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Abstract

Large structures are systems composed by a significant number of components with parallel or series distributions.
How these components fail and interact, aggravate the complexity of the main structure reliability calculation. Some
methods commonly proposed to reduce this complexity by dividing the system into segments of similar properties
using dynamic or static approaches. Dynamic segmentations may depend on how aggressive is the structure’s sur-
rounding conditions (e.g., the soil properties). Static segmentations could be given by fixed distances. However, in a
few cases, these divisions follow a condition-based approach. This paper proposes an alternative dynamic segmenta-
tion to identify preliminary critical segments based on a Changepoint approach and data obtained from inspections.
Changepoints algorithms have been used to determine changes in spatial measurements for a further reliability eval-
uation with appropriate limit state functions. This work focuses on onshore pipelines subjected to corrosion defects
based on information obtained from In-Line Inspections (ILI). Onshore pipelines cross through a variety of soils,
water corridors, and densely populated areas promoting spatial-dependent degradation processes like corrosion. ILI
inspections are commonly used to identify the condition of the pipeline in terms of the remaining wall and location
of metal loss at the inner and outer walls by using magnetic or ultrasonic instruments. Based on a burst failure limit
state, the segments obtained with the changepoints approach are compared with a soil and static segmentations. The
results indicate that the proposed approach could identify the main critical points of the pipeline using segments with
statistical significance.

Keywords: Reliability, Dynamic segmentation, Changepoints, Corroding pipeline

1. Introduction

1.1. Large structures context
Large structures are systems composed by a set of parallel or serial components (or subsystems) that define the

serviceability of the entire structure. Some examples include onshore/offshore pipelines, where commonly segments
from 10 to 14 meters are joint together in series using welding processes. Also, sheet piling harbors use parallel steel
sheets as a retaining wall and pavement sections in steel or reinforced concrete structures like bridges. Reliability of
large structures is quite complicated; even the definition of failure could use cumbersome expressions. In some cases
even asymptotic perspectives have been considered, where the number of components is assumed to tend infinity,
aiming to find some limit reliability forms [1]. For instance, consider a series system with n components that can fail
independently from each other with a reliability R1, . . . ,Rn. The reliability of the system is obtained as the product
of the reliability of each defect, Rp =

Qn
i Ri, which means that the failure probability (i.e., the complementary of the

reliability) would tend to 1 for a significant number of components, although they have an almost negligible failure
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probability. This pattern should attract much attention for treats like corrosion, considering that it is one of the top
priorities for steel structures like underground onshore/offshore pipelines and those exposed to marine environments,
e.g., sheet piling harbors [2–5].

Corrosion reduces the thickness of the steel, making it prone to a plastic failure or even a rupture or collapse,
depending on the applied loads such as the operating pressure, surrounding stresses, or climate conditions. Corrosion
is a time and space-dependent phenomenon that depends on several factors including the properties of the soil, the
metabolic activity of microorganisms or fungi, and the presence of imperfections on the steel or stray currents. For
instance, soils with a higher concentration of chlorides, sulfates, acidic pH, and the presence of bacteria or fungi
have a significant effect on external corrosion on steel pipelines [6]. Also, water pollution and temperature have
been acknowledged to influence accelerated low water corrosion (ALWC), and immersion corrosion on sheet piling
harbors [2]. The challenge relies on the fact that steel structures usually cover extensive distances, especially for
onshore/offshore pipelines, where pipeline routes can reach distances up to 4700 km (e.g., Eastern Siberia-Pacific
Ocean oil pipeline). These structures may pass through a variety of soils, water corridors, and densely populated
areas. The varied soil conditions surrounding the structure and the way the structure is installed (e.g., underground,
aboveground) and maintained, also affect the space-dependent degradation process during its life-cycle, which has
raised several efforts regarding their modeling, maintenance, and repair [3, 7, 8].

1.2. Corroding pipeline integrity
Inspection plays a significant role in future interventions by updating the structure condition and allowing decision-

makers to evaluate the current maintenance, repair, and inspection planning. In this direction, different inspection
and assessment strategies have been proposed to prioritize critical sections [9–11], in some cases, even considering
sampling or partial inspections [12]. Specifically for onshore pipelines, Oil & Gas companies implement In-Line (ILI)
inspections using a set of magnetic (Magnetic Flux Leakage, MFL) or ultrasonic (UT) sensors to provide information
about the size and location of the defects detected along the pipeline. This information serves to assess the current
condition of pipelines based on different empirical, numerical, or probabilistic approaches. Empirical approaches
usually cover standards or best practices of Oil & Gas companies; see for instance [13, 14]. Numerical approaches
usually deal with Finite Elements simulations, and probabilistic approaches evaluate plastic collapse, yielding, or leak
failure criteria based on safety margins or limit state functions (see [15–18]). In either case, these analyses aim to
support decisions for integrity management and pipeline risk analysis.

Risk analyses for corroded pipelines consider how likely is a Loss of Containment (LOC) based on the metal
thinning and the consequences it may follow. The likelihood could be estimated using historical records as the
number of LOCs given the timespan and distance traveled by the fluid (i.e., failures/km·year); another common
alternative follows a spatial-dependent probabilistic perspective with a segmentation that assumes a constant behavior
per segment. The consequences would depend on the accidental scenario given by, for example, the pipeline height,
soil conditions, and release mode [19].

1.3. Segmentation of corroding pipelines
Segmentation is the process of defining pipe sectors with similar characteristics (external or internal) that can

be used as units for integrity evaluation. Segmentation can be static – i.e., initially predefined–, or dynamic - i.e.,
adaptable to mechanical or external conditions. Static segmentations use fixed distances defined arbitrarily (e.g.,
1 km), or by specific mechanical elements of particular interest such as valves. In static segmentation, there is
considerable variability in the results of risk assessment and may increase intervention costs due to unnecessary
evaluations. In the dynamic segmentation, the length is not relevant as long as the feature on which the segmentation is
evaluated remains constant throughout the entire segment [20]. A dynamic segmentation seems to be more reasonable
for corroded steel, where localized defects are common along to the structure.

A segmentation provides valuable information for decision-makers regarding future pipeline interventions in quan-
titative risk analysis in terms of how segments are prioritized, and maintenance planning is supported. Different cri-
teria to segment the pipeline, including design, operating, and external soil conditions, have been proposed. Some of
the reported approaches that segment the pipeline for analysis of reliability or consequence are summarized in Table
1. Note that in the absence of information, failure frequency rates can be used as a preliminary assessment, but these
segments would only consider the pipeline age and not the real pipeline condition.
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Table 1: Pipeline segmentation criteria

Source Segmentation criterion Classification
Sahraoui et al. [21] Soil type Dynamic
Hicks & Ward [22] Op. Pressure Dynamic

Diameter Dynamic
Wall thickness Dynamic
Age of pipeline Dynamic
Coating condition Dynamic
Soil conditions Dynamic
Population density Dynamic

Martı́nez et al. [23] Pig stations Static
Bonvicini et al.
[24] Soil type Dynamic

Ground water table Dynamic
Leak position Static

De Leon & Flores
Macı́as [25] Every 10 km Static

Shan et al. [26] Population density Dynamic
Soil corrosivity Dynamic
Coating condition Dynamic

Liang et al. [27] Density of population Dynamic
High Consequence Areas (HCA) Dynamic
Changes in the pipeline laying Dynamic
Age of pipeline Dynamic
Soil conditions Dynamic

The available dynamic segmentations commonly divide the pipeline based on the type of soil, population density,
or pipeline design features [28]. Nevertheless, few works divide the pipeline considering the current condition of
the pipeline; in this regard, Amaya-Gómez and co-workers proposed a continuous segmentation following reliability
projections [29]. Wang and co-workers [30] developed a framework to cluster defects depending on their corrosion
rates, which are later used to estimate a space-dependent corrosion rate probability density. This approach considers
defect measurements obtained from In-Line (ILI) inspections but also require high sensitive sensors to evaluate the
soil conditions along the pipeline abscissa. This work also focuses on segments with critical sections based on the
likelihood of a LOC, after an ILI inspection takes place. The consequences were not contemplated in this work bearing
in mind that critical segments should be identified and later prioritized to avoid any LOC, unnecessary shutdown, or
costly repair. This process would contemplate the possible effects given a LOC (i.e., thermal radiation, overpressure,
or toxic dispersion), but they are out of the scope of this work due to significant uncertainty [31, 32].

1.4. Objective and paper structure
A sound partition should consider segments that depend on both the size of the defects and the number of defects

per segment. For this purpose, a Changepoint Analysis is proposed in this work following the PELT (Pruned Exact
Linear Time) method reported by Killick et al. [33] based on the size of the defects detected with an inspection. This
algorithm aims to identify the jumps where statistical parameters like the mean or variance change based on a set of
measurements as it is illustrated in Figure 1.

The approach proposed can be used as a screening tool to make a preliminary identification of critical segments
in large structures, considering that this information should be validated using field measurements. The main contri-
butions of this paper can be summarized as follows:

• The proposed approach is an alternative to segment large structures in the main direction given inspection
results. The approach seeks to support further reliability evaluation using appropriate limit state functions.
Besides, it can be used jointly with a consequence-based segmentation based on high consequence areas, main-
tenance sensitive locations, or the position of fixed elements such as valves to identify sections with inadequate
risk levels.

• This work proposes a dynamic segmentation for corroding pipelines using a condition-based approach based on
the depth, length, and width of the defects for the first time. Previous approaches, consider pipeline segments
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Figure 1: Scheme of changepoints based on the a) variance and b) mean of the data.

based on consequence rather than reliability perspectives such as the population density or the river-crossings.
These additional changepoints can be incorporated into the approach if required.

• The paper compares the proposed approach with other segmentation techniques using pipeline soil distribution
and a fixed segmentation. This comparison considers the lack of detailed information on a low scale of soils
and how broad categories may not provide enough information regarding the corrosion aggressiveness. Also,
this comparison highlights that fixed approaches do not capture possible variations along the pipeline, and even
misleading results can be obtained because of the number of defects per segment.

The document is structured as follows: Section 2 presents the proposed segmentation approach based on ILI mea-
surements and the changepoints algorithm. Section 3 describes the case study and its spatial dependencies. Section
4 shows the results and discussion using the case study and compares the results with two additional segmentation.
Finally, conclusions and future perspectives are given in Section 5.

2. Dynamic segmentation based on the Changepoint algorithm

2.1. Proposed approach overview
The methodology for the proposed dynamic segmentation is divided into two main stages, as is depicted in Figure

2, which have been used for structural inspections to characterize system spatial variability [34–36]. First, data pro-
cessing is developed based on the defect depth, length, and width from each pipe wall reported at the ILI. Second, the
dynamic segments are determined using the Changepoint algorithm subject to a penalty value to identify preliminary
critical segments. This methodology will be described in more detail below.

2.2. Data processing
2.2.1. Data gathering - In-Line inspections

In pipelines, the primary testing procedure used to evaluate the evolution of corrosion with time is In-Line In-
spections. ILI measurements provide valuable information about the condition to support operating and maintenance
decisions. According to the Pipeline Operators Forum (POF) [37], the result of an ILI contains a pipe tally, list of
anomalies, and a list of clusters. The pipe tally presents a list of all pipeline and anomaly features, which include: (i)
Location and orientation parameters, (ii) structural parameters, and (iii) information regarding anomalies. The list of
anomalies describes the anomalies found above the inspection tool reporting threshold. This list includes information
regarding the geometric size of the defects (i.e., width, length, and depth), their location, and orientation using a clock-
position analogy. Finally, a defect-cluster classification is provided in the list of defects following the ASME B31G
criterion, which considers a relative distance less than 6t longitudinally or circumferentially to cluster two defects,
where t stands for the intact pipeline wall thickness [37].
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Figure 2: Proposed methodology using the changepoints algorithm

2.2.2. Preliminary segmentation - Moving Average Filter
As it was depicted in Figure 1, the changepoints algorithm identifies the location where the mean or variance

changes for a set of measurement in a principal direction. Corrosion defects lie in a ”2D-plane” following a cylindrical
fold with different metal loss measurements along the abscissa main direction, which means that a highly noisy
”signal” is foreseen. This noisy set of measurements would represent a significant number of changepoints that
would overfit a further segmentation. Because this segmentation aims to identify relevant jumps regarding defects
dimensions, a Moving Average Filter is applied to the data obtained from the ILI runs. This filter is one of the most
used for signal processors; it produces an output signal from the average of M-sample points from an input signal.
Formally, consider as the input signal a set of L measurements x1, . . . , xL associated with the depth, length, or width
that are sorted in the abscissa direction (i.e., a1  · · ·  aL), and M be a positive odd integer such that M ⌧ L. The
filtered signal would be given as follows:

yi =
1
M

(M�1)/2
X

j=�(M�1)/2

xi+ j, i =
(M � 1)

2
+ 1, . . . ,L � (M � 1)

2
(1)

As M grows, a smoother output signal would be expected where sharp transitions are well defined, but a poor
”frequency response” of the measurement may also occur if this parameter is very high. For practical purposes, it is
assumed that M = d 0.01L e, i.e., as the ceiling or higher nearest integer of the 1% of the number of measurements.
Because this number may be quite small, let M = max (31, d 0.01L e) to assure a filtering process that is statistically
more significant.

2.2.3. Moran’s Index Evaluation
The preliminary segmentation is evaluated using the Moran’s Index, which is a global measure of spatial autocor-

relation, based on the corrosion defects measurements (depth, length, and width) and their locations on the pipeline.
The possible correlations are classified as positive, negative, or no spatial autocorrelation considering a dispersed,
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random, or clustered distribution as is illustrated in Figure 3. For the sake of simplicity, these measurements would
be represented by x. Consider a set of observations x1, . . . , xM use as part of the input signal and denote its average
as x̄. The Moran’s index is then given by the ratio between a measure of the covariance of the observations and the
corresponding variance [38]:

I =
M
S 0

PM
i=1

PM
j=1 wi j(xi � x̄)(x j � x̄)
PM

i=1(xi � x̄)2
, (2)

where S 0 =
PM

i=1
PM

j=1 wi j, and W = [wi j] is a matrix of weights such that
PM

j=1 wi j = 1, for i = 1, . . . ,M. Particularly,
wi j corresponds to the weight of x j used to calculate the weighted average of xi [38]; thus, it follows that wii = 0,8i.

Figure 3: Spatial autocorrelation scheme

Assuming that the moments of Moran’s Index can be estimated by permuting M! times the actual observations
and that there is no spatial autocorrelation (Null Hypothesis), these moments are given by [38]:

E(I) = � 1
(M � 1)

, (3)

�2(I) =
M[(M2 � 3M + 3)S 1 � MS 2 + 3S 2

0] � k[M(M � 1)S 1 � 2MS 2 + 6S 2
0]

(M � 1)(M � 2)(M � 3)S 2
0

, (4)

where,

S 1 =
1
2

M
X

i=1

M
X

j=1

(wi j + wji)2, (5)

S 2 =

M
X

i=1

0

B

B

B

B

B

B

@

M
X

j=1

wi j +

M
X

j=1

wji

1

C

C

C

C

C

C

A

2

, and (6)

k =
1/M

PM
i=1(xi � x̄)4

h

1/M
PM

i=1(xi � x̄)2
i2 . (7)

Based on these moments, the null hypothesis (no spatial autocorrelation) can be assessed using the expected value
of the observations. For this work, the functions included in the Analyses of Phylogenetics and Evolution (APE)
library in R-project were used to calculate the Moran’s Index with the following considerations:

1. xi = (ai, pi), where ai and pi are the defect position at the pipeline abscissa and the perimeter, respectively; and

2. wi j =
1

1 + d(xi, x j)
, where d(xi, x j) is the Euclidean distance between observations xi and x j.
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2.3. Dynamic segmentation
2.3.1. Changepoint algorithm overview

Consider a sequence of data yn
1 = (y1, . . . , yn) and suppose that m changepoints were determined with positions

⌧m
1 = (⌧1, . . . , ⌧m), where ⌧i 2 {1, . . . , n} correspond to y’s ordered index (i.e., ⌧i < ⌧ j if and only if i < j) [33]. Then,

the data is divided into m + 1 segments that are not necessarily equally separated. These changepoints are commonly
determined by minimizing the following expression [33]:

m+1
X

i=1

[C(y⌧i
(⌧i�1+1))] + f (m), (8)

where C is a cost function that depends on the segment evaluated and f (m) is a penalty factor to avoid overfitting,
which for the linear case is used as f (m) = �m with � a constant penalty value. This cost function can follow different
approaches, but commonly the log-likelihood is used. In this regard, the changes in the mean can be evaluated through
the cost of segments given a common variance �2 as in Eq. 9 [39]. According to Haynes et al. [39], the first term of
this cost function can be omitted to obtain a square error cost.

C(yt
(s+1)) = (t � s) log�2 +

1
�2

t
X

j=s+1

0

B

B

B

B

B

@

y j �
1

t � s

t
X

i=s+1

yi

1

C

C

C

C

C

A

2

. (9)

There are different approaches to find the optimal segments such as the Segmented Neighborhood (SN), the
Optimal Partitioning (OP), Binary Segmentations (BS), and the Pruned Exact Linear Time method (PELT). From
these approaches, PELT was selected because it is an efficient and versatile method in comparison to other approaches
[33].

2.3.2. Selection of the Penalty value
The sequence of data yn

1 is associated with the mean depth, length, and width of the defects. The mean was chosen
considering the significant variability along the pipeline abscissa and possible exaggerated number of segments if a
maximum criterion was used, especially for the defect length and width. The changepoint algorithm depends on a
penalty value � that is initially unknown (Eq. 8), but it has a direct relation to the number of changepoints: a higher
penalty value would represent a fewer number of changepoints for the PELT partitioning. To deal with this parameter,
the CROPS (Changepoints for a Range of Penalties) algorithm of Haynes et al. [39] was implemented with the PELT
optimal splitting. This algorithm finds the optimal number of changepoints for intermediate penalties intervals given
minimum (�min) and maximum (�max) values as it was proved by Haynes et al. [39] (see Theorem 3.1).

The outcome of the CROPS algorithm is a series of optimal segmentations from intermediate penalty values given
[�min, �max]. The best segmentation is chosen following the recommendations used by Lavielle [40] and Haynes et al.
[41], which consider a sensitivity analysis using the segmentation cost and the number of changepoints. Recall that
the cost decreases as the number of changepoints rises, so a function C = h(m) would have an ”elbow” or point of
maximum curvature that avoids significant false-positive jumps on the final segmentation, i.e., some segments with a
small cost reduction. These jumps are illustrated in Figure 4 for the second alternative of segmentation; for instance,
note that around the third kilometer, there is a changepoint for a marginal difference in the mean defect measurement.

The point of maximum curvature is estimated using a non-parametric fitting of h(m) with cubic splines and finite
differences. Cubic splines are used to approximate h(m) continuously following a log-log scale to avoid any scaling
problem, whereas finite differences are used to estimate its first two derivatives and calculate the curvature  as follows
(where a prime represents a derivate d

dm ):

 =
|C00|

�

1 + C02�3/2 . (10)

For this work, the Least-squares spline modeling functions slmengine and slmeval developed by John D’Errico
[42] are used because several knots can be imposed, which in turn, follow an optimal location. This number of knots
is set as the half number of points obtained from CROPS, but again because a relatively short segment may be initially
selected, this number is suggested to be as low as 100.
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Figure 4: Scheme of two segmentation alternative with low and high number of changepoints.

2.3.3. Pipeline segmentation
Once the penalty values are chosen, the next step focuses on determining a dynamic segmentation based on the

results from the defect depth, length, and width. Basically, the changepoints are merged in one segmentation and
those segments with less than 30 defects are joint together to the nearest segment. Formally, let do

1 := {d1, . . . , do},
lp
1 := {l1, . . . , lp}, and wq

1 := {w1, . . . ,wq} be the segmentations from the defect depth, length, and width, and define the
ordered union of these segmentations as U := sort({do

1 , l
p
1 ,w

q
1}), which without loss of generality, can be denoted as

u1, u2, . . . , uo+p+q. Estimate the number defects within each of these elements including u0 = 0 and uo+p+q+1 = Lp; i.e.,
the defects from the ILI in the segments U j = [u j, u j+1] for j = 0, . . . , (o+ p+q). If there exist a j where the number of
points kU jk  30, then u j or u j+1 should be deleted depending on which of them is closer to u j�1 or u j+2, respectively.
The reader should bear in mind that a near intact pipeline may produce a segmentation with few changepoints, so the
analysis can be limited to the affected area.

2.4. Reliability-based critical segments
For each of the segments obtained previously, a failure probability following a plastic collapse are assessed, aiming

to identify segments likely to fail. A plastic collapse considers a pressure-based limit state (i.e., g = Pb�Pop) between
the pipeline burst pressure (Pb), in which the pipe wall will bulge outward and reach a point of instability, and the
pipeline operating pressure (Pop). If g  0 the system is in a failure state, whereas if g > 0 is in a safe mode.
The failure probability of an entire segment, PS eg

f , would be bounded as follows. Let P1
f , . . . , P

h
f denote the failure

probability of h defects in a given segment, then

max {P1
f , . . . , P

h
f }  PS eg

f  1 �
h

Y

i=i

(1 � Pi
f ). (11)

The lowest bound considers a failure of completely correlated defects, whereas the upper bound assumes that the
failure of each defect is independent of each other. Although these bounds could be broad estimations and there are
other narrower approximations [43], this approach is considered for illustrative purposes.

3. Spatial dependencies of the case study

3.1. Main parameters
The case study concerns an API 5LX52 pipeline 45km long, its height lies between 2560 to 2660m above the sea

level, and it has six main valves. The pipeline has welded covers, supports, and flanges along the route, as shown in
Figure 5. The pipeline is mainly localized in a plain terrain with inclinations lower than 7�, it crosses two mountain
sections, and two urban zones. The climate is mainly cold dry, but there are also cold-humid zones. The mean length
for the pipe joints is 10.7m, and the welded cover is 0.7m. The location of the welded covers, the supports, and valves
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near kilometer 33 are associated with a river crossing, whereas the last 10km are close to urban zones. The pipeline
has a nominal wall thickness of 6.35mm and an external diameter of 273.1mm. The analysis presented here was based
on data obtained from two consecutive ILI measurements two years apart. According to the ILI report, this diameter is
maintained along the entire abscissa, while the wall thickness exhibits greater variability due to the location of welded
covers, valves, dents, and manufacture flaws. The defects measuring tool was a Magnetic Flux Leakage (MFL). Based
on information reported in Amaya-Gómez et al. [15] about the inspection vendor, it can be assumed a circumferential
uncertainty of 5�during the inspection. The measurement uncertainties of the defect depth, length, and width are given
by dILI = dreal ± ✏d, lILI = lreal ± ✏l, and wILI = wreal ± ✏w, where dILI , lILI ,wILI stand for the depth, length, and width
reported by the ILI tool, and ✏d, ✏l, ✏w are the measurement errors. The measurement errors can be assumed to follow
normal distributions centered at 0 with standard deviations obtained from the inspection vendors [44]. It is reasonable
to assume that ✏d = 0.1 t with t the nominal wall thickness, ✏l = ✏w = 11.70mm, considering a length and width
accuracy of 15mm with a confidence of 80% of the data. For confidential agreements, further details of the case study
cannot be provided.
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Figure 5: Pipeline main parameters based on the abscissa and height.

Regarding the pipeline operation, Figure 6a shows that both ILI inspections report small fluctuations in the mean
operating velocity (around 2.2 m/s). Figure 6b depicts slightly higher differences in temperature from 27 to 34�C.
Following the results of authors like Qi et al. (2014) [45] and Prawoto et al. (2009) [46], higher corrosion rates would
be expected near 5km and 22km, where the highest temperatures are reported.
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Figure 6: a) operating velocity and b) temperature along the abscissa.

Table 2 shows a broad classification of the soil along the pipeline following the taxonomy of the USDA (United
States Department of Agriculture). The pipeline has a bituminous coating of coal tar and an impressed current cathodic
protection (ICCP) system. Coal tar is composed principally of aromatic hydrocarbons that constitute the foremost the
liquid condensate of the distillation process from coal to coke [47]. Coal-tar-based coatings have exceptional moisture
resistance; however, some disadvantages of these coats are poor light stability and possible cracks at the upper surface
coming from an oxidation process due to a higher level of unsaturation [47]. Thicker layers can protect the pipeline,
but a process of delamination is expected in a higher proportion than a polyethylene coat [48].

9



Table 2: Pipeline segmentation based on the USDA soil classification

Segment* Category Classification ID

0.00-6.66km Complex Pachic Melanudands (50%), Andic Dystrudepts (20%), Aeric Endoaquepts (15%), Aquic
Hapludands (15%) Soil 1

6.66-8.2km Association Humic Lithic Eutrudepts (35%), Typic Placudands (25%), Dystric Eutrudepts (25%) Soil 2

8.2-9.66km Complex Pachic Melanudands (50%), Andic Dystrudepts (20%), Aeric Endoaquepts (15%), Aquic
Hapludands (15%) Soil 1

9.66-11.61km Association Humic Dystrudepts (60%), Typic Hapludalfs (40%) Soil 3
11.61-13.48km Complex Pachic Haplustands (35%), Humic Haplustands (35%), Fluventic Dystrustepts (30%) Soil 4
13.48-14.86km Association Aeric Epiaquents (60%), Fluvaquentic Endoaquepts (40%) Soil 5
14.86-15.89km Complex Humic Dystrustepts (40%), Typic Haplustalfs (35%), Fluvaquentic Endoaquepts (25%) Soil 6
15.89-17.62km Association Aeric Epiaquents (60%), Fluvaquentic Endoaquepts (40%) Soil 5
17.62-18.65km Complex Humic Dystrustepts (40%), Typic Haplustalfs (35%), Fluvaquentic Endoaquepts (25%) Soil 6
18.65-18.84km Association Typic Endoaquepts (40%), Aeric Endoaquepts (30%), Thaptic Hapludands (20%) Soil 7
18.84-21.40km Complex Humic Dystrustepts (40%), Typic Haplustalfs (35%), Fluvaquentic Endoaquepts (25%) Soil 6
21.40-22.63km Association Typic Endoaquepts (40%), Aeric Endoaquepts (30%), Thaptic Hapludands (20%) Soil 7
26.07-27.35km Complex Pachic Haplustands (35%), Humic Haplustands (35%), Fluventic Dystrustepts (30%) Soil 4
27.35-28.22km Urban zone - -
28.22-30.52km Association Aeric Epiaquents (60%), Fluvaquentic Endoaquepts (40%) Soil 5
30.52-33.10km Complex Pachic Haplustands (35%), Humic Haplustands (35%), Fluventic Dystrustepts (30%) Soil 4
33.10-35.45km Association Typic Endoaquepts (40%), Aeric Endoaquepts (30%), Thaptic Hapludands (20%) Soil 7
35.45-45.00km Urban zone - -
*Both ILI did not include information of the segment from 22.63 to 26.07km

3.2. Main descriptors of corrosion defects
The majority of defects are concentrated on the inner wall, which is somehow expected due to the coal-tar coating;

a summary statistics of these data sets is depicted in Table 3. Because further information about defects shape is not
available in ILI, the maximum rather than the average depth for each defect will be considered from now on.

Table 3: Summary of corrosion defects along the abscissa

Parameter Mean (Coefficient of Variation)
ILI-1 Inner wall ILI-2 Inner wall ILI-1 Outer wall ILI-2 Outer wall

Average depth (%t) 5.49 (0.26) 5.29 (0.27) 7.28 (0.49) 6.77 (0.46)
Maximum depth (%t) 11.54 (0.21) 11.14 (0.19) 15.84 (0.46) 14.62 (0.43)
Length (mm) 26.07 (0.49) 26.07 (0.43) 28.07 (0.48) 27.37 (0.44)
Width (mm) 22.5 (0.40) 25.92 (0.53) 28.81 (0.67) 32.60 (0.75)
Number of defects 23708 43399 2862 4264

The corrosion defects were classified following the categories reported by the Pipeline Operator Forum [37], and
their primary metal descriptors were compared. These categories include general corrosion, pitting, axial (circum-
ferential) grooving, pinhole, and axial (circumferential) slotting. Large and wide defects may be related to circum-
ferential/axial grooving or even general corrosion. Table 4 depicts the distributions of these categories where it can
be noticed that general and pitting corrosion cover around 90% in both inspections and pipe walls, but there is still
a relevant number of axial and circumferential grooving at the inner wall. The absence of pinholes and slotting de-
fects (both axial and circumferential) may suggest that ultrasonic tools were implemented for both inspections [49].
However, MFL tools were used instead, and circumferential slotting defects are actually included in these ILI reports,
but their corresponding dimensions do not fit into the POF boundaries for this defect type, so this classification was
ignored.

Following the categories mentioned above, the defect depth was compared again for each inspection and pipe
wall obtaining the results detailed in Table 5. This table indicates that defects classified as general corrosion and
circumferential grooving have a considerable proportion of profound defects, whereas axial grooving defects tend
to be less profound. This table also suggests that the outer wall from both inspections have a significant variability,
which could be attributed to the number of defects, soil aggressiveness, and the extreme conditions at the river-
crossing. Besides, the mean and coefficient of variation for the defect depths in the outer wall are similar than those
reported for the outer wall and that the mean depth decrease between the two consecutive inspections. These results
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Table 4: Defects classification according to their size

Category Number of defects (%Total defects)
ILI-1 Inner wall ILI-2 Inner wall ILI-1 Outer wall ILI-2 Outer wall

General 2007 (8%) 5766 (13%) 515 (18%) 891 (21%)
Pitting 19551 (82%) 34460 (79%) 2116 (74%) 2997 (70% )
Axial Grooving 1920 (8%) 2007 (5%) 164 (6%) 125 (3%)
Circumferential Grooving 230 (1%) 1166 (3%) 67 (2%) 271 (6%)

can be explained based on a more homogeneous degradation process due to the transporting fluid and the appearance
of new corrosion defects.

Table 5: Defect depth for each sizing category

Category Mean depth of defects %t (Coefficient of variation)
ILI-1 Inner wall ILI-2 Inner wall ILI-1 Outer wall ILI-2 Outer wall

General 12 (0.23) 11 (0.20) 17 (0.44) 15 (0.44)
Pitting 12 (0.22) 11 (0.19) 16 (0.45) 15 (0.42)
Axial Grooving 11 (0.18) 11 (0.14) 14 (0.25) 14 (0.31)
Circumferential Grooving 11 (0.27) 11 (0.21) 20 (0.73) 15 (0.54)

4. Results and discussion

4.1. Data processing
The Moving Average Filter was applied to each set of depth, length, and width measurements at both inspections

and pipe walls. This filter reduces the ”noisy” input signal as it is illustrated in Figure 7 for the depth of the defects at
the inner wall of the first ILI run. The choice of M (i.e., max (31, d 0.01L e)) assures a sharp profile that is useful for
the Changepoint approach; a higher parameter may produce an overly smooth data that hide possible mean jumps as
it can be seen for the case of d 0.1L e.
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Figure 7: a) Corrosion depth for the ILI run-1’s inner wall and b) Moving Average Filter output

The filtered data depicted in Figure 8 show remarkable patterns for the mean depth, length, and width along the
pipeline abscissa. Note, for instance, that near the eighth and tenth kilometers in the first ILI at the inner wall, there
are pronounced peaks for the three corrosion measurements, whereas around the 36th kilometer these measurements
decreased. These patterns are maintained for the second inspection at the inner wall, but defect depth reports more
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stable results close to 10%t due to the generation of new defects and the repair of the most profound defects with
welded covers. The outer wall results show more dispersed patterns for the depth, length, and width of the defects as
a result of a significantly lower number of defects in comparison to the inner wall, particular degradation processes at
the coal-tar coating, and the cross of a river.

Figure 8: Filtered measurements of the defect depth, length and width for a) ILI run-1’s inner wall, b) ILI run-2’s inner wall, c) ILI run-1’s outer
wall, and d) ILI run-2’s outer wall.

The Moran’s Index was calculated for the filtered segments considering a Null Hypothesis of no-spatial autocorre-
lation or also named Completely Spatial Randomness. For this purpose, the observed Moran’s Index, and the expected
indexes under the null hypothesis were determined and compared within each segment. Figure 9 depicts only the re-
sults for the depth measurements at the inner and outer wall for the second inspection considering that similar results
were obtained for the length and width of the defects. This figure includes a constant E(I) because the number of
points for each segment was M, and two bounds given by E(I) ± �(I). The results suggest that the segments tend to
have a positive correlation (i.e., more clustered), especially for the outer wall, but some segments have weak spatial
correlation as they lie within or near to this range. This result would support the use of the filter because they may
capture clustered data instead of entirely different measurements.

4.2. Dynamic segmentation and evaluation
The R-project function cpt.mean was used to determine the optimal changepoints (number and location) given

to a range of penalty values from �min = 1 to an arbitrarily large number �max = 10, 000 under CROPS approach
[50]. This function also provides the decreasing cost of the segmentation based on the number of changepoints as
is depicted in Figure 10 for the defects depth, length, and width for the inner wall at the first inspection. These
costs were approximated to continuous functions using cubic splines based on the slmengine function, and their
points of maximum curvature were determined for each case using finite differences. The results from each type of
measurements, inspection, and pipe wall are shown in Table 6. Note that because the depth of the defects presents less
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Figure 9: Observed and expected Moran’s Index for the a) Inner and b) Outer wall of the defect depth.

sharp jumps along the pipeline abscissa, the numbers of changepoints were lower than those for the length and width
of the defects.
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Figure 10: Changepoints vs. Segmentation cost for the defects a) depth, b) length, and c) width for the inner wall at the first inspection.

Table 6: Number of changepoints using a maximum curvature approach

Measurements Inspection Pipe wall Changepoints
Depth ILI Run-1 Inner 34

Outer 29
ILI Run-2 Inner 27

Outer 24
Length ILI Run-1 Inner 47

Outer 50
ILI Run-2 Inner 57

Outer 32
Width ILI Run-1 Inner 42

Outer 34
ILI Run-2 Inner 58

Outer 54
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For each dataset, the segments obtained from the defects depth, length, and width changepoints were merged
seeking for segments with at least 30 defects. Based on these segmentations, the mean depth, length, and width of the
defects for both inspections and pipe walls were determined and depicted in Figure 11 with their corresponding soil
classes. Regarding the inner wall, Figure 11a shows that the mean depth oscillates mostly between 11 and 13%t for the
first inspection and the second ILI measurement from 10.5 to 12%t. This reduction can be explained by the detection
of new corrosion defects near the reporting threshold of 10%t and the repair of the more profound defects like those
located at the 7th, 10-11th, and 17th kilometers. These segments were mostly associated with Soil 2, Soil 3, and Soil
7. Additionally, the defects crossing close the urban area reported relevant increments in both segments. Figure 11c
depicts the mean length for the inner wall, where it can be noticed that the mean length overall lies between 22 and
32mm for both inspections. This figure indicates that the larger defects are in the kilometers 12, 14, and 35, which
corresponds with the Soil 4, Soil 5, and Soil 7, but additionally, there are some larger segments reported close to the
Soil 2 and the urban area. Finally, Figure 11e depicts the mean width obtained using the proposed segmentation. This
figure displays a width between 20 and 30mm for the first inspection, whereas from 23 to 40mm for the second ILI.
In contrast to the previous results, the width of the defects tends to increase between the two inspections. The wider
defects are located near to the 11th (Soil 3) for both inspections and 7th kilometers (Soil 2) for the last inspection.

Regarding the results for the outer wall, Figure 11b depicts a higher variability on the depth of the defects than in
the inner wall, obtaining mean measurements between 12 and 22%t. This segmentation has significant changepoints
close to the 33rd kilometer, which are associated with the degradation of the river-crossing. The results indicate that
the deeper defects are located from 5 to 9 km (Soil 1 and Soil 2) and from 34 to 43 km (Soil 7 and UZ) for the first
inspection; after the repairs, an important depth increment occurred from 11 to 14 km (Soil 3 and Soil 4). Figure 11d
illustrates that the length of the defects oscillate near 30mm, lying among 20 and 45mm. Besides, this figure indicates
that the first kilometers (Soil 1) had the shorter lengths and the kilometer 42 report the longer defects. Finally,
Figure 11f presents the results of the mean width for both inspections, displaying a clear increment between the two
inspections (as in the inner wall). In addition, this figure shows some interesting results like the higher reported width
in the Soil 3 (10-11km), Soil 7 (near the river-crossing), and the segment from 29 to 32 km (Soil 4 and Soil 5). Also,
as in the mean length, it was reported the lowest results in the first five kilometers.

Although detailed comparisons with the soil properties are not possible due to a lack of information, it can be
inferred that results may not depend markedly on the type of the soil considering the ranges from each case. Nonethe-
less, the results from Figure 11 suggest that defects in Soil 2, Soil 3, Soil 5, and Soil 7 could be more aggressive than
the other classes for the outer wall. The results from these soil categories also illustrate relevant variability within
each soil category.

Overall, the challenge is choosing a satisfactory segmentation for the inner and outer wall to identify preliminary
critical segments of the pipeline where more in-depth analyses should be proposed. Consider, for instance, a static
segmentation every kilometer and also calculate the mean depth, length, and width as before (Figure 12). This figure
indicates that the length of the defects at the inner wall lied almost exclusively near 25mm for both inspections, but
in the previous result we have identified some relevant changes even greater than 30mm, which were completely
undetected. This pattern was also found for the depth and width at the 35th and 10th kilometers, respectively. Besides
some hidden changes, note that critical segments may be complicated to prioritize given to the length of the segment
evaluated; these segments may even have a limited number of defects reported.

4.3. Comparison of critical segments - A reliability approach
A burst failure probability was evaluated following the formulation detailed in Section 2.4 for the proposed dy-

namic segmentation (Section 4.2), a fixed segmentation every kilometer, and segmentation using the soil categories
(see Table 2) considering the Netto et al. model [51]. This selection was made considering that the case study has a
moderate toughness and that previous prediction errors were quite low using FEM and experimental tests, which indi-
cates that the model tends not to be conservative [16]. For this calculation, the failure probability was estimated using
10,000 Monte Carlo simulations for each reported defect, and the failure probability of each segment was bounded
using Eq. 11. For this purpose, the defect depth (d), and length (l) from these inspections were considered upon
the records of each segment, whereas the operating pressure (P), pipeline diameter (D), yield strength (�y), and the
wall thickness (t) were evaluated using random variables. The yield strength and the wall thickness use multiplicative
random factors following lognormal distributions, i.e., �y = �ILI

y · X�y and t = tILI · Xt; all these random variables are
shown in Table 7.
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Figure 11: Mean depth (a) inner and b) outer wall), mean length (c) inner and d) outer wall), and mean width (e) inner and f) outer wall) based on
the dynamic segmentation

Table 7: Case study random variables

Parameter D [mm] Pop [MPa] X�y [-] Xt [-]
Mean 273.1 10.34 1 1
COV 0.001 0.08 0.09 0.07
Distribution Normal Gumbel Lognormal Lognormal

The results are depicted in Figure 13. This figure illustrates how different segmentations based on the same
information may affect further intervention decisions. The proposed segmentation captures the main jumps described
by shorter fix segments. It leads to the computation of higher failures probabilities, which initially may suggest that
this segmentation overestimates the reliability of the pipeline. However, recall that the main role of the segmentation
is to identify segments that maintain a reliability level. Note that the failure probability for the defects located within
the 10th and 15th kilometers are quite similar, so it can be assured that this pipeline segment follows similar reliability.
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Figure 12: Mean depth (a) inner and b) outer wall), mean length (c) inner and d) outer wall), and mean width (e) inner and f) outer wall) based on
a static segmentation every kilometer

Besides, each segment has at least 30 defects per segment, so more adequate failure predictions would be obtained
than those using the other segmentations.

The approach proposed in this paper aims to be an alternative for segmenting onshore pipelines based on the
valuable information obtained from ILI. This approach can be used with a corrosion degradation process to analyze
how these segments evolve with time and how the maintenance planning may change as well. Once preliminary
critical segments are identified, such as 10-15km based on a Low Safety Level according to DNV [52], more specific
analyses can be considered including more detailed field measurements.

4.4. Additional remarks for leak and rupture limit states
This work evaluates the pipeline reliability only under a burst failure criterion, bearing in mind that no degradation

process has been included so far; nevertheless, other release modes may occur like a small or large leak or even a full-
bore rupture. If a probabilistic [15, 44] or stochastic [9, 53] degradation process is implemented, these limit state
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functions can be assessed together. Let g1, g2, and g3 denote limit state functions for a leak, burst, and rupture at an
individual corrosion defect, respectively:

g1 = 0.8t � dmax,
g2 = Pb � P,
g3 = Prp � P,

where Pb denotes the burst pressure, Prp is the rupture pressure, and dmax is the maximum depth of the corrosion
defects. There are different approaches to estimate the burst pressure given to the metal toughness (see Appendix A),
whereas the rupture pressure can be taken from CSA Z662 as follows:

Prp =
2t� f

Mf D
,

where � f stands for the flow stress (0.9�u) and Mf is the Folias factor of the CSA Z662 criterion. According to Zhou
et al. [54], these limit state functions can be used as follows to predict the failure modes: a small leak occurs when
g1  0 and g2 > 0; a burst when g1 > 0 and g2  0; a large leak when g1 > 0, g2  0, and g3 > 0; and a rupture
when g1 > 0, g2  0, and g3  0 [54]. This classification varies slightly from the reported in CSA Z662, where small
leaks occur when the corrosion degradation process consumes the wall thickness completely. The failure probabilities
for these limit states can be determined using Monte Carlo simulations or approximate methods like FORM/SORM
for each obtained section. These results can be used with consequence-based segmentations (e.g., High Consequence
Areas) and specific locations of interest like valve locations to identify locations where the risk may not be adequate.

Figure 13: Failure probability comparison using a) no-segmentation, b) soil segmentation, c) static segmentation, and d) the changepoints approach.
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5. Conclusions and future perspectives

This paper presented a dynamic segmentation strategy for large longitudinal structures (e.g., pipelines) that are
frequently inspected. The approach uses inspection results under a Moving Average Filter, for reducing ”noisy”
measurements per segment. Afterwards, the PELT (Pruned Exact Linear Time) method and the CROPS (Changepoints
for a Range of Penalties) were used to identify mean jumps along the structure main direction. The case study
considers a corroded pipeline that has been inspected internally with intelligent pigs (ILI). The measurements of
the defect depth, length, and width were used to characterize the segmentation. The dynamic segmentation allowed
identifying critical segments based on the burst failure criterion reported by Netto et al. [51]. Some of these sections
were initially hidden in other segmentations based on the soil and a fixed partition every kilometer. Condition-based
segmentations can provide valuable information about which sections of the pipeline are prone to fail, which can in
turn, support further inspections and maintenance-based decisions.

The segmentation is defined from a reliability perspective, which could be later exploited for additional risk as-
sessment evaluations, e.g., once failure consequences are contemplated and their spatial distribution is provided. For
onshore pipelines, risk assessments may divide the pipeline considering sensitive locations in terms of high conse-
quence areas. These divisions could include, for instance, the population density, how accessible is the location, or the
possible environmental losses [55]; however, databases and incident frequency failures are commonly used to eval-
uate a LOC. Few works address the spatial variability of the pipeline using condition-based analyses. Our approach
focused on a reliability perspective aiming to prevent a LOC by identifying preliminary sections prone to fail, which
in turn, would require further attention in their maintenance/inspection planning.

Future perspectives would seek to apply this approach with multiple limit states like small/large leak or pipe burst,
once a corrosion degradation process is considered. This approach can be used jointly with consequence analysis to
support maintenance and inspections, seeking optimal sections to intervene. Moreover, this approach can be applied
to other large systems under a spatial-dependent degradation, considering a primary evaluation direction, and its
inspection results. Some examples could be cracks in pavements or the condition of the sheet piling harbors, which
are used as protection walls. Overall, large systems pose relevant challenges in reliability assessments, considering
the number of components and the way we handle classic reliability perspectives. The reliability of system series like
pipelines may be significantly small depending on the number of defects since it is obtained from their product. The
complement of the reliability or failure probability would approach 1 (i.e., almost certain event), although the failure
probability of all the defects lies on acceptable reliability criteria. In this direction, a segmentation or partition of a
large structure allows a reduction of the complexity, given by a smaller number of components, which in turn, could be
used under similar approaches as the asymptotic reliability evaluation described by Kołowrocki [56]. Condition-based
segmentations, like the one presented in this work, are essential to complete this complexity reduction in sections
with similar degraded conditions, aiming to prevent any critical failure with severe consequences to the people and
environment surrounding the structure.
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internal pressure A review. Engineering Failure Analysis, 98:190 – 214, 2019.

19



[17] S. Hasan, F. Khan, and S. Kenny. Probability assessment of burst limit state due to internal corrosion. International Journal of Pressure
Vessels and Piping, 89:48 – 58, 2012.

[18] A. Amirat, A. Mohamed-Chateauneuf, and K. Chaoui. Reliability assessment of underground pipelines under the combined effect of active
corrosion and residual stress. International Journal of Pressure Vessels and Piping, 83(2):107 – 117, 2006.

[19] R. Bubbico. A statistical analysis of causes and consequences of the release of hazardous materials from pipelines. The influence of layout.
Journal of Loss Prevention in the Process Industries, 56:458 – 466, 2018.

[20] W.K. Muhlbauer. Pipeline Risk Management Manual: Ideas, Techniques, and Resources. Elsevier Science, 2004.
[21] Y. Sahraoui and A. Chateauneuf. The effects of spatial variability of the aggressiveness of soil on system reliability of corroding underground

pipelines. International Journal of Pressure Vessels and Piping, 146:188 – 197, 2016.
[22] R. Hicks and C. Ward. Development of a Risk Ranking Tool Based on Quantitative Methods. In 2004 International Pipeline Conference,

Alberta, Canada, 2004.
[23] J.L. Martı́nez, H.G. Alcerreca, E. Rodrı́guez, and J. Hernández. Risk Assessment of Gas Transmission Pipelines in Mexico. In International

Pipeline Conference, 1998.
[24] S. Bonvicini, G. Antonioni, and V. Cozzani. Assessment of the risk related to environmental damage following major accidents in onshore

pipelines. Journal of Loss Prevention in the Process Industries, 56:505 – 516, 2018.
[25] D. De Leon and O. Flores Macas. Effect of spatial correlation on the failure probability of pipelines under corrosion. International Journal

of Pressure Vessels and Piping, 82(2):123 – 128, 2005.
[26] K. Shan, J. Shuai, K. Xu, and W. Zheng. Failure probability assessment of gas transmission pipelines based on historical failure-related data

and modification factors. Journal of Natural Gas Science and Engineering, 52:356 – 366, 2018.
[27] W. Liang, J. Hu, L. Zhang, C. Guo, and W. Lin. Assessing and classifying risk of pipeline third-party interference based on fault tree and

SOM. Engineering Applications of Artificial Intelligence, 25(3):594 – 608, 2012.
[28] M.H. Alencar and A.T. de Almeida. Assigning priorities to actions in a pipeline transporting hydrogen based on a multicriteria decision

model. International Journal of Hydrogen Energy, 35(8):3610 – 3619, 2010.
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Appendix A. Burst pressure models summary

Based on the recent review of Amaya-Gómez et al. [16], some models are suggested depending on the material
toughness. For a low toughness pipe the models of DNV, CPS, B31G modified, and CUP are recommended; for
moderate toughness materials the models of Ma, PCORRC, Netto, and Zhu give adequate predictions; and for high
toughness materials, the approaches of Chen, PCORRC, Ma, and Choi provide remarkable results. These models will
be summarized below; further details for each model, please refer to the review of Amaya-Gómez et al. [16] and the
references cited therein.

Table A.8: Recommended models based on the pipe toughness
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Table A.8: continued from previous page
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*Low toughness - Below X55; Moderate toughness - Between X55 to X65; High toughness - above X65.

23


	Introduction
	Large structures context
	Corroding pipeline integrity
	Segmentation of corroding pipelines
	Objective and paper structure

	Dynamic segmentation based on the Changepoint algorithm
	Proposed approach overview
	Data processing
	Data gathering - In-Line inspections
	Preliminary segmentation - Moving Average Filter
	Moran's Index Evaluation

	Dynamic segmentation
	Changepoint algorithm overview
	Selection of the Penalty value
	Pipeline segmentation

	Reliability-based critical segments

	Spatial dependencies of the case study
	Main parameters
	Main descriptors of corrosion defects

	Results and discussion
	Data processing
	Dynamic segmentation and evaluation
	Comparison of critical segments - A reliability approach
	Additional remarks for leak and rupture limit states

	Conclusions and future perspectives
	Burst pressure models summary

