast to the case of the AC method in which
the variance vanishes exponentially with the system size.
But Eq. (60) also indicates that the variance is bounded,
independent of the system size, and therefore we can obtain
good estimates for the mean from finite samples.

We emphasize that the variance of the WK method does not
depend on D, that is, the distribution shows a kind of typicality.
Thus we can obtain the correct mean with aimed precision by
sampling, regardless of the system size.

IV. DISTRIBUTION OF AVERAGE VALUE AND
CONVERGENCE IN DISTRIBUTION

In this section we investigate the sample distribution of
χ (ω) data. For concreteness, we choose the value of ω to be
4.9916 K at which the spectrum has a maximum (peak).
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FIG. 4. (Color online) Left: The distribution of values over 1000 samples obtained by the AC method at ω = 4.9916 K for N = 10,
β−1 = 100 K. The mean (= 4.8508 K) is given by the blue line, and the standard deviation (= 1.5049 K) is shown by the arrow. The exact
value is denoted by the black solid line whose ω = 4.4666 K. Right: The distribution of values over 1000 samples obtained by the WK method
at ω = 4.9916 K for N = 10, β−1 = 100 K. The mean (= 4.015 79 K) is given by the blue line, and the standard deviation (= 3.9749 K) is
shown by the arrow. The exact value is denoted by the black solid line whose ω = 4.4666 K.

First we show the distribution of data in the AC method for
the system N = 10, where D = 1024 and D−1 is rather small.
The histogram of the data is given in Fig. 4 (left). The exact
value is denoted by the black line. The mean of the distribution
is shown by the bold blue line. The standard deviation (square
root of the variance) is given by the arrow. Clearly, Fig. 4 (left)
shows that the data are distributed around the correct value
with RSD = 0.310 25 K. As we already mentioned several
times, as the size of the system increases the variance will
vanish as D−1.

The histogram obtained by the WK method is depicted in
Fig. 4 (right). In contrast to the AC method, the distribution is
of the exponential type. From the figure, we find the variance
is about the same as the average, i.e., RSD = 0.989 82 K. This
value corresponds to the lower bound of the estimation (60).
This fact will be discussed in more detail below.

In Fig. 5, we present the spectra for N = 10 obtained by
the both methods compared with the exact one obtained by
the ED method. Because we have the exact eigenstates and
eigenvalues, we computed the results of AC and WK methods
by employing Eqs. (36) and (44) using the exact eigenstates
and eigenvalues (not by sampling).

Both methods seem to reproduce the exact one approxi-
mately. But the spectra by the AC method are considerably
suffering from the effect of finite observation time and show
large fluctuations in both cases where nt is small (left) and
large (right). Especially the existence of the negative peaks
seen in Fig. 5 (right) is a significant disadvantage to the AC
method as mentioned before. On the other hand, the WK
method automatically smears out the oscillations and gives
rather good agreement. Of course, the negative peaks never
appear by definition.
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FIG. 5. (Color online) Left: Spectra obtained by the AC method (blue line) by the WK method (red line) with nt = 4096, β−1 = 100 K.
The column histogram is obtained by the ED method. The mesh of the frequency 2π/4096 for the WK method and π/4096 for the AC method
and the ED method. The line ω = 4.9916 K is denoted by the black line. Right: β−1 = 100 K, nt = 16 384, and the mesh of the frequency
2π/16 384 for the WK method and π/16 384 for the AC method and the ED method.
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In the case of the AC method, the obtained values have a
narrow distribution around the mean, and it is known that the
variance decreases as D−1. In this sense, the AC method has
an advantage. But the WK method also gives correct estimates
by sampling and the obtained shape of the spectrum is close
to the exact values.

A. Special case 1: Energy gap selection

In the previous section, we found that the relative variance
is close to 1, the minimum value of the bound Eq. (60). In
this subsection, we consider the reason of this fact. To derive
Eq. (60), we considered the general case. But we can also
use the fact that Aap [Eq. (51)] is almost zero except when
ω � Ea − Ep. If we assume that there is a unique set (n,l,m)
which satisfies the conditions Em − En = Em − El = ω and
〈m|Mx |n〉〈m|Mx |l〉 �= 0, then all terms are negligibly small
except for the term (Tr AA†)

2
. Therefore√

Var
(∣∣M̂T

β (ω)
∣∣2)

E
[∣∣M̂T

β (ω)
∣∣2] � (Tr AA†)2

(Tr AA†)2
= 1, (61)

which is indeed what we have observed in our actual
calculations.

B. Special case 2: Isolated δ function

We give the variance of the WK method for the case where
the spectrum consists of well-separated δ functions which are
given only by a single resonant pair of states, that is, the
nonresonance condition that if Em − En = Em′ − En′ , then
(m = m′ and n = n′) or (m = n and m′ = n′) is satisfied. Then,
we can use the fact that approximately δT (x) = δ(x) and we
have

E
[∣∣M̂T

β (ω)
∣∣2] = 2σ 2T e−βωe−2βEn

× 2πδT [ω − (Em − En)]|〈m|Mx |n〉|2. (62)

The variance is estimated by making use of the relation:

E[ξ ∗
mξnξm′ξ ∗

n′ξ
∗
k ξlξk′ξ ∗

l′ ] = E[(ξ ∗
mξm)2(ξ ∗

n ξn)2] � 4 (63)

as

E
[∣∣M̂T

β (ω)
∣∣4 − E

[∣∣M̂T
β (ω)

∣∣2]2] � 3E
[∣∣M̂T

β (ω)
∣∣2]2

. (64)

Thus, the relative variance is 3, a result which does not depend
on D.

In the AC method, the variance of sampled amplitude of the
isolated δ functions is the same as the expectation value for the
present case and RSD � 1. However, the isolated δ function
in the spectrum is only relevant in small systems. For large
systems with large D, the amplitude of the isolated δ function
is small and we can ignore it.

V. THE TOTAL AMPLITUDE OF THE SPECTRUM

The total amplitude of the spectrum, or the intensity, i.e.,
the integral over the absorption spectrum [Eq. (2)], is given by

I x =
∫ ∞

0
I x(ω)dω. (65)
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FIG. 6. (Color online) Comparison of the intensities of the ab-
sorption as a function of the temperature obtained by the WK method
(red cross) and by the AC method (blue open circle). The green solid
curve is the exact value: N = 6, H = 5 K.

It is one of the fundamental pieces of information obtained
in ESR experiments. Its temperature dependence has been
calculated for the single molecular magnet V15 [18]. In this
subsection, we demonstrate that I x obtained by the WK
method correctly reproduces the exact ED results. Details
of the analysis are given in the Supplemental Material in
Ref. [29]. In the WK method, a δ function is represented by
the sinc function,

δ(ω) → 1

T

(
sin ωT/2

πω

)2

. (66)

Because of the relation

1

T

∫ ∞

−∞

(
sin ωT/2

πω

)2

dω = 1

2π
, (67)

the intensity I x is obtained correctly by analytical integration.
However, the DFT yields the spectrum at discrete points
ω = 2kπ/T , k = 0,1,2, · · · ,nt − 1 only. Thus, the integral
over the ω is given by a discrete sum. In the Supplemental
Material in Ref. [29], we demonstrate that the discrete sum
agrees with the analytical result. We also show that for the
AC method in which the discrete points are given by ω =
kπ/T , k = −nt , . . . , − 1,0,1,2, . . . ,nt − 1 we recover the
analytical result of the intensity, in spite of Gibbs oscillations.
We calculate the results of the AC and WK methods by
evaluating the formulas for the expectation value by using
the exact eigenvalues and eigenstate, as we did for Figs. 2 and
3 (left), i.e., without sampling over thermal typical states. In
Fig. 6, we show that both the AC and WK methods reproduce
the results of the ED method.

VI. APPLICATIONS TO LARGE SYSTEMS

As an example of application of the methods to larger
systems, we compute the spectrum by the AC and WK
method for N = 16 with nt = 16 384. For this size, we can
still compute all eigenvalues and eigenstates, hence we know
the positions of the eigenfrequencies and the corresponding
amplitudes. The ensemble of δ functions is turned into a
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FIG. 7. (Color online) Left: Spectrum for N = 16, β−1 = 100 K. The histogram is obtained by exact diagonalization. The points with error
bars are the data obtained by the AC method with 10 samples and the time interval [0,T = 163 84 × dt], dt = 0.5. Right: Results of the WK
method with 52 samples over the same time interval.

histogram by using a frequency mesh 
ω = 2π/T , [T =
163 84 × dt(= 0.5)].

In Fig. 7 (left), we present a comparison between the spectra
obtained by ED and AC methods. The data obtained by the
AC method shows sharp features because we did not use a
window in the DFT procedure. As the statistical fluctuations
on the autocorrelation are small, 10 samples suffice to find
almost perfect agreement with the ED result. Therefore, we
may conclude that as the size of the system increases, the
effects of finiteness of the time interval reflected in, e.g.,
Gibbs oscillations seems to be small, whereas we found serious
effects in the case N = 6,10.

In Fig. 7 (right), we show the comparison between the
spectra obtained by the ED and WK method. In the WK
method, we took 52 samples, and we did not use a window
function for the DFT procedure. Here we again find a good
agreement but the variance of ensemble average is about the
same as the mean as we found in the case N = 10. We conclude
that for N = 16, the results of both methods are in good
agreement with those of ED.

With above observation, we also obtained spectra for
N � 20 by the AC method. Up to now, we adopted the
periodic boundary conditions (PBC). For a change and also
because in actual materials open boundary conditions (OBC)
are more natural, we show results for N = 20 obtained for both

boundary conditions. In Fig. 8 (left), the red curve (circles)
is the spectrum obtained with PBC and the blue curve with
triangles is that with OBC. We find that the spectrum of
OBC has a shaper double peak in the center, but the global
shape is similar in both cases. Finally, we present spectra
for N = 24,26 for OBC in Figs. 8 (center) and 8 (right),
respectively. We used nt = 163 84 with dt = 0.5 for N = 20
and nt = 8192 with dt = 0.5 for N = 24,26 and did not use
any windowing procedure.

The size dependence of the separation between double
peaks 
ω in the large size limit is an interesting issue and
has been discussed in the previous paper [14]. Following
the previous paper, we study the separation of the Fourier
transform of the autocorrelation function

Sxx(ω,H ) =
∫ T

−T

〈MxMx(t)〉eqe
−iωtdt. (68)

For this quantity, in the present system, the relation
Sxx(ω,H ) = Sxx(ω − γH,0) holds, where γ = gμB/�. And
thus, we study this quantity at H = 0, which is faster in
calculation than the case of nonzero H . At high temperatures
and when H is sufficiently larger than half of the separation
Hc ≡ 
ω/2γ , χ ′′(ω,H ) ∼ ωβSxx(ω,H )/2, and the separa-
tion in Sxx(ω,H ) at large H is almost the same as that in
χ ′′(ω,H ). In χ ′′(ω,H ) for H < Hc, the double-peak structure
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FIG. 8. (Color online) Spectrum obtained by the AC method with the open boundary condition (blue line) at infinite temperature β−1 =
100 K. Left: N = 20. The red line denotes the spectrum with the periodic boundary condition. Center: N = 24. Right:N = 26.
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FIG. 9. (Color online) Size dependence of the separation of the
double peaks. The red points correspond to the system size N =
14,16,20,22,24,26, and 28 from right to left. The error bars denote
the mesh size of 
ω determined by the observation time T .

is deformed because of the factor 1 − e−βω in Eq. (1) and the
structure of the so-called antiferromagnetic resonance appears.
Size dependence of the separation of the double peaks is
depicted in Fig. 9. The error bar in the figure denotes the
mesh size of 
ω determined by the observation time. Here we
find that the separation roughly decreases with the size as 1/N

at least up to N = 22, and that the separations of N = 22, 24,
and 26 are almost the same. But at N = 28 it again decreases.
Thus, at this moment, we cannot conclude how the separation
behaves in the large size limit. This problem will be studied
elsewhere.

VII. SUMMARY AND DISCUSSION

We have studied time-domain methods to compute the
ESR spectrum through sampling of thermal typical states.
Although it has been known that the autocorrelation function
can be obtained with a few samples thanks to the typicality
property, practical aspects of these calculations have not yet
been explored.

We proposed a method to obtain the spectrum from the
motion of Mx by making use of the Wiener-Khinchin-like
relation. The dynamics of magnetization from sampled initial
states provides an estimate the spectrum density. But in the
quantum equilibrium state the expectations value of Mx(t)
and the sampled data for the spectrum density Mx

β (ω) are
zero. Then, we take thermal typical states as initial states and
obtain the average of squared spectrum density |Mx

β (ω)|2,
i.e., the Fourier transform of the autocorrelation function.
To this end, we proposed a quantum mechanical version
of the Wiener-Khinchin relation. However, it should be
mentioned that the WK method does not directly relate to the
experimental situation. Because 〈Mx

β (ω)〉eq = 0, the averaged
squared spectrum density |Mx

β (ω)|2 does not converge to a
mean value but has a finite distribution, also for large systems.
Therefore the convergence property of the thermal typical state
does not apply in this case. We studied statistical properties
of the distribution and found that form of the distribution

converges in the sense of typicality. We derived bounds on
the relative variance of the distribution.

In time domain methods the effect of finite observation time
is an important issue. We studied this aspect in detail for both
the AC and WK method. It was found that for small systems,
the AC method is suffering from severe effect of finiteness of T

while in the WK method the effect is practically suppressed.
The WK and AC methods give complementary information
for the effects of finite T and a comparison between them is
useful to confirm that the obtained result is not affected by the
finiteness observation time. We also found that for both the
AC and WK methods, the effect of finiteness of T decreases
with increasing system size. As the system size increases, the
efficiency of the AC method increases, too.

We presented the spectrum for a one-dimensional XXZ
chain up with to N = 26 spins, where we found the double-
peak structure clearly. In order to study size dependence of the
separation of the double peak, we calculated the Fourier trans-
form of the autocorrelation function, Sxx(ω,H = 0), which is
almost the same as the χ (ω + γH,H ) at high temperatures
when H is larger than the separation. We obtained the data
up to N = 28. It was discussed in a previous paper [14] that
the shape of spectrum reflects of the dynamical property of
the force for spin dynamics, i.e., torque, and whether the
double-peak structure remains in large sizes or not gives an
important information for the autocorrelation of the torque.
The present study for longer chains gives data for the size
dependence. But from the data, we could not conclude yet
whether it disappears in the thermodynamic limit or not. The
study on longer chain is necessary, but at the present computer
facilities it would take very long time, and we will study this
problem elsewhere separately with a faster computer.

In our numerical work, we focused on chains with an even
number of spins. The ESR spectra of chains with an odd
number of spins show behavior that qualitatively differs from
the one of chains with an even number of spins, meriting a
study in its own right. As the focus of the present paper was
on time-domain methods rather than on specific applications,
we relegate this study to future research.

In summary, in this paper, we proposed the new method to
compute the ESR spectrum by making use of mathematical
relations discussed in Sec. III. We have studied one particular
time-domain method based on the Wiener-Khinchin theorem
but there are many other ways to obtain the spectrum density by
making use of relations similar to Wiener-Khinchin theorem.
For example, if we calculate E[〈�β |Mx |�β〉〈�β |Mx(t)|�β〉],
we can obtain a similar expression. Studying the relation
among them is an interesting problem for future research.
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FIG. 10. (Color online) These figures illustrate the forms of the DFT spectra obtained by the AC method. The dashed blue curves denote
the spectra of |Ĥ (ω)| : n = 10 000, 
 = 0.5. Note that these curves are just theoretical auxiliary lines and not the DFT spectra we can observe
in practice. Left: The true δ peak denoted by the green box is located at k = 0, which is one of the mesh points. In this case, the DFT spectrum
(red rods) appears as a single peak and reproduces the original δ peak precisely. Right: The true δ peak is located at k = 0.7, which is between
the mesh points. In this case, the DFT spectrum, which is observed only on the mesh points, shows oscillation including negative peaks.

APPENDIX: EFFECT OF FINITENESS OF THE
OBSERVATION TIME DOMAIN AND WINDOW FUNCTION

Because the observation time is finite [−T ,T ] and we have
a finite number of points in time, the discrete Fourier transform
(DFT) gives amplitude at the discrete points

ωk = 
ω × k, 
ω = π

T
, k : integer. (A1)

On the other hand, the resonance points are not necessarily
at those points. If the spectrum has a δ function at ω, this is
expressed by several point at the discrete points in the spectrum
obtained by the DFT [30]. We study this phenomenon for the
AC and WK methods.

For a time sequence of data {fk}∞k=−∞ such as the autocor-
relation function, the spectrum of the process is given by the
DFT:

F (ω) = 


∞∑
k=−∞

fke
−iωk


[
�

∫ ∞

−∞
f (t)e−iωtdt

]
, (A2)

fk = 1

2π

∫ π/


−π/


F (ω)eiωk
dω, (A3)

where 
 is the sampling interval. For a set with a finite number,
say, 2n, the transformation reads

F̃ (ω) ≡ 


n−1∑
k=−n

fke
−iωk
 = 


∞∑
k=−∞

fkhke
−iωk
, (A4)
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FIG. 11. (Color online) These figures illustrate the forms of the DFT spectra obtained by the WK method. The dashed blue curves denote
the spectra of 1

4T
|Ĥ (ω)|2 : n = 10 000, 
 = 0.5. Left: The true δ peak denoted by the green box is located at k = 0, which is one of the mesh

points. In this case, the DFT spectrum (red rods) appears as a single peak and its height is half of that of the original δ peak. But it is noted that
the interval of the mesh points in the WK method is twice as wide as that in the AC method, and so we can consider the area of the peak is
conserved. (See the next subsection in detail.) Right: The true δ peak is located at k = 0.7, which is between the mesh points. In this case, the
DFT spectrum, which is observed only on the mesh points, shows oscillation. But in contrast to the AC method, the spectrum never include the
negative peaks.

214431-13



IKEUCHI, DE RAEDT, BERTAINA, AND MIYASHITA PHYSICAL REVIEW B 92, 214431 (2015)

-2000

2000

4000

6000

8000

10000

-6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6

k

y

-2000

2000

4000

6000

8000

10000

-6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6

k

y

FIG. 12. (Color online) These figures illustrate the forms of the DFT spectra obtained by the AC method with a Gaussian window. The
dashed blue curves denote the spectra |G(ω)|: n = 10 000, 
 = 0.5, and α = 7. Left: The true δ peak denoted by the green box is located at
k = 0, which is one of the mesh points. In this case, the DFT spectrum (red rods) appears as a Gaussian-like function with mean 0. Its variance
is determined by the artificial α. Right: The true δ peak is located at k = 0.7, which is between the mesh points. Even in this case, the oscillation
is not observed due to the masking effect of the Gaussian window.

where

hk =
{

1 k = 0, ± 1, ± 2 . . . , ± (n − 1), − n

0 otherwise.
(A5)

Expression Eq. (A4) can be written as a convolution:

F̃ (ω) = 1

2π

∫ π/


−π/


F (ω′)H (ω − ω′)dω

= 1

2π

∫ π/


−π/


F (ω − ω′)H (ω′)dω, (A6)

where H (ω) is the DFT of {hk}k

H (ω) = 


n−1∑
k=−n

e−iωk
 = 
ei ω

2

sin(ωn
)

sin(ω
/2)
, (A7)

indicating that the spectrum we want is deformed by

Ĥ (ω) ≡ 

sin(ωn
)

sin(ω
/2)
. (A8)

In Fig. 10 (left), the blue dashed curve shows the modulus of
Eq. (A8). If F (ω) is a δ function δ(ω − ωpeak) the spectrum
obtained by DFT is

F̃ (ω) = 1

2π
H (ω − ωpeak) (A9)

for ω given by the mesh points {ωk}. If ωpeak is one of the mesh
points, then the DFT spectrum has a single peak. However, if
ωpeak is located in an interval of mesh points, then the DFT
spectrum has several peaks as shown in Fig. 10 (right). The
oscillation of H (ω) even gives peaks with negative amplitude.

The red rods show how the δ function in the correct spectrum at
the position of green box appears in finite discrete spectrum in
the AC and WK methods. In contrast to the AC method, in the
WK method the spectrum is squared and the spectrum is given
by |F̃ (ω)|2, hence the spectrum is positive by construction.
Although Gibbs oscillations are present, they give a width due
to the finite time window and do not affect the spectrum much.
In Figs. 10 and 11, we show comparison of Ĥ (ω) and |Ĥ (ω)|2,
respectively. Note that in the WK method, we can obtain the
discrete spectrum only at the points of even k’s.

In order to avoid these apparent negative peaks, a window
function, often a Gaussian, is introduced:∫ T

−T

f (t)e−iωt e− 1
2 (α t

T
)2
dt = 2Re

[∫ T

0
f (t)e−iωt e− 1

2 (α t
T

)2
dt

]
.

(A10)

This treatment replaces fk by

gk = hke
− 1

2 (α k
n

)2
, k = 0, ± 1, ± 2, . . . . (A11)

The resulting spectrum |G(ω)| is depicted in Fig. 12.
The parameter α determines the artificial resolution of

the spectrum. Within this resolution, the Gibbs oscillations
are smeared out, hence we can reproduce the spectrum as
discussed in Sec. II C.

The width of the Gaussian window α is known to be taken
as

e− 1
2 (α n

n
)2 = ε → α2 = −2 ln ε, (A12)

where ε is a number of the order of the smallest number of the
computer resolution, say, ε = 10−12.
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